The Ring Monstrance from the Loreto treasury in Prague: handheld Raman spectrometer for identification of gemstones
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
27799426
PubMed Central
PMC5095522
DOI
10.1098/rsta.2016.0042
PII: rsta.2016.0042
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, cultural heritage, gemstones,
- Publikační typ
- časopisecké články MeSH
A miniature lightweight portable Raman spectrometer and a palm-sized device allow for fast and unambiguous detection of common gemstones mounted in complex jewels. Here, complex religious artefacts and the Ring Monstrance from the Loreto treasury (Prague, Czech Republic; eighteenth century) were investigated. These discriminations are based on the very good correspondence of the wavenumbers of the strongest Raman bands of the minerals. Very short laser illumination times and efficient collection of scattered light were sufficient to obtain strong diagnostic Raman signals. The following minerals were documented: quartz and its varieties, beryl varieties (emerald), corundum varieties (sapphire), garnets (almandine, grossular), diamond as well as aragonite in pearls. Miniature Raman spectrometers can be recommended for common gemmological work as well as for mineralogical investigations of jewels and cultural heritage objects whenever the antiquities cannot be transported to a laboratory.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'.
Zobrazit více v PubMed
Herman RG, Bogdan CE, Sommer AJ, Simpson DR. 1987. Discrimination among carbonate minerals by Raman-spectroscopy using the laser microprobe. Appl. Spectrosc. 41, 437–440. (10.1366/0003702874448841) DOI
Wang A, Han JY, Guo LH, Yu JY, Zeng P. 1994. Database of standard Raman-spectra of minerals and related inorganic crystals. Appl. Spectrosc. 48, 959–968. (10.1366/0003702944029640) DOI
Bouchard M, Smith DC. 2003. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim. Acta Part A 59, 2247–2266. (10.1016/S1386-1425(03)00069-6) PubMed DOI
Freeman JJ, Wang A, Kuebler KE, Jolliff BL, Haskin LA. 2008. Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can. Mineral. 46, 1477–1500. (10.3749/canmin.46.6.1477) DOI
Bersani D, Lottici PP. 2010. Applications of Raman spectroscopy to gemology. Anal. Bioanal. Chem. 397, 2631–2646. (10.1007/s00216-010-3700-1) PubMed DOI
Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Nigmatulina EN, Goryainov SV, Belogub EV, Clark ID. 2016. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Miner. Petrol. 110, 125–140. (10.1007/s00710-015-0413-3) DOI
Plášil J, Hloušek J, Kasatkin AV, Škoda R, Novák M, Čejka J.. 2015. Geschieberite, K2(UO2)(SO4)2(H2O)2, a new uranyl sulfate mineral from Jáchymov. Miner. Mag. 79, 205–216. (10.1180/minmag.2015.079.1.16) DOI
Plášil J, et al. 2010. Widenmannite, a rare uranyl lead carbonate: occurrence, formation and characterization. Miner. Mag. 74, 97–110. (10.1180/minmag.2010.074.1.97) DOI
Vandenabeele P, Edwards HGM, Moens L. 2007. A decade of Raman spectroscopy in art and archaeology. Chem. Rev. 107, 675–686. (10.1021/cr068036i) PubMed DOI
Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM. 2007. Comparative study of mobile Raman instrumentation for art analysis. Anal. Chim. Acta 588, 108–116. (10.1016/j.aca.2007.01.082) PubMed DOI
Froment F, Tournié A, Colomban P. 2008. Raman identification of natural red to yellow pigments: ochre and iron-containing ores. J. Raman Spectrosc. 39, 560–568. (10.1002/jrs.1858) DOI
Bersani D, Lottici PP. 2016. Raman of minerals and mineral pigments in archaeometry. J. Raman Spectrosc. 47, 499–530. (10.1002/jrs.4914) DOI
Jehlička J, Vandenabeele P. 2015. Evaluation of portable Raman instruments with 532 and 785-nm excitation for identification of zeolites and beryllium containing silicates. J. Raman Spectrosc. 46, 927–932. (10.1002/jrs.4732) DOI
Barone G, Bersani D, Jehlička J, Lottici PP, Mazzoleni P, Raneri S, Vandenabeele P, Di Giacomo C, Larina G. 2015. Nondestructive investigation on the 17–18th centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. J. Raman Spectrosc. 46, 989–995. (10.1002/jrs.4649) DOI
Culka A, Košek F, Drahota P, Jehlička J. 2014. Use of miniaturized Raman spectrometer for detection of sulfates of different hydration states—significance for Mars studies. Icarus 243, 440–453. (10.1016/j.icarus.2014.08.017) DOI
Culka A, Kindlová H, Drahota P, Jehlička J. 2016. Raman spectroscopic identification of arsenate minerals in situ at outcrops with handheld (532 nm, 785 nm) instruments. Spectrochim. Acta Part A 154, 193–199. (10.1016/j.saa.2015.10.025) PubMed DOI
Tournié A, Prinsloo LC, Paris C, Colomban P, Smith B. 2011. The first in situ Raman spectroscopic study of San rock art in South Africa: procedures and preliminary results. J. Raman Spectrosc. 42, 399–406. (10.1002/jrs.2682) DOI
Colomban P, Tournié A. 2007. On-site Raman identification and dating of ancient/modern stained glasses at the Sainte-Chapelle, Paris. J. Cult. Herit. 8, 242–256. (10.1016/j.culher.2007.04.002) DOI
Karampelas S, Worle M, Hunger K, Lanz H. 2012. Micro-Raman spectroscopy on two chalices from the Benedictine Abbey of Einsiedeln: identification of gemstones. J. Raman Spectrosc. 43, 1833–1838. (10.1002/jrs.4069) DOI
Hänni HA, Schubiger B, Kiefert L, Häberli S. 1998. Raman investigations on two historical objects from Basel Cathedral: the Reliquary Cross and Dorothy Monstrance. Gems Gemol. 34, 102–125. (10.5741/GEMS.34.2.102) DOI
Reiche I, Pages-Camagna S, Lambacher L. 2004. In situ Raman spectroscopic investigations of the adorning gemstones on the reliquary Heinrich's Cross from the treasury of Basel Cathedral. J. Raman Spectrosc. 35, 719–725. (10.1002/jrs.1197) DOI
Petrová Z, Jehlička J, Čapoun T, Hanus R, Trojek T, Goliáš V. 2012. Gemstones and noble metals adorning the sceptre of the faculty of science of Charles University in Prague: integrated analysis by Raman and XRF handheld instruments. J. Raman Spectrosc. 43, 1275–1280. (10.1002/jrs.4043) DOI
Osterrothová K, Minaříková L, Culka A, Kuntoš J, Jehlička J. 2014. In situ study of stones adorning a silver Torah shield using portable Raman spectrometers. J. Raman Spectrosc. 45, 830–837. (10.1002/jrs.4541) DOI
Bersani D, Azzi G, Lambruschi E, Barone G, Mazzoleni P, Raneri S, Longobardo U, Lottici PP. 2014. Characterization of emeralds by micro-Raman spectroscopy. J. Raman Spectrosc. 45, 1293–1300. (10.1002/jrs.4524) DOI
Barone G, Bersani D, Lottici PP, Mazzoleni P, Raneri S, Longobardo U. 2016. Red gemstone characterization by micro-Raman spectroscopy: the case of rubies and their imitations. J. Raman Spectrosc. (10.1002/jrs.4919) DOI
Vítek P, Jehlička J, Edwards HGM. 2013. Practical considerations for the field application of miniaturized portable Raman instrumentation for the identification of minerals. Appl. Spectrosc. 67, 767–778. (10.1366/12-06774) PubMed DOI
Jehlička J, Culka A, Vandenabeele P, Edwards HGM. 2011. Critical evaluation of a handheld raman spectrometer with near infrared (785 nm) excitation for field identification of minerals. Spectrochim. Acta Part A 80, 36–40. (10.1016/j.saa.2011.01.005) PubMed DOI
Weatherall JC, et al. 2013. Adapting Raman spectra from laboratory spectrometers to portable detection libraries. Appl. Spectrosc. 67, 149–157. (10.1366/12-06759) PubMed DOI
Vandenabeele P, Jehlička J, Vítek P, Edwards HGM. 2012. On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices. Planet. Space Sci. 62, 48–54. (10.1016/j.pss.2011.12.006) DOI
Baštová M, Cvachová T. 2001. Pražská Loreta. Průvodce poutním místem. Order of Minor Chapucines: Prague, Czech Republic.
Diviš J. 1967. Loretánská klenotnice. In Staletá Praha III, 47 (ed. Z Buříval). Orbis: Prague, Czech Republic.
Hráský J. 1987. Zlatníci pražského baroka, pp. 151–152. Praha.
Kolesov BA, Geiger CA. 1998. Raman spectra of silicate garnets. Phys. Chem. Miner. 25, 142–151. (10.1007/s002690050097) DOI
Gillet P, Le Cléac'h A, Madon M. 1990. High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures. J. Geophys. Res. 95, 21 635–21 655. (10.1029/JB095iB13p21635) DOI
Colomban P, Tournié A, Bellot-Gurlet L. 2006. Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide. J. Raman Spectrosc. 37, 841–852. (10.1002/jrs.1515) DOI
Pezzotti G, Zhu WL. 2015. Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina. Phys. Chem. Chem. Phys. 17, 2608–2627. (10.1039/c4cp04244a) PubMed DOI
Barone G, et al. 2014. A portable versus micro-Raman equipment comparison for gemmological purposes: the case of sapphires and their imitations. J. Raman Spectrosc. 45, 1309–1317. (10.1002/jrs.4555) DOI
Charoy B, deDonato P, Barres O, PintoCoelho C. 1996. Channel occupancy in an alkali-poor beryl from Serra Branca (Goias, Brazil): spectroscopic characterization. Am. Mineral. 81, 395–403. (10.2138/am-1996-3-414) DOI
Gillet P, Biellmann C, Reynard B, McMillan P. 1993. Raman-spectroscopic studies of carbonates. 1. High-pressure and high-temperature behavior of calcite, magnesite, dolomite and aragonite. Phys. Chem. Miner. 20, 1–18. (10.1007/BF00202245) DOI