Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
260797
European Research Council - International
PubMed
27799288
PubMed Central
PMC5167350
DOI
10.15252/embr.201642540
PII: embr.201642540
Knihovny.cz E-resources
- Keywords
- Nat4, Pnc1, calorie restriction, histone N‐terminal acetylation, lifespan,
- MeSH
- Acetylation MeSH
- Transcriptional Activation MeSH
- Time Factors MeSH
- Chromatin metabolism MeSH
- Longevity MeSH
- Down-Regulation MeSH
- Histone Acetyltransferases metabolism MeSH
- Histones metabolism MeSH
- Caloric Restriction * MeSH
- N-Terminal Acetyltransferase D deficiency genetics physiology MeSH
- Nicotinamidase genetics metabolism MeSH
- Protein Processing, Post-Translational MeSH
- Gene Expression Regulation, Fungal * MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism physiology MeSH
- Saccharomyces cerevisiae genetics physiology MeSH
- Gene Expression Profiling MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chromatin MeSH
- Histone Acetyltransferases MeSH
- Histones MeSH
- N-Terminal Acetyltransferase D MeSH
- NAT4 protein, S cerevisiae MeSH Browser
- Nicotinamidase MeSH
- PNC1 protein, S cerevisiae MeSH Browser
- Saccharomyces cerevisiae Proteins MeSH
Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N-alpha-terminal acetyltransferase Nat4 and loss of its associated H4 N-terminal acetylation (N-acH4) extend yeast replicative lifespan. Notably, nat4Δ-induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N-acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N-acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress-response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ-mediated longevity. Collectively, these findings establish histone N-acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biological Sciences University of Cyprus Nicosia Cyprus
Huffington Center on Aging Baylor College of Medicine Houston TX USA
Institut für Molekulare Biowissenschaften Karl Franzens Universität Graz Austria
National Centre for Biomolecular Research Masaryk University Brno Czech Republic
See more in PubMed
Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693–705 PubMed
D'Aquila P, Rose G, Bellizzi D, Passarino G (2013) Epigenetics and aging. Maturitas 74: 130–136 PubMed
Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, Huang X, Cao X et al (2011) Histone demethylase UTX‐1 regulates C. elegans life span by targeting the insulin/IGF‐1 signaling pathway. Cell Metab 14: 161–172 PubMed
Feser J, Tyler J (2011) Chromatin structure as a mediator of aging. FEBS Lett 585: 2041–2048 PubMed PMC
Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459: 802–807 PubMed PMC
Pu M, Ni Z, Wang M, Wang X, Wood JG, Helfand SL, Yu H, Lee SS (2015) Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev 29: 718–731 PubMed PMC
Sen P, Dang W, Donahue G, Dai J, Dorsey J, Cao X, Liu W, Cao K, Perry R, Lee JY et al (2015) H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev 29: 1362–1376 PubMed PMC
Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, Han S, Banko MR, Gozani O, Brunet A (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline‐dependent manner in C. elegans . Nature 466: 383–387 PubMed PMC
Maures TJ, Greer EL, Hauswirth AG, Brunet A (2011) The H3K27 demethylase UTX‐1 regulates C. elegans lifespan in a germline‐independent, insulin‐dependent manner. Aging Cell 10: 980–990 PubMed PMC
Maleszewska M, Mawer JSP, Tessarz P (2016) Histone modifications in ageing and lifespan regulation. Curr Mol Bio Rep 2: 26–35
Peleg S, Feller C, Forne I, Schiller E, Sevin DC, Schauer T, Regnard C, Straub T, Prestel M, Klima C et al (2016) Life span extension by targeting a link between metabolism and histone acetylation in Drosophila . EMBO Rep 17: 455–469 PubMed PMC
Southworth LK, Owen AB, Kim SK (2009) Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet 5: e1000776 PubMed PMC
Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, Chen CC, Li W, Tyler JK (2014) Nucleosome loss leads to global transcriptional up‐regulation and genomic instability during yeast aging. Genes Dev 28: 396–408 PubMed PMC
Janssens GE, Meinema AC, Gonzalez J, Wolters JC, Schmidt A, Guryev V, Bischoff R, Wit EC, Veenhoff LM, Heinemann M (2015) Protein biogenesis machinery is a driver of replicative aging in yeast. Elife 4: e08527 PubMed PMC
Gut P, Verdin E (2013) The nexus of chromatin regulation and intermediary metabolism. Nature 502: 489–498 PubMed
Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77: 727–754 PubMed
Koubova J, Guarente L (2003) How does calorie restriction work? Genes Dev 17: 313–321 PubMed
Taormina G, Mirisola MG (2014) Calorie restriction in mammals and simple model organisms. Biomed Res Int 2014: 308690 PubMed PMC
Wasko BM, Kaeberlein M (2014) Yeast replicative aging: a paradigm for defining conserved longevity interventions. FEMS Yeast Res 14: 148–159 PubMed PMC
Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464: 513–519 PubMed PMC
Smith DL Jr, Li C, Matecic M, Maqani N, Bryk M, Smith JS (2009) Calorie restriction effects on silencing and recombination at the yeast rDNA. Aging Cell 8: 633–642 PubMed PMC
Riesen M, Morgan A (2009) Calorie restriction reduces rDNA recombination independently of rDNA silencing. Aging Cell 8: 624–632 PubMed PMC
Ha CW, Huh WK (2011) Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae . Nucleic Acids Res 39: 1336–1350 PubMed PMC
Ganley AR, Kobayashi T (2014) Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Res 14: 49–59 PubMed
Sinclair DA, Mills K, Guarente L (1997) Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277: 1313–1316 PubMed
Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life‐span extension by calorie restriction in Saccharomyces cerevisiae . Science 289: 2126–2128 PubMed
Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570–2580 PubMed PMC
Wierman MB, Smith JS (2014) Yeast sirtuins and the regulation of aging. FEMS Yeast Res 14: 73–88 PubMed PMC
Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18: 12–16 PubMed PMC
Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae . Nature 423: 181–185 PubMed PMC
Gallo CM, Smith DL Jr, Smith JS (2004) Nicotinamide clearance by Pnc1 directly regulates Sir2‐mediated silencing and longevity. Mol Cell Biol 24: 1301–1312 PubMed PMC
Kaeberlein M, Powers RW III, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310: 1193–1196 PubMed
Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN et al (2008) Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133: 292–302 PubMed PMC
Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age‐related disease. Nature 493: 338–345 PubMed PMC
Molin M, Yang J, Hanzen S, Toledano MB, Labarre J, Nystrom T (2011) Life span extension and H(2)O(2) resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae . Mol Cell 43: 823–833 PubMed
Dang W, Sutphin GL, Dorsey JA, Otte GL, Cao K, Perry RM, Wanat JJ, Saviolaki D, Murakami CJ, Tsuchiyama S et al (2014) Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response. Cell Metab 19: 952–966 PubMed PMC
Vaquero A, Reinberg D (2009) Calorie restriction and the exercise of chromatin. Genes Dev 23: 1849–1869 PubMed PMC
Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16: 593–610 PubMed PMC
Starheim KK, Gevaert K, Arnesen T (2012) Protein N‐terminal acetyltransferases: when the start matters. Trends Biochem Sci 37: 152–161 PubMed
Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N, Varhaug JE, Vandekerckhove J, Lillehaug JR, Sherman F et al (2009) Proteomics analyses reveal the evolutionary conservation and divergence of N‐terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci USA 106: 8157–8162 PubMed PMC
Song OK, Wang X, Waterborg JH, Sternglanz R (2003) An Nalpha‐acetyltransferase responsible for acetylation of the N‐terminal residues of histones H4 and H2A. J Biol Chem 278: 38109–38112 PubMed
Polevoda B, Hoskins J, Sherman F (2009) Properties of Nat4, an N(alpha)‐acetyltransferase of Saccharomyces cerevisiae that modifies N termini of histones H2A and H4. Mol Cell Biol 29: 2913–2924 PubMed PMC
Magin RS, Liszczak GP, Marmorstein R (2015) The molecular basis for histone H4‐ and H2A‐specific amino‐terminal acetylation by NatD. Structure 23: 332–341 PubMed PMC
Van Damme P, Stove SI, Glomnes N, Gevaert K, Arnesen T (2014) A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N‐terminal acetyltransferase NAA10 Ser37Pro mutant. Mol Cell Proteomics 13: 2031–2041 PubMed PMC
Hole K, Van Damme P, Dalva M, Aksnes H, Glomnes N, Varhaug JE, Lillehaug JR, Gevaert K, Arnesen T (2011) The human N‐alpha‐acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N‐terminally acetylates histones H2A and H4. PLoS ONE 6: e24713 PubMed PMC
Schiza V, Molina‐Serrano D, Kyriakou D, Hadjiantoniou A, Kirmizis A (2013) N‐alpha‐terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genet 9: e1003805 PubMed PMC
Pavlou D, Kirmizis A (2016) Depletion of histone N‐terminal‐acetyltransferase Naa40 induces p53‐independent apoptosis in colorectal cancer cells via the mitochondrial pathway. Apoptosis 21: 298–311 PubMed PMC
Liu Y, Zhou D, Zhang F, Tu Y, Xia Y, Wang H, Zhou B, Zhang Y, Wu J, Gao X et al (2012) Liver Patt1 deficiency protects male mice from age‐associated but not high‐fat diet‐induced hepatic steatosis. J Lipid Res 53: 358–367 PubMed PMC
Liu Z, Liu Y, Wang H, Ge X, Jin Q, Ding G, Hu Y, Zhou B, Chen Z, Ge X et al (2009) Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells. Int J Biochem Cell Biol 41: 2528–2537 PubMed
Huberts DH, Gonzalez J, Lee SS, Litsios A, Hubmann G, Wit EC, Heinemann M (2014) Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae . Proc Natl Acad Sci USA 111: 11727–11731 PubMed PMC
Straight AF, Shou W, Dowd GJ, Turck CW, Deshaies RJ, Johnson AD, Moazed D (1999) Net1, a Sir2‐associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97: 245–256 PubMed
Kobayashi T, Heck DJ, Nomura M, Horiuchi T (1998) Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12: 3821–3830 PubMed PMC
Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P, Silver PA, Keil RL, Guarente L (1999) Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3: 447–455 PubMed
Lee YL, Lee CK (2008) Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae . Mol Cells 26: 299–307 PubMed
Wang J, Jiang JC, Jazwinski SM (2010) Gene regulatory changes in yeast during life extension by nutrient limitation. Exp Gerontol 45: 621–631 PubMed PMC
Martins I, Galluzzi L, Kroemer G (2011) Hormesis, cell death and aging. Aging 3: 821–828 PubMed PMC
Schroeder EA, Raimundo N, Shadel GS (2013) Epigenetic silencing mediates mitochondria stress‐induced longevity. Cell Metab 17: 954–964 PubMed PMC
Ghislain M, Talla E, Francois JM (2002) Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1. Yeast 19: 215–224 PubMed
Medvedik O, Lamming DW, Kim KD, Sinclair DA (2007) MSN2 and MSN4 link calorie restriction and TOR to sirtuin‐mediated lifespan extension in Saccharomyces cerevisiae . PLoS Biol 5: e261 PubMed PMC
Delaney JR, Sutphin GL, Dulken B, Sim S, Kim JR, Robison B, Schleit J, Murakami CJ, Carr D, An EH et al (2011) Sir2 deletion prevents lifespan extension in 32 long‐lived mutants. Aging Cell 10: 1089–1091 PubMed PMC
Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004) Sir2‐independent life span extension by calorie restriction in yeast. PLoS Biol 2: E296 PubMed PMC
Syntichaki P, Troulinaki K, Tavernarakis N (2007) eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans . Nature 445: 922–926 PubMed
Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans . Aging Cell 6: 111–119 PubMed PMC
Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans . Aging Cell 6: 95–110 PubMed
McCormick MA, Delaney JR, Tsuchiya M, Tsuchiyama S, Shemorry A, Sim S, Chou AC, Ahmed U, Carr D, Murakami CJ et al (2015) A Comprehensive analysis of replicative lifespan in 4,698 single‐gene deletion strains uncovers conserved mechanisms of aging. Cell Metab 22: 895–906 PubMed PMC
Lamming DW, Latorre‐Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C, Lin SJ, Sinclair DA (2005) HST2 mediates SIR2‐independent life‐span extension by calorie restriction. Science 309: 1861–1864 PubMed
Jack CV, Cruz C, Hull RM, Keller MA, Ralser M, Houseley J (2015) Regulation of ribosomal DNA amplification by the TOR pathway. Proc Natl Acad Sci USA 112: 9674–9679 PubMed PMC
Saka K, Takahashi A, Sasaki M, Kobayashi T (2016) More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance. Nucleic Acids Res 44: 4211–4221 PubMed PMC
Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299: 1751–1753 PubMed
Sutphin GL, Olsen BA, Kennedy BK, Kaeberlein M (2012) Genome‐wide analysis of yeast aging. Subcell Biochem 57: 251–289 PubMed
Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P et al (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135: 907–918 PubMed PMC
Vendrell A, Martinez‐Pastor M, Gonzalez‐Novo A, Pascual‐Ahuir A, Sinclair DA, Proft M, Posas F (2011) Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress‐activated protein kinase. EMBO Rep 12: 1062–1068 PubMed PMC
Yang H, Lavu S, Sinclair DA (2006) Nampt/PBEF/Visfatin: a regulator of mammalian health and longevity? Exp Gerontol 41: 718–726 PubMed PMC
van der Veer E, Ho C, O'Neil C, Barbosa N, Scott R, Cregan SP, Pickering JG (2007) Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 282: 10841–10845 PubMed
Yang NC, Song TY, Chang YZ, Chen MY, Hu ML (2015) Up‐regulation of nicotinamide phosphoribosyltransferase and increase of NAD+ levels by glucose restriction extend replicative lifespan of human fibroblast Hs68 cells. Biogerontology 16: 31–42 PubMed
Delaney JR, Ahmed U, Chou A, Sim S, Carr D, Murakami CJ, Schleit J, Sutphin GL, An EH, Castanza A et al (2013) Stress profiling of longevity mutants identifies Afg3 as a mitochondrial determinant of cytoplasmic mRNA translation and aging. Aging Cell 12: 156–166 PubMed PMC
Sharma PK, Agrawal V, Roy N (2011) Mitochondria‐mediated hormetic response in life span extension of calorie‐restricted Saccharomyces cerevisiae . Age 33: 143–154 PubMed PMC
Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chiueh CC, Clarkson TW et al (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose‐response framework. Toxicol Appl Pharmacol 222: 122–128 PubMed
Rattan SI (2008) Hormesis in aging. Ageing Res Rev 7: 63–78 PubMed
Masoro EJ (1998) Hormesis and the antiaging action of dietary restriction. Exp Gerontol 33: 61–66 PubMed
Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143: 1384–1394 PubMed PMC
Goldberg AA, Bourque SD, Kyryakov P, Gregg C, Boukh‐Viner T, Beach A, Burstein MT, Machkalyan G, Richard V, Rampersad S et al (2009) Effect of calorie restriction on the metabolic history of chronologically aging yeast. Exp Gerontol 44: 555–571 PubMed
Lin SS, Manchester JK, Gordon JI (2001) Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae . J Biol Chem 276: 36000–36007 PubMed
Hachinohe M, Yamane M, Akazawa D, Ohsawa K, Ohno M, Terashita Y, Masumoto H (2013) A reduction in age‐enhanced gluconeogenesis extends lifespan. PLoS ONE 8: e54011 PubMed PMC
Lamming DW (2014) Diminished mTOR signaling: a common mode of action for endocrine longevity factors. Springerplus 3: 735 PubMed PMC
Kennedy BK, Austriaco NR Jr, Guarente L (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127: 1985–1993 PubMed PMC
Steffen KK, Kennedy BK, Kaeberlein M (2009) Measuring replicative life span in the budding yeast. J Vis Exp 28: e1209 PubMed PMC
Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae . Nucleic Acids Res 18: 3091–3092 PubMed PMC
Kirmizis A, Santos‐Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, Bahler J, Green RD, Kouzarides T (2007) Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449: 928–932 PubMed PMC
Engel SR, Cherry JM (2013) The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces genome database. Database 2013: bat012 PubMed PMC
Wu TD, Nacu S (2010) Fast and SNP‐tolerant detection of complex variants and splicing in short reads. Bioinformatics 26: 873–881 PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079 PubMed PMC
Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high‐throughput sequencing data. Bioinformatics 31: 166–169 PubMed PMC
Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho‐Silva D, Clapham P, Coates G, Fitzgerald S et al (2014) Ensembl 2014. Nucleic Acids Res 42: D749–D755 PubMed PMC
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140 PubMed PMC
McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA‐Seq experiments with respect to biological variation. Nucleic Acids Res 40: 4288–4297 PubMed PMC
Robinson MD, Smyth GK (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23: 2881–2887 PubMed
Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA‐seq data. Genome Biol 11: R25 PubMed PMC
da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57 PubMed
Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4: R70 PubMed PMC
Pertschy B, Saveanu C, Zisser G, Lebreton A, Tengg M, Jacquier A, Liebminger E, Nobis B, Kappel L, van der Klei I et al (2007) Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1. Mol Cell Biol 27: 6581–6592 PubMed PMC
Saveanu C, Bienvenu D, Namane A, Gleizes PE, Gas N, Jacquier A, Fromont‐Racine M (2001) Nog2p, a putative GTPase associated with pre‐60S subunits and required for late 60S maturation steps. EMBO J 20: 6475–6484 PubMed PMC
Tsuchiyama S, Kwan E, Dang W, Bedalov A, Kennedy BK (2013) Sirtuins in yeast: phenotypes and tools. Methods Mol Biol 1077: 11–37 PubMed