Common variants at PVT1, ATG13-AMBRA1, AHI1 and CLEC16A are associated with selective IgA deficiency

. 2016 Nov ; 48 (11) : 1425-1429. [epub] 20161010

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza

Perzistentní odkaz   https://www.medvik.cz/link/pmid27723758

Grantová podpora
U24 NS051869 NINDS NIH HHS - United States
242551 European Research Council - International
R01 NS057756 NINDS NIH HHS - United States
R01 AR043274 NIAMS NIH HHS - United States
U19 AI067152 NIAID NIH HHS - United States

Selective immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in Europeans. Our genome-wide association study (GWAS) meta-analysis of 1,635 patients with IgAD and 4,852 controls identified four new significant (P < 5 × 10-8) loci and association with a rare IFIH1 variant (p.Ile923Val). Peak new variants (PVT1, P = 4.3 × 10-11; ATG13-AMBRA1, P = 6.7 × 10-10; AHI1, P = 8.4 × 10-10; CLEC16A, P = 1.4 × 10-9) overlapped with autoimmune markers (3/4) and correlated with 21 putative regulatory variants, including expression quantitative trait loci (eQTLs) for AHI1 and DEXI and DNase hypersensitivity sites in FOXP3+ regulatory T cells. Pathway analysis of the meta-analysis results showed striking association with the KEGG pathway for IgA production (pathway P < 0.0001), with 22 of the 30 annotated pathway genes containing at least one variant with P ≤ 0.05 in the IgAD meta-analysis. These data suggest that a complex network of genetic effects, including genes known to influence the biology of IgA production, contributes to IgAD.

Central European Institute of Technology Masaryk University Brno Czech Republic

Department of Biochemistry School of Medicine University of California Davis Davis California USA

Department of Bioinformatics and Computational Biology Genentech Inc South San Francisco California USA

Department of Clinical Immunology and Allergy Faculty of Medicine Masaryk University St Anne's University Hospital Brno Czech Republic

Department of Human Genetics Genentech Inc South San Francisco California USA

Department of Immunology Hospital San Pedro de Alcántara Cáceres Spain

Department of Immunology Instituto de Investigación Sanitaria del Hospital Clínico San Carlos IdISSC Madrid Spain

Department of Infectious Diseases University of Gothenburg Gothenburg Sweden

Division of Clinical Immunology and Transfusion Medicine Karolinska Institutet Stockholm Sweden

Institute for Molecular Medicine A Nocivelli Department of Clinical and Experimental Sciences University of Brescia Spedali Civili di Brescia Brescia Italy

Instituto de Parasitología y Biomedicina López Neyra CSIC Granada Spain

Juvenile Diabetes Research Foundation Wellcome Trust Diabetes and Inflammation Laboratory Cambridge Institute for Medical Research Cambridge UK

Molecular Genetics Laboratory Centre for Cardiovascular Surgery and Transplantation Brno Czech Republic

Pediatrics Clinic Department of Clinical and Experimental Sciences University of Brescia Spedali Civili di Brescia Brescia Italy

Research Centre for Toxic Compounds in the Environment Faculty of Science Masaryk University Brno Czech Republic

Zobrazit více v PubMed

Pan-Hammarstrom Q, Hammarstrom L. Antibody deficiency diseases. Eur J Immunol. 2008;38:327–33. PubMed

Suzuki K, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A. 2004;101:1981–6. PubMed PMC

Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A. 2009;106:19256–61. PubMed PMC

Borte S, et al. Interleukin-21 restores immunoglobulin production ex vivo in patients with common variable immunodeficiency and selective IgA deficiency. Blood. 2009;114:4089–98. PubMed

Cao AT, et al. Interleukin (IL)-21 promotes intestinal IgA response to microbiota. Mucosal Immunol. 2015 PubMed PMC

Ferreira RC, et al. High-density SNP mapping of the HLA region identifies multiple independent susceptibility loci associated with selective IgA deficiency. PLoS Genet. 2012;8:e1002476. PubMed PMC

Oen K, Petty RE, Schroeder ML. Immunoglobulin A deficiency: genetic studies. Tissue Antigens. 1982;19:174–82. PubMed

Ludvigsson JF, Neovius M, Hammarstrom L. Association between IgA deficiency & other autoimmune conditions: a population-based matched cohort study. J Clin Immunol. 2014;34:444–51. PubMed

Ferreira RC, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet. 2010;42:777–80. PubMed

Kiryluk K, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nature Genetics. 2014;46:1187–1196. PubMed PMC

Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–9. PubMed PMC

Cunninghame Graham DS, et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 2011;7:e1002341. PubMed PMC

Li Y, et al. Carriers of rare missense variants in IFIH1 are protected from psoriasis. J Invest Dermatol. 2010;130:2768–72. PubMed PMC

Gregersen PK, et al. Risk for myasthenia gravis maps to a (151) Pro-->Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012;72:927–35. PubMed PMC

Shigemoto T, et al. Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes. J Biol Chem. 2009;284:13348–54. PubMed PMC

Van Eyck L, et al. Brief Report: IFIH1 Mutation Causes Systemic Lupus Erythematosus With Selective IgA Deficiency. Arthritis Rheumatol. 2015;67:1592–7. PubMed

Okada Y, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81. PubMed PMC

Boyle AP, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7. PubMed PMC

Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. PubMed PMC

Tseng YY, et al. PVT1 dependence in cancer with MYC copy-number increase. Nature. 2014;512:82–6. PubMed PMC

Ringrose A, et al. Evidence for an oncogenic role of AHI-1 in Sezary syndrome, a leukemic variant of human cutaneous T-cell lymphomas. Leukemia. 2006;20:1593–601. PubMed

Zhou LL et al. AHI-1 interacts with BCR-ABL and modulates BCR-ABL transforming activity and imatinib response of CML stem/progenitor cells. J Exp Med. 2008;205:2657–71. PubMed PMC

Nazio F, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013;15:406–16. PubMed

Pierdominici M, et al. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J. 2012;26:1400–12. PubMed

Clarke AJ, et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Annals of the Rheumatic Diseases. 2015;74:912–920. PubMed PMC

Pengo N, et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol. 2013;14:298–305. PubMed

Davison LJ, et al. Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum Mol Genet. 2012;21:322–33. PubMed PMC

Todd JA, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39:857–64. PubMed PMC

Li J, et al. Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells. Nat Commun. 2015;6:6804. PubMed PMC

Schuster C, et al. The Autoimmunity-Associated Gene CLEC16A Modulates Thymic Epithelial Cell Autophagy and Alters T Cell Selection. Immunity. 2015;42:942–52. PubMed PMC

Yaspan BL, et al. Genetic analysis of biological pathway data through genomic randomization. Hum Genet. 2011;129:563–71. PubMed PMC

Lee PH, O'Dushlaine C, Thomas B, Purcell SM. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics. 2012;28:1797–9. PubMed PMC

Onengut-Gumuscu S, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47:381–6. PubMed PMC

Schmidl C, et al. The enhancer and promoter landscape of human regulatory and conventional T-cell subpopulations. Blood. 2014;123:e68–78. PubMed

Fontenot JD, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005;22:329–41. PubMed

Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1. PubMed

Kawamoto S, et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41:152–65. PubMed

Chung D, Yang C, Li C, Gelernter J, Zhao H. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet. 2014;10:e1004787. PubMed PMC

International Union of Immunological Societies Expert Committee on Primary, I et al. Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol. 2009;124:1161–78. PubMed PMC

Magnusson PK, et al. The Swedish Twin Registry: establishment of a biobank and other recent developments. Twin Res Hum Genet. 2013;16:317–29. PubMed

Salvi E, et al. Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension. 2012;59:248–55. PubMed PMC

Mitchell MK, et al. The New York Cancer Project: rationale, organization, design, and baseline characteristics. J Urban Health. 2004;81:301–10. PubMed PMC

Ferreira RC, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet. 2010;42:777–80. PubMed

Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9. PubMed

Price AL, et al. Long-range LD can confound genome scans in admixed populations. Am J Hum Genet. 2008;83:132–5. author reply 135-9. PubMed PMC

Kosoy R, et al. Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat. 2009;30:69–78. PubMed PMC

Tian C, et al. Analysis and application of European genetic substructure using 300 K SNP information. PLoS Genet. 2008;4:e4. PubMed PMC

Gregersen PK, et al. Risk for myasthenia gravis maps to a (151) Pro-->Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012;72:927–35. PubMed PMC

Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. PubMed PMC

Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10:5–6. PubMed

Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44:955–9. PubMed PMC

Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511. PubMed

Pruim RJ, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7. PubMed PMC

Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 1995;57:289–300.

Yaspan BL, et al. Genetic analysis of biological pathway data through genomic randomization. Hum Genet. 2011;129:563–71. PubMed PMC

Ogata H, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27:29–34. PubMed PMC

Lee PH, O'Dushlaine C, Thomas B, Purcell SM. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics. 2012;28:1797–9. PubMed PMC

Dixon AL, et al. A genome-wide association study of global gene expression. Nat Genet. 2007;39:1202–1207. PubMed

Duan S, et al. Genetic Architecture of Transcript-Level Variation in Humans. The American Journal of Human Genetics. 82:1101–1113. PubMed PMC

He X, et al. Sherlock: Detecting Gene-Disease Associations by Matching Patterns of Expression QTL and GWAS. American Journal of Human Genetics. 2013;92:667–680. PubMed PMC

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82. PubMed PMC

Chung D, Yang C, Li C, Gelernter J, Zhao H. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet. 2014;10:e1004787. PubMed PMC

Barrett JC, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7. PubMed PMC

Okada Y, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...