Post-eclosion temperature effects on insect cuticular hydrocarbon profiles

. 2021 Jan ; 11 (1) : 352-364. [epub] 20201207

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33437434

Grantová podpora
R01 GM100366 NIGMS NIH HHS - United States
R15 GM100395 NIGMS NIH HHS - United States

The insect cuticle is the interface between internal homeostasis and the often harsh external environment. Cuticular hydrocarbons (CHCs) are key constituents of this hard cuticle and are associated with a variety of functions including stress response and communication. CHC production and deposition on the insect cuticle vary among natural populations and are affected by developmental temperature; however, little is known about CHC plasticity in response to the environment experienced following eclosion, during which time the insect cuticle undergoes several crucial changes. We targeted this crucial to important phase and studied post-eclosion temperature effects on CHC profiles in two natural populations of Drosophila melanogaster. A forty-eight hour post-eclosion exposure to three different temperatures (18, 25, and 30°C) significantly affected CHCs in both ancestral African and more recently derived North American populations of D. melanogaster. A clear shift from shorter to longer CHCs chain length was observed with increasing temperature, and the effects of post-eclosion temperature varied across populations and between sexes. The quantitative differences in CHCs were associated with variation in desiccation tolerance among populations. Surprisingly, we did not detect any significant differences in water loss rate between African and North American populations. Overall, our results demonstrate strong genetic and plasticity effects in CHC profiles in response to environmental temperatures experienced at the adult stage as well as associations with desiccation tolerance, which is crucial in understanding holometabolan responses to stress.

Zobrazit více v PubMed

Bagneres, A. G. , Lorenzi, M. C. , Dusticier, G. , Turillazzi, S. , & Clement, J.‐L. (1996). Chemical usurpation of a nest by paper wasp parasites. Science, 272, 889–892. 10.1126/science.272.5263.889 PubMed DOI

Berson, J. D. , Zuk, M. , & Simmons, L. W. (2019). Natural and sexual selection on cuticular hydrocarbons: A quantitative genetic analysis. Proceedings of the Royal Society B, 286, 10.1098/rspb.2019.0677 PubMed DOI PMC

Blomquist, G. J. , & Bagneres, A.‐G. (2010). Insect hydrocarbons: Biology, biochemistry, and chemical ecology. Cambridge University Press.

Chapman, R. F. (2013). The insects: Structure & functions, 5th ed Cambridge University Press.

Chiang, Y. N. , Tan, K. J. , Chung, H. , Lavrynenko, O. , Shevchenko, A. , & Yew, J. Y. (2016). Steroid hormone signaling is essential for pheromone production and oenocyte survival. PLoS Genetics, 12(6), e1006126 10.1371/journal.pgen.1006126 PubMed DOI PMC

Chown, S. L. , Gibbs, A. G. , Hetz, S. K. , Klok, C. L. , Lighton, J. R. B. , & Marais, E. (2006). Discotinuous gas exchange in insects: A clarifications of hypotheses and approaches. Physiological and Biochemical Zoology, 79, 333–343. PubMed

Chung, H. , & Carroll, S. B. (2015). Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioassays, 37, 822–830. 10.1002/bies.201500014 PubMed DOI PMC

Dembeck, L. M. , Böröczky, K. , Huang, W. , Schal, C. , Anholt, R. R. H. , & Mackay, T. F. C. (2015). Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. eLife, 4, e09861 10.7554/eLife.09861 PubMed DOI PMC

Dewey, E. M. , McNabb, S. L. , Ewer, J. , Kuo, G. R. , Takanishi, C. L. , Truman, J. W. , & Honegger, H. W. (2004). Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotisation and wing spreading. Current Biology, 14, 1208–1213. PubMed

Etges, W. J. , de Oliveira, C. C. , Rajpurohit, S. , & Gibbs, A. G. (2017). Effects of temperature on transcriptome and cuticular hydrocarbon expression in ecologically differentiated populations of desert Drosophila . Ecology & Evolution, 7, 619–637. PubMed PMC

Fan, P. , Manoli, D. S. , Ahmed, O. M. , Chen, Y. , Agarwal, N. , Kwong, S. , Cai, A. G. , Neitz, J. , Renslo, A. , Baker, B. S. , & Shah, N. M. (2013). Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell, 154, 89–102. PubMed PMC

Francesca, D. F. , & Chenoweth, S. F. (2010). Clines in cuticular hydrocarbons in two Drosophila species with independent population histories. Evolution, 64, 1784–1794. PubMed

Gibbs, A. G. (1998). Water‐proofing properties of cuticular lipids. American Zoologist, 38, 471–482.

Gibbs, A. G. (2002a). Lipid melting and cuticular permeability: New insights into an old problem. Journal of Insect Physiology, 48, 391–400. PubMed

Gibbs, A. G. (2002b). Water balance in desert Drosophila: Lessons from non‐charismatic microfauna. Comparative Biochemistry and Physiology, 133, 781–789. PubMed

Gibbs, A. G. (2011). Thermodynamics of cuticular transpiration. Journal of Insect Physiology, 57, 1061–1178. PubMed

Gibbs, A. G. , Chippindale, A. K. , & Rose, M. R. (1997). Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster . Journal of Experimental Biology, 2000, 1821–1832. PubMed

Gibbs, A. G. , Louie, A. K. , & Ayala, J. A. (1998). Effects of temperature on cuticular lipids and water balance in a desert Drosophila: Is thermal acclimation beneficial? Journal of Experimental Biology, 201, 71–80. PubMed

Gibbs, A. G. , & Matzkin, L. M. (2001). Evolution of water balance in the genus Drosophila . Journal of Experimental Biology, 204, 2331–2338. PubMed

Gibbs, A. G. , & Pomonis, J. G. (1995). Physical properties of insect cuticular hydrocarbons: The effects of chain length, methyl‐branching and unsaturation. Comparative Biochemistry and Physiology, 112B, 243–249.

Gibbs, A. G. , & Rajpurohit, S. (2010). Cuticular lipids and water balance In Blomquist G. J. (Ed.), Insect hydrocarbons‐biology, biochemistry, and chemical biology (pp. 100–119). Cambridge University Publisher.

Hadley, N. F. (1978). Cuticular permeability of desert tenebrionid beetles: Correlations with epicuticular hydrocarbon composition. Insect Biochemistry, 7, 277–283.

Hadley, N. F. (1994). Water relations of terrestrial arthropods. Academic Press.

Hari, P. , Deshpande, M. , Sharma, N. , Rajadhyaksha, N. , Ramkumar, N. , Kimura, K. , Rodrigues, V. , & Tole, S. (2008). Chip is required for posteclosion behavior in Drosophila . Journal of Neuroscience, 28, 9145–9150. 10.1523/JNEUROSCI.1882-08.2008 PubMed DOI PMC

Hoffmann, A. A. (2010). Physiological climatic limits in Drosophila: Patterns and implications. Journal of Experimental Biology, 213, 870–880. 10.1242/jeb.037630 PubMed DOI

Hoffmann, A. A. , & Parsons, P. A. (1989). An integrated approach to environmental stress tolerance and life‐history variation: Desiccation tolerance in Drosophila . Biological Journal of Linnean Society London, 37, 117–135. 10.1111/j.1095-8312.1989.tb02098.x DOI

Jallon, J.‐M. , & David, J. R. (1987). Variations in cuticular hydrocarbons among the eight species of the Drosophila melanogaster subgroup. Evolution, 41, 294–302. 10.1111/j.1558-5646.1987.tb05798.x PubMed DOI

Krupp, J. J. , Nayal, K. , Wong, A. , Millar, J. G. , & Levine, J. D. (2019). Desiccation resistance is an adaptive life‐history trait dependent upon cuticular hydrocarbons, and influenced by mating status and temperature in D. melanogaster. Journal of Insect Physiology, 121, 103990 10.1016/j.jinsphys.2019.103990 PubMed DOI

Kuo, T.‐H. , Yew, J. Y. , Fedina, T. Y. , Dreisewerd, K. , Dierick, H. A. , & Pletcher, S. D. (2012). Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster . Journal of Experimental Biology, 215, 814–821. 10.1242/jeb.064980 PubMed DOI PMC

Le Conte, Y. , & Hefetz, A. (2008). Primer pheromones in social hymenoptera . Annual Review of Entomology, 53, 523–542. 10.1146/annurev.ento.52.110405.091434 PubMed DOI

Luo, C.‐W. , Dewey, E. M. , Sudo, S. , Ewer, J. , Hsu, S. Y. , Honegger, H.‐W. , & Hsueh, A. J. W. (2005). Bursicon, the insect cuticle‐hardening hormone, is a heterodimeric cystine knot protein that activates G protein‐coupled receptor LGR2. Proceedings of the National Academy of Sciences of the United States of America, 102, 2820–2825. 10.1073/pnas.0409916102 PubMed DOI PMC

Makki, R. , Cinnamon, E. , & Gould, A. P. (2014). The development and functions of oenocytes. Annual Review of Entomology, 59, 405–425. 10.1146/annurev-ento-011613-162056 PubMed DOI PMC

Matzkin, L. M. , Watts, T. D. , & Markow, T. A. (2007). Desiccation resistance in four Drosophila species. Fly, 1, 268–273. PubMed

Pardy, J. A. (2012). The genetic basis of cuticular hydrocarbon production in Drosophila melanogaster and D. simulans. Electronic Thesis and Dissertation Repository. http://ir.lib.uwo.ca/etd/832

Parkash, R. , Sharma, V. , & Kalra, B. (2009). Impact of body melanization on desiccation resistance in montane populations of D. melanogaster: Analysis of seasonal variation. Journal of Insect Physiology, 55, 898–908. PubMed

Rajpurohit, S. , de Oliveira, C. C. , Etges, W. J. , & Gibbs, A. G. (2013). Functional genomic and phenotypic responses to desiccation in natural populations of desert drosophilid. Molecular Ecology, 22, 2698–2715. PubMed PMC

Rajpurohit, S. , & Nedved, O. (2013). Clinal variation in fitness related traits in tropical drosophilids of the Indian subcontinent. Journal of Thermal Biology, 38, 345–354.

Rajpurohit, S. , Hanus, R. , Vrkoslav, V. , Behrman, E. L. , Bergland, A. , Dmitri, P. , Cvacka, J. , & Schmidt, P. S. (2017). Adaptive dynamics of cuticular hydrocarbon profiles in Drosophila . Journal of Evolutionary Biology, 30, 66–80. PubMed PMC

Rourke, B. C. , & Gibbs, A. G. (1999). Effects of lipid phase transitions on cuticular permeability: Model membrane and in situ studies. Journal of Experimental Biology, 202, 3255–3262. PubMed

Rourke, B. C. (2000). Geographic and altitudinal variation in water balance and metabolic rate in a California grasshopper, Melanopus sanguinipes . Journal of Experimental Biology, 203, 2699–2712. PubMed

Šmilauer, P. , & Leps, J. (2014). Multivariate analysis of ecological data using Canoco 5 (2nd ed.). Cambridge University Press.

Toolson, E. C. (1982). Effects of rearing temperature on cuticle permeability and epicuticular lipid composition in Drosophila pseudoobscura . Journal of Experimental Zoology, 222, 249–253. 10.1002/jez.1402220307 DOI

Toolson, E. C. , & Hadley, N. F. (1979). Seasonal effects on cuticular permeability and epicuticular lipid composition in Centruroides sculpturatus (Scorpiones: Buthidae): Correlation with thermal effects on cuticular permeability. Journal of Insect Physiology, 25, 271–275.

Van Oystaeyen, A. , Oliveira, R. C. , Holman, L. , van Zweden, J. S. , Romero, C. , Oi, C. A. , d’Ettorre, P. , Khalesi, M. , Billen, J. , Wackers, F. , Millar, J. G. , & Wenseleers, T. (2014). Conserved class of queen pheromones stops social insect workers from reproducing. Science, 343, 287–290. 10.1126/science.1244899 PubMed DOI

Vander, M. R. K. , Saliwanchik, D. , & Lavine, B. (1989). Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta: Implications for nest mate recognition. Journal of Chemical Ecology, 15, 2115–2126. 10.1007/BF01207442 PubMed DOI

Wigglesworth, V. B. (1945). Transpiration through the cuticle of insects. Journal of Experimental Biology London, 21, 97–114.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...