Common variants at PVT1, ATG13-AMBRA1, AHI1 and CLEC16A are associated with selective IgA deficiency
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza
Grantová podpora
U24 NS051869
NINDS NIH HHS - United States
242551
European Research Council - International
R01 NS057756
NINDS NIH HHS - United States
R01 AR043274
NIAMS NIH HHS - United States
U19 AI067152
NIAID NIH HHS - United States
PubMed
27723758
PubMed Central
PMC5086090
DOI
10.1038/ng.3675
PII: ng.3675
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční genetika MeSH
- adaptorové proteiny vezikulární transportní MeSH
- celogenomová asociační studie MeSH
- deficience IgA genetika MeSH
- genetická variace * MeSH
- genové regulační sítě MeSH
- kohortové studie MeSH
- lektiny typu C genetika MeSH
- lidé MeSH
- proteiny přenášející monosacharidy genetika MeSH
- proteiny spojené s autofagií genetika MeSH
- RNA dlouhá nekódující genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- adaptorové proteiny vezikulární transportní MeSH
- AHI1 protein, human MeSH Prohlížeč
- AMBRA1 protein, human MeSH Prohlížeč
- ATG13 protein, human MeSH Prohlížeč
- CLEC16A protein, human MeSH Prohlížeč
- lektiny typu C MeSH
- proteiny přenášející monosacharidy MeSH
- proteiny spojené s autofagií MeSH
- PVT1 long-non-coding RNA, human MeSH Prohlížeč
- RNA dlouhá nekódující MeSH
Selective immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in Europeans. Our genome-wide association study (GWAS) meta-analysis of 1,635 patients with IgAD and 4,852 controls identified four new significant (P < 5 × 10-8) loci and association with a rare IFIH1 variant (p.Ile923Val). Peak new variants (PVT1, P = 4.3 × 10-11; ATG13-AMBRA1, P = 6.7 × 10-10; AHI1, P = 8.4 × 10-10; CLEC16A, P = 1.4 × 10-9) overlapped with autoimmune markers (3/4) and correlated with 21 putative regulatory variants, including expression quantitative trait loci (eQTLs) for AHI1 and DEXI and DNase hypersensitivity sites in FOXP3+ regulatory T cells. Pathway analysis of the meta-analysis results showed striking association with the KEGG pathway for IgA production (pathway P < 0.0001), with 22 of the 30 annotated pathway genes containing at least one variant with P ≤ 0.05 in the IgAD meta-analysis. These data suggest that a complex network of genetic effects, including genes known to influence the biology of IgA production, contributes to IgAD.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biochemistry School of Medicine University of California Davis Davis California USA
Department of Human Genetics Genentech Inc South San Francisco California USA
Department of Immunology Hospital San Pedro de Alcántara Cáceres Spain
Department of Infectious Diseases University of Gothenburg Gothenburg Sweden
Division of Clinical Immunology and Transfusion Medicine Karolinska Institutet Stockholm Sweden
Instituto de Parasitología y Biomedicina López Neyra CSIC Granada Spain
Zobrazit více v PubMed
Pan-Hammarstrom Q, Hammarstrom L. Antibody deficiency diseases. Eur J Immunol. 2008;38:327–33. PubMed
Suzuki K, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A. 2004;101:1981–6. PubMed PMC
Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A. 2009;106:19256–61. PubMed PMC
Borte S, et al. Interleukin-21 restores immunoglobulin production ex vivo in patients with common variable immunodeficiency and selective IgA deficiency. Blood. 2009;114:4089–98. PubMed
Cao AT, et al. Interleukin (IL)-21 promotes intestinal IgA response to microbiota. Mucosal Immunol. 2015 PubMed PMC
Ferreira RC, et al. High-density SNP mapping of the HLA region identifies multiple independent susceptibility loci associated with selective IgA deficiency. PLoS Genet. 2012;8:e1002476. PubMed PMC
Oen K, Petty RE, Schroeder ML. Immunoglobulin A deficiency: genetic studies. Tissue Antigens. 1982;19:174–82. PubMed
Ludvigsson JF, Neovius M, Hammarstrom L. Association between IgA deficiency & other autoimmune conditions: a population-based matched cohort study. J Clin Immunol. 2014;34:444–51. PubMed
Ferreira RC, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet. 2010;42:777–80. PubMed
Kiryluk K, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nature Genetics. 2014;46:1187–1196. PubMed PMC
Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–9. PubMed PMC
Cunninghame Graham DS, et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 2011;7:e1002341. PubMed PMC
Li Y, et al. Carriers of rare missense variants in IFIH1 are protected from psoriasis. J Invest Dermatol. 2010;130:2768–72. PubMed PMC
Gregersen PK, et al. Risk for myasthenia gravis maps to a (151) Pro-->Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012;72:927–35. PubMed PMC
Shigemoto T, et al. Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes. J Biol Chem. 2009;284:13348–54. PubMed PMC
Van Eyck L, et al. Brief Report: IFIH1 Mutation Causes Systemic Lupus Erythematosus With Selective IgA Deficiency. Arthritis Rheumatol. 2015;67:1592–7. PubMed
Okada Y, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81. PubMed PMC
Boyle AP, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7. PubMed PMC
Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. PubMed PMC
Tseng YY, et al. PVT1 dependence in cancer with MYC copy-number increase. Nature. 2014;512:82–6. PubMed PMC
Ringrose A, et al. Evidence for an oncogenic role of AHI-1 in Sezary syndrome, a leukemic variant of human cutaneous T-cell lymphomas. Leukemia. 2006;20:1593–601. PubMed
Zhou LL et al. AHI-1 interacts with BCR-ABL and modulates BCR-ABL transforming activity and imatinib response of CML stem/progenitor cells. J Exp Med. 2008;205:2657–71. PubMed PMC
Nazio F, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013;15:406–16. PubMed
Pierdominici M, et al. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J. 2012;26:1400–12. PubMed
Clarke AJ, et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Annals of the Rheumatic Diseases. 2015;74:912–920. PubMed PMC
Pengo N, et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol. 2013;14:298–305. PubMed
Davison LJ, et al. Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum Mol Genet. 2012;21:322–33. PubMed PMC
Todd JA, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39:857–64. PubMed PMC
Li J, et al. Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells. Nat Commun. 2015;6:6804. PubMed PMC
Schuster C, et al. The Autoimmunity-Associated Gene CLEC16A Modulates Thymic Epithelial Cell Autophagy and Alters T Cell Selection. Immunity. 2015;42:942–52. PubMed PMC
Yaspan BL, et al. Genetic analysis of biological pathway data through genomic randomization. Hum Genet. 2011;129:563–71. PubMed PMC
Lee PH, O'Dushlaine C, Thomas B, Purcell SM. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics. 2012;28:1797–9. PubMed PMC
Onengut-Gumuscu S, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47:381–6. PubMed PMC
Schmidl C, et al. The enhancer and promoter landscape of human regulatory and conventional T-cell subpopulations. Blood. 2014;123:e68–78. PubMed
Fontenot JD, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005;22:329–41. PubMed
Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1. PubMed
Kawamoto S, et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41:152–65. PubMed
Chung D, Yang C, Li C, Gelernter J, Zhao H. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet. 2014;10:e1004787. PubMed PMC
International Union of Immunological Societies Expert Committee on Primary, I et al. Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol. 2009;124:1161–78. PubMed PMC
Magnusson PK, et al. The Swedish Twin Registry: establishment of a biobank and other recent developments. Twin Res Hum Genet. 2013;16:317–29. PubMed
Salvi E, et al. Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension. 2012;59:248–55. PubMed PMC
Mitchell MK, et al. The New York Cancer Project: rationale, organization, design, and baseline characteristics. J Urban Health. 2004;81:301–10. PubMed PMC
Ferreira RC, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet. 2010;42:777–80. PubMed
Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9. PubMed
Price AL, et al. Long-range LD can confound genome scans in admixed populations. Am J Hum Genet. 2008;83:132–5. author reply 135-9. PubMed PMC
Kosoy R, et al. Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat. 2009;30:69–78. PubMed PMC
Tian C, et al. Analysis and application of European genetic substructure using 300 K SNP information. PLoS Genet. 2008;4:e4. PubMed PMC
Gregersen PK, et al. Risk for myasthenia gravis maps to a (151) Pro-->Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012;72:927–35. PubMed PMC
Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. PubMed PMC
Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10:5–6. PubMed
Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44:955–9. PubMed PMC
Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511. PubMed
Pruim RJ, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 1995;57:289–300.
Yaspan BL, et al. Genetic analysis of biological pathway data through genomic randomization. Hum Genet. 2011;129:563–71. PubMed PMC
Ogata H, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27:29–34. PubMed PMC
Lee PH, O'Dushlaine C, Thomas B, Purcell SM. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics. 2012;28:1797–9. PubMed PMC
Dixon AL, et al. A genome-wide association study of global gene expression. Nat Genet. 2007;39:1202–1207. PubMed
Duan S, et al. Genetic Architecture of Transcript-Level Variation in Humans. The American Journal of Human Genetics. 82:1101–1113. PubMed PMC
He X, et al. Sherlock: Detecting Gene-Disease Associations by Matching Patterns of Expression QTL and GWAS. American Journal of Human Genetics. 2013;92:667–680. PubMed PMC
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82. PubMed PMC
Chung D, Yang C, Li C, Gelernter J, Zhao H. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet. 2014;10:e1004787. PubMed PMC
Barrett JC, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7. PubMed PMC
Okada Y, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81. PubMed PMC