MicroRNA-Based Therapy in Animal Models of Selected Gastrointestinal Cancers

. 2016 ; 7 () : 329. [epub] 20160927

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27729862

Gastrointestinal cancer accounts for the 20 most frequent cancer diseases worldwide and there is a constant urge to bring new therapeutics with new mechanism of action into the clinical practice. Quantity of in vitro and in vivo evidences indicate, that exogenous change in pathologically imbalanced microRNAs (miRNAs) is capable of transforming the cancer cell phenotype. This review analyzed preclinical miRNA-based therapy attempts in animal models of gastric, pancreatic, gallbladder, and colorectal cancer. From more than 400 original articles, 26 was found to assess the effect of miRNA mimics, precursors, expression vectors, or inhibitors administered locally or systemically being an approach with relatively high translational potential. We have focused on mapping available information on animal model used (animal strain, cell line, xenograft method), pharmacological aspects (oligonucleotide chemistry, delivery system, posology, route of administration) and toxicology assessments. We also summarize findings in the field pharmacokinetics and toxicity of miRNA-based therapy.

Zobrazit více v PubMed

Adams B. D., Parsons C., Slack F. J. (2015). The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin. Ther. Targets 20, 737–753. 10.1517/14728222.2016.1114102 PubMed DOI PMC

Akinc A., Thomas M., Klibanov A. M., Langer R. (2005). Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7, 657–663. 10.1002/jgm.696 PubMed DOI

Aslam M. I., Patel M., Singh B., Jameson J. S., Pringle J. H. (2012). MicroRNA manipulation in colorectal cancer cells: from laboratory to clinical application. J. Transl. Med. 10:128. 10.1186/1479-5876-10-128 PubMed DOI PMC

Axtell M. J., Westholm J. O., Lai E. C. (2011). Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol. 12:221. 10.1186/gb-2011-12-4-221 PubMed DOI PMC

Bader A. G., Brown D., Winkler M. (2010). The promise of MicroRNA replacement therapy. Cancer Res. 70, 7027–7030. 10.1158/0008-5472.CAN-10-2010 PubMed DOI PMC

Bao Y., Chen Z., Guo Y., Feng Y., Li Z., Han W., et al. . (2014). Tumor suppressor MicroRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. PLoS ONE 9:e105991. 10.1371/journal.pone.0105991 PubMed DOI PMC

Beyerle A., Braun A., Merkel O., Koch F., Kissel T., Stoeger T. (2011). Comparative in vivo study of poly (ethylene imine)/siRNA complexes for pulmonary delivery in mice. J. Control Release Off. J. Control Release Soc. 151, 51–56. 10.1016/j.jconrel.2010.12.017 PubMed DOI

Bofill-De Ros X., Villanueva E., Fillat C. (2015). Late-phase miRNA-controlled oncolytic adenovirus for selective killing of cancer cells. Oncotarget 6, 6179–6190. 10.18632/oncotarget.3350 PubMed DOI PMC

Bonnet M.-E., Erbacher P., Bolcato-Bellemin A.-L. (2008). Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm. Res. 25, 2972–2982. 10.1007/s11095-008-9693-1 PubMed DOI

Braasch D. A., Corey D. R. (2001). Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem. Biol. 8, 1–7. 10.1016/S1074-5521(00)00058-2 PubMed DOI

Broderick J. A., Zamore P. D. (2011). MicroRNA therapeutics. Gene Ther. 18, 1104–1110. 10.1038/gt.2011.50 PubMed DOI PMC

Calin G. A., Croce C. M. (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866. 10.1038/nrc1997 PubMed DOI

Chang Y., Liu C., Yang J., Liu G., Feng F., Tang J., et al. . (2013). miR-20a triggers metastasis of gallbladder carcinoma. J. Hepatol. 59, 518–527. 10.1016/j.jhep.2013.04.034 PubMed DOI

Chen L., Lü M.-H., Zhang D., Hao N.-B., Fan Y.-H., Wu Y.-Y., et al. . (2014). miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis. 5:e1034. 10.1038/cddis.2013.553 PubMed DOI PMC

Chen Y., Gao D.-Y., Huang L. (2015). In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141. 10.1016/j.addr.2014.05.009 PubMed DOI PMC

Cheng C. J., Saltzman W. M., Slack F. J. (2013). Canonical and non-canonical barriers facing antimir cancer therapeutics. Curr. Med. Chem. 20, 3582–3593. 10.2174/0929867311320290004 PubMed DOI PMC

Chollet P., Favrot M. C., Hurbin A., Coll J.-L. (2002). Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J. Gene Med. 4, 84–91. 10.1002/jgm.237 PubMed DOI

Chowdhury E. H., Maruyama A., Kano A., Nagaoka M., Kotaka M., Hirose S., et al. . (2006). pH-sensing nano-crystals of carbonate apatite: effects on intracellular delivery and release of DNA for efficient expression into mammalian cells. Gene 376, 87–94. 10.1016/j.gene.2006.02.028 PubMed DOI

Cong N., Du P., Zhang A., Shen F., Su J., Pu P., et al. . (2013). Downregulated microRNA-200a promotes EMT and tumor growth through the Wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol. Rep. 29, 1579–1587. 10.3892/or.2013.2267 PubMed DOI

Crooke S. T. (2007). Antisense Drug Technology: Principles, Strategies, and Applications, 2nd Edn Boca Raton, FL: CRC Press.

Dong Y., Zhao J., Wu C.-W., Zhang L., Liu X., Kang W., et al. . (2013). Tumor suppressor functions of miR-133a in colorectal cancer. Mol. Cancer Res. 11, 1051–1060. 10.1158/1541-7786.MCR-13-0061 PubMed DOI

Esquela-Kerscher A., Slack F. J. (2006). Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269. 10.1038/nrc1840 PubMed DOI

Fischer D., Bieber T., Li Y., Elsässer H. P., Kissel T. (1999). A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16, 1273–1279. 10.1023/A:1014861900478 PubMed DOI

Frampton A. E., Castellano L., Colombo T., Giovannetti E., Krell J., Jacob J., et al. . (2011). MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology 146, 268.e18–277.e18. 10.1053/j.gastro.2013.10.010 PubMed DOI

Garzon R., Fabbri M., Cimmino A., Calin G. A., Croce C. M. (2006). MicroRNA expression and function in cancer. Trends Mol. Med. 12, 580–587. 10.1016/j.molmed.2006.10.006 PubMed DOI

Geng L., Zhu B., Dai B.-H., Sui C.-J., Xu F., Kan T., et al. . (2011). A let-7/Fas double-negative feedback loop regulates human colon carcinoma cells sensitivity to Fas-related apoptosis. Biochem. Biophys. Res. Commun. 408, 494–499. 10.1016/j.bbrc.2011.04.074 PubMed DOI

Glover J. M., Leeds J. M., Mant T. G. K., Amin D., Kisner D. L., Zuckerman J. E., et al. . (1997). Phase I safety and pharmacokinetic profile of an intercellular adhesion molecule-1 antisense oligodeoxynucleotide (ISIS 2302). J. Pharmacol. Exp. Ther. 282, 1173–1180. PubMed

Grimm D., Streetz K. L., Jopling C. L., Storm T. A., Pandey K., Davis C. R., et al. . (2006). Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541. 10.1038/nature04791 PubMed DOI

Gu W., Xu Y., Xie X., Wang T., Ko J.-H., Zhou T. (2014). The role of RNA structure at 5′ untranslated region in microRNA-mediated gene regulation. RNA 20, 1369–1375. 10.1261/rna.044792.114 PubMed DOI PMC

Hanahan D., Weinberg R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674. 10.1016/j.cell.2011.02.013 PubMed DOI

Hanini A., Schmitt A., Kacem K., Chau F., Ammar S., Gavard J. (2011). Evaluation of iron oxide nanoparticle biocompatibility. Int. J. Nanomed. 6, 787–794. 10.2147/IJN.S17574 PubMed DOI PMC

Hao Z., Fan W., Hao J., Wu X., Zeng G. Q., Zhang L. J., et al. . (2016). Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv. 23, 874–881. 10.3109/10717544.2014.920059 PubMed DOI

He X., Dong Y., Wu C. W., Zhao Z., Ng S. S. M., Chan F. K. L., et al. . (2012). MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol. Med. 18, 1491–1498. 10.2119/molmed.2012.00304 PubMed DOI PMC

Henry S. P., Beattie G., Yeh G., Chappel A., Giclas P., Mortari A., et al. . (2002). Complement activation is responsible for acute toxicities in rhesus monkeys treated with a phosphorothioate oligodeoxynucleotide. Int. Immunopharmacol. 2, 1657–1666. 10.1016/S1567-5769(02)00142-X PubMed DOI

Henry S. P., Bolte H., Auletta C., Kornbrust D. J. (1997). Evaluation of the toxicity of ISIS 2302, a phosphorothioate oligonucleotide, in a four-week study in cynomolgus monkeys. Toxicology 120, 145–155. 10.1016/S0300-483X(97)03661-5 PubMed DOI

Hiraki M., Nishimura J., Takahashi H., Wu X., Takahashi Y., Miyo M., et al. . (2015). Concurrent targeting of KRAS and AKT by MiR-4689 is a novel treatment against mutant KRAS colorectal cancer. Mol. Ther. Nucleic Acids 4:e231. 10.1038/mtna.2015.5 PubMed DOI PMC

Höbel S., Aigner A. (2013). Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 484–501. 10.1002/wnan.1228 PubMed DOI

Ho T. T., Zhou N., Huang J., Koirala P., Xu M., Fung R., et al. . (2015). Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res. 43:e17. 10.1093/nar/gku1198 PubMed DOI PMC

Hogg D. R., Harries L. W. (2014). Human genetic variation and its effect on miRNA biogenesis, activity and function. Biochem. Soc. Trans. 42, 1184–1189. 10.1042/BST20140055 PubMed DOI

Hossain S., Stanislaus A., Chua M. J., Tada S., Tagawa Y., Chowdhury E. H., et al. . (2010). Carbonate apatite-facilitated intracellularly delivered siRNA for efficient knockdown of functional genes. J. Control Release Off. J. Control Release Soc. 147, 101–108. 10.1016/j.jconrel.2010.06.024 PubMed DOI

Hu Q. L., Jiang Q. Y., Jin X., Shen J., Wang K., Li Y. B., et al. . (2013). Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials 34, 2265–2276. 10.1016/j.biomaterials.2012.12.016 PubMed DOI

Hwang H.-W., Wentzel E. A., Mendell J. T. (2007). A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100. 10.1126/science.1136235 PubMed DOI

Ibrahim A. F., Weirauch U., Thomas M., Grünweller A., Hartmann R. K., Aigner A. (2011). MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 71, 5214–5224. 10.1158/0008-5472.CAN-10-4645 PubMed DOI

Ishida T., Ichihara M., Wang X., Yamamoto K., Kimura J., Majima E., et al. . (2006). Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J. Control Release Off. J. Control Release Soc. 112, 15–25. 10.1016/j.jconrel.2006.01.005 PubMed DOI

Jeffries C. D., Fried H. M., Perkins D. O. (2011). Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA 17, 675–686. 10.1261/rna.2006511 PubMed DOI PMC

Jin H. Y., Gonzalez-Martin A., Miletic A. V., Lai M., Knight S., Sabouri-Ghomi M., et al. . (2015). Transfection of microRNA mimics should be used with caution. Front. Genet. 6:340. 10.3389/fgene.2015.00340 PubMed DOI PMC

Ju C., Mo R., Xue J., Zhang L., Zhao Z., Xue L., et al. . (2014). Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration. Angew. Chem. Int. Ed. 53, 6253–6258. 10.1002/anie.201311227 PubMed DOI

Kanasty R. L., Whitehead K. A., Vegas A. J., Anderson D. G. (2012). Action and reaction: the biological response to siRNA and its delivery vehicles. Mol. Ther. J. Am. Soc. Gene Ther. 20, 513–524. 10.1038/mt.2011.294 PubMed DOI PMC

Kao S. C., Fulham M., Wong K., Cooper W., Brahmbhatt H., MacDiarmid J., et al. . (2015). A significant metabolic and radiological response after a novel targeted MicroRNA-based treatment approach in malignant pleural mesothelioma. Am. J. Respir. Crit. Care Med. 191, 1467–1469. 10.1164/rccm.201503-0461LE PubMed DOI

Kasinski A. L., Slack F. J. (2011). Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat. Rev. Cancer 11, 849–864. 10.1038/nrc3166 PubMed DOI PMC

Keklikoglou I., Hosaka K., Bender C., Bott A., Koerner C., Mitra D., et al. . (2015). MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878. 10.1038/onc.2014.408 PubMed DOI PMC

Kievit F. M., Veiseh O., Bhattarai N., Fang C., Gunn J. W., Lee D., et al. . (2009). PEI-PEG-chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv. Funct. Mater. 19, 2244–2251. 10.1002/adfm.200801844 PubMed DOI PMC

Kievit F. M., Zhang M. (2011). Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res. 44, 853–862. 10.1021/ar2000277 PubMed DOI PMC

Komatsu K., Shibata T., Shimada A., Ideno H., Nakashima K., Tabata Y., et al. . (2016). Cationized gelatin hydrogels mixed with plasmid DNA induce stronger and more sustained gene expression than atelocollagen at calvarial bone defects in vivo. J. Biomater. Sci. Polym. Ed. 27, 419–430. 10.1080/09205063.2016.1139486 PubMed DOI

Krieg A. M., Yi A.-K., Matson S., Waldschmidt T. J., Bishop G. A., Teasdale R., et al. . (1995). CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549. 10.1038/374546a0 PubMed DOI

Kumar R., Singh S. K., Koshkin A. A., Rajwanshi V. K., Meldgaard M., Wengel J. (1998). The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg. Med. Chem. Lett. 8, 2219–2222. 10.1016/S0960-894X(98)00366-7 PubMed DOI

Lahdaoui F., Delpu Y., Vincent A., Renaud F., Messager M., Duchêne B., et al. . (2014). miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene 34, 780–788. 10.1038/onc.2014.11 PubMed DOI

Lellouche E., Israel L. L., Bechor M., Attal S., Kurlander E., Asher V. A., et al. . (2015). MagRET nanoparticles: an iron oxide nanocomposite platform for gene silencing from microRNAs to long noncoding RNAs. Bioconjug. Chem. 26, 1692–1701. 10.1021/acs.bioconjchem.5b00276 PubMed DOI

Levin A. A. (1999). A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim. Biophys. Acta 1489, 69–84. 10.1016/S0167-4781(99)00140-2 PubMed DOI

Li Z. F., Liang Y. M., Lau P. N., Shen W., Wang D. K., Cheung W. T., et al. . (2013). Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials. PLoS ONE 8:e70869. 10.1371/journal.pone.0070869 PubMed DOI PMC

Maeda H. (2015). Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 91, 3–6. 10.1016/j.addr.2015.01.002 PubMed DOI

Mahmoudi M., Laurent S., Shokrgozar M. A., Hosseinkhani M. (2011). Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5, 7263–7276. 10.1021/nn2021088 PubMed DOI

Malek A., Merkel O., Fink L., Czubayko F., Kissel T., Aigner A. (2009). In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Toxicol. Appl. Pharmacol. 236, 97–108. 10.1016/j.taap.2009.01.014 PubMed DOI

Mallick S., Choi J. S. (2014). Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J. Nanosci. Nanotechnol. 14, 755–765. 10.1166/jnn.2014.9080 PubMed DOI

Matsumura Y., Maeda H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Part 1):6387–6392. PubMed

Merkel O. M., Beyerle A., Beckmann B. M., Zheng M., Hartmann R. K., Stöger T., et al. . (2011). Polymer-related off-target effects in non-viral siRNA delivery. Biomaterials 32, 2388–2398. 10.1016/j.biomaterials.2010.11.081 PubMed DOI

Mittal A., Chitkara D., Behrman S. W., Mahato R. I. (2014). Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35, 7077–7087. 10.1016/j.biomaterials.2014.04.053 PubMed DOI

Narayanan A., Hill-Teran G., Moro A., Ristori E., Kasper D. M., Roden C., et al. . (2016). In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system. Sci. Rep. 6:32386. 10.1038/srep32386 PubMed DOI PMC

Nchinda G., Uberla K., Zschörnig O. (2002). Characterization of cationic lipid DNA transfection complexes differing in susceptability to serum inhibition. BMC Biotechnol. 2:12. 10.1186/1472-6750-2-12 PubMed DOI PMC

Ochiya T., Nagahara S., Sano A., Itoh H., Terada M. (2001). Biomaterials for gene delivery: atelocollagen-mediated controlled release of molecular medicines. Curr. Gene Ther. 1, 31–52. 10.2174/1566523013348887 PubMed DOI

Ochiya T., Takahama Y., Nagahara S., Sumita Y., Hisada A., Itoh H., et al. . (1999). New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat. Med. 5, 707–710. 10.1038/9560 PubMed DOI

Ott C. E., Grünhagen J., Jäger M., Horbelt D., Schwill S., Kallenbach K., et al. . (2011). MicroRNAs differentially expressed in postnatal aortic development downregulate elastin via 3′ UTR and coding-sequence binding sites. PLoS ONE 6:e16250. 10.1371/journal.pone.0016250 PubMed DOI PMC

Park C. W., Zeng Y., Zhang X., Subramanian S., Steer C. J. (2010). Mature microRNAs identified in highly purified nuclei from HCT116 colon cancer cells. RNA Biol. 7, 606–614. 10.4161/rna.7.5.13215 PubMed DOI PMC

Pathak K., Keshri L., Shah M. (2011). Lipid nanocarriers: influence of lipids on product development and pharmacokinetics. Crit. Rev. Ther. Drug Carrier Syst. 28, 357–393. 10.1615/CritRevTherDrugCarrierSyst.v28.i4.20 PubMed DOI

Pramanik D., Campbell N. R., Karikari C., Chivukula R., Kent O. A., Mendell J. T., et al. . (2011). Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 10, 1470–1480. 10.1158/1535-7163.MCT-11-0152 PubMed DOI PMC

Quinn L., Finn S. P., Cuffe S., Gray S. G. (2015). Non-coding RNA repertoires in malignant pleural mesothelioma. Lung Cancer Amst. Neth. 90, 417–426. 10.1016/j.lungcan.2015.11.002 PubMed DOI

RG-101 , (2016). Regulus Therapeutics. Available online at: http://regulusrx.com/programs/clinical-pipeline/rg-101/

Romero-Cordoba S. L., Salido-Guadarrama I., Rodriguez-Dorantes M., Hidalgo-Miranda A. (2014). miRNA biogenesis: biological impact in the development of cancer. Cancer Biol. Ther. 15, 1444–1455. 10.4161/15384047.2014.955442 PubMed DOI PMC

Ruan K., Fang X., Ouyang G. (2009). MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett. 285, 116–126. 10.1016/j.canlet.2009.04.031 PubMed DOI

Seto A. G. (2010). The road toward microRNA therapeutics. Int. J. Biochem. Cell Biol. 42, 1298–1305. 10.1016/j.biocel.2010.03.003 PubMed DOI

Sheehan J. P., Lan H.-C. (1998). Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex. Blood 92, 1617–1625. PubMed

Sicard F., Gayral M., Lulka H., Buscail L., Cordelier P. (2013). Targeting miR-21 for the therapy of pancreatic cancer. Mol. Ther. 21, 986–994. 10.1038/mt.2013.35 PubMed DOI PMC

Søkilde R., Newie I., Persson H., Borg Å., Rovira C. (2015). Passenger strand loading in overexpression experiments using microRNA mimics. RNA Biol. 12, 787–791. 10.1080/15476286.2015.1020270 PubMed DOI PMC

Soriano A., Jubierre L., Almazán-Moga A., Molist C., Roma J., de Toledo J. S., et al. . (2013). microRNAs as pharmacological targets in cancer. Pharmacol. Res. 75, 3–14. 10.1016/j.phrs.2013.03.006 PubMed DOI

Suk J. S., Xu Q., Kim N., Hanes J., Ensign L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99(Pt A):28–51. 10.1016/j.addr.2015.09.012 PubMed DOI PMC

Sun Y., Shen S., Liu X., Tang H., Wang Z., Yu Z., et al. . (2014). MiR-429 inhibits cells growth and invasion and regulates EMT-related marker genes by targeting Onecut2 in colorectal carcinoma. Mol. Cell. Biochem. 390, 19–30. 10.1007/s11010-013-1950-x PubMed DOI PMC

Sun Z., Song X., Li X., Su T., Qi S., Qiao R., et al. . (2014). In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale 6, 14343–14353. 10.1039/C4NR03003F PubMed DOI

Tan Y., Huang L. (2002). Overcoming the inflammatory toxicity of cationic gene vectors. J. Drug Target 10, 153–160. 10.1080/10611860290016757 PubMed DOI

Tang R., Li L., Zhu D., Hou D., Cao T., Gu H., et al. . (2012). Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 22, 504–515. 10.1038/cr.2011.137 PubMed DOI PMC

Tréhoux S., Lahdaoui F., Delpu Y., Renaud F., Leteurtre E., Torrisani J., et al. . (2015). Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochim. Biophys. Acta Mol. Cell Res. 1853, 2392–2403. 10.1016/j.bbamcr.2015.05.033 PubMed DOI

van der Ree M. H., van der Meer A. J., van Nuenen A. C., de Bruijne J., Ottosen S., Janssen H. L., et al. . (2016). Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 43, 102–113. 10.1111/apt.13432 PubMed DOI

van Rooij E., Purcell A. L., Levin A. A. (2012). Developing microRNA therapeutics. Circ. Res. 110, 496–507. 10.1161/CIRCRESAHA.111.247916 PubMed DOI

Vidic S., Markelc B., Sersa G., Coer A., Kamensek U., Tevz G., et al. . (2010). MicroRNAs targeting mutant K-ras by electrotransfer inhibit human colorectal adenocarcinoma cell growth in vitro and in vivo. Cancer Gene Ther. 17, 409–419. 10.1038/cgt.2009.87 PubMed DOI

Wang J., Chen Y., Chen B., Ding J., Xia G., Gao C., et al. . (2010). Pharmacokinetic parameters and tissue distribution of magnetic Fe(3)O(4) nanoparticles in mice. Int. J. Nanomed. 5, 861–866. 10.2147/IJN.S13662 PubMed DOI PMC

Wang M., Gu H., Qian H., Zhu W., Zhao C., Zhang X., et al. . (2013). miR-17-5p/20a are important markers for gastric cancer and murine double minute 2 participates in their functional regulation. Eur. J. Cancer 49, 2010–2021. 10.1016/j.ejca.2012.12.017 PubMed DOI

Wei Y., Li L., Wang D., Zhang C.-Y., Zen K. (2014). Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J. Biol. Chem. 289, 10270–10275. 10.1074/jbc.C113.541417 PubMed DOI PMC

Wen D., Danquah M., Chaudhary A. K., Mahato R. I. (2015). Small molecules targeting microRNA for cancer therapy: promises and obstacles. J. Control Release 219, 237–247. 10.1016/j.jconrel.2015.08.011 PubMed DOI PMC

Wu J., Lizarzaburu M. E., Kurth M. J., Liu L., Wege H., Zern M. A., et al. . (2001). Cationic lipid polymerization as a novel approach for constructing new DNA delivery agents. Bioconjug. Chem. 12, 251–257. 10.1021/bc000097e PubMed DOI

Wu X., Yamamoto H., Nakanishi H., Yamamoto Y., Inoue A., Tei M., et al. . (2015). Innovative delivery of siRNA to solid tumors by super carbonate apatite. PLoS ONE 10:e0116022. 10.1371/journal.pone.0116022 PubMed DOI PMC

Xie J., Huang J., Li X., Sun S., Chen X. (2009). Iron oxide nanoparticle platform for biomedical applications. Curr. Med. Chem. 16, 1278–1294. 10.2174/092986709787846604 PubMed DOI

Xue H., Guo P., Wen W.-C., Wong H. (2015). Lipid-based nanocarriers for RNA delivery. Curr. Pharm. Des. 21, 3140–3147. 10.2174/1381612821666150531164540 PubMed DOI PMC

Ye J., Wu X., Wu D., Wu P., Ni C., Zhang Z., et al. . (2013). miRNA-27b targets vascular endothelial growth factor c to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS ONE 8:e60687. 10.1371/journal.pone.0060687 PubMed DOI PMC

Zelphati O., Szoka F. C. (1996). Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. U.S.A. 93, 11493–11498. 10.1073/pnas.93.21.11493 PubMed DOI PMC

Zhang J.-S., Liu F., Huang L. (2005). Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv. Drug Deliv. Rev. 57, 689–698. 10.1016/j.addr.2004.12.004 PubMed DOI

Zhang X.-X., McIntosh T. J., Grinstaff M. W. (2012). Functional lipids and lipoplexes for improved gene delivery. Biochimie 94, 42–58. 10.1016/j.biochi.2011.05.005 PubMed DOI PMC

Zhang Y., Qu X., Li C., Fan Y., Che X., Wang X., et al. . (2015). miR-103/107 modulates multidrug resistance in human gastric carcinoma by downregulating Cav-1. Tumor Biol. 36, 2277–2285. 10.1007/s13277-014-2835-7 PubMed DOI

Zhang Y., Wang Z., Gemeinhart R. A. (2013). Progress in microRNA delivery. J. Control Release Off. J. Control Release Soc. 172, 962–974. 10.1016/j.jconrel.2013.09.015 PubMed DOI PMC

Zhao W.-G., Yu S.-N., Lu Z.-H., Ma Y.-H., Gu Y.-M., Chen J. (2010). The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726–1733. 10.1093/carcin/bgq160 PubMed DOI

Zisoulis D. G., Kai Z. S., Chang R. K., Pasquinelli A. E. (2012). Autoregulation of microRNA biogenesis by let-7 and argonaute. Nature 486, 541–544. 10.1038/nature11134 PubMed DOI PMC

Zou Y., Li J., Chen Z., Li X., Zheng S., Yi D., et al. . (2015). miR-29c suppresses pancreatic cancer liver metastasis in an orthotopic implantation model in nude mice and affects survival in pancreatic cancer patients. Carcinogenesis 36, 676–684. 10.1093/carcin/bgv027 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...