The Ring Monstrance from the Loreto treasury in Prague: handheld Raman spectrometer for identification of gemstones

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27799426

A miniature lightweight portable Raman spectrometer and a palm-sized device allow for fast and unambiguous detection of common gemstones mounted in complex jewels. Here, complex religious artefacts and the Ring Monstrance from the Loreto treasury (Prague, Czech Republic; eighteenth century) were investigated. These discriminations are based on the very good correspondence of the wavenumbers of the strongest Raman bands of the minerals. Very short laser illumination times and efficient collection of scattered light were sufficient to obtain strong diagnostic Raman signals. The following minerals were documented: quartz and its varieties, beryl varieties (emerald), corundum varieties (sapphire), garnets (almandine, grossular), diamond as well as aragonite in pearls. Miniature Raman spectrometers can be recommended for common gemmological work as well as for mineralogical investigations of jewels and cultural heritage objects whenever the antiquities cannot be transported to a laboratory.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'.

Zobrazit více v PubMed

Herman RG, Bogdan CE, Sommer AJ, Simpson DR. 1987. Discrimination among carbonate minerals by Raman-spectroscopy using the laser microprobe. Appl. Spectrosc. 41, 437–440. (10.1366/0003702874448841) DOI

Wang A, Han JY, Guo LH, Yu JY, Zeng P. 1994. Database of standard Raman-spectra of minerals and related inorganic crystals. Appl. Spectrosc. 48, 959–968. (10.1366/0003702944029640) DOI

Bouchard M, Smith DC. 2003. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim. Acta Part A 59, 2247–2266. (10.1016/S1386-1425(03)00069-6) PubMed DOI

Freeman JJ, Wang A, Kuebler KE, Jolliff BL, Haskin LA. 2008. Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can. Mineral. 46, 1477–1500. (10.3749/canmin.46.6.1477) DOI

Bersani D, Lottici PP. 2010. Applications of Raman spectroscopy to gemology. Anal. Bioanal. Chem. 397, 2631–2646. (10.1007/s00216-010-3700-1) PubMed DOI

Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Nigmatulina EN, Goryainov SV, Belogub EV, Clark ID. 2016. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Miner. Petrol. 110, 125–140. (10.1007/s00710-015-0413-3) DOI

Plášil J, Hloušek J, Kasatkin AV, Škoda R, Novák M, Čejka J.. 2015. Geschieberite, K2(UO2)(SO4)2(H2O)2, a new uranyl sulfate mineral from Jáchymov. Miner. Mag. 79, 205–216. (10.1180/minmag.2015.079.1.16) DOI

Plášil J, et al. 2010. Widenmannite, a rare uranyl lead carbonate: occurrence, formation and characterization. Miner. Mag. 74, 97–110. (10.1180/minmag.2010.074.1.97) DOI

Vandenabeele P, Edwards HGM, Moens L. 2007. A decade of Raman spectroscopy in art and archaeology. Chem. Rev. 107, 675–686. (10.1021/cr068036i) PubMed DOI

Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM. 2007. Comparative study of mobile Raman instrumentation for art analysis. Anal. Chim. Acta 588, 108–116. (10.1016/j.aca.2007.01.082) PubMed DOI

Froment F, Tournié A, Colomban P. 2008. Raman identification of natural red to yellow pigments: ochre and iron-containing ores. J. Raman Spectrosc. 39, 560–568. (10.1002/jrs.1858) DOI

Bersani D, Lottici PP. 2016. Raman of minerals and mineral pigments in archaeometry. J. Raman Spectrosc. 47, 499–530. (10.1002/jrs.4914) DOI

Jehlička J, Vandenabeele P. 2015. Evaluation of portable Raman instruments with 532 and 785-nm excitation for identification of zeolites and beryllium containing silicates. J. Raman Spectrosc. 46, 927–932. (10.1002/jrs.4732) DOI

Barone G, Bersani D, Jehlička J, Lottici PP, Mazzoleni P, Raneri S, Vandenabeele P, Di Giacomo C, Larina G. 2015. Nondestructive investigation on the 17–18th centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. J. Raman Spectrosc. 46, 989–995. (10.1002/jrs.4649) DOI

Culka A, Košek F, Drahota P, Jehlička J. 2014. Use of miniaturized Raman spectrometer for detection of sulfates of different hydration states—significance for Mars studies. Icarus 243, 440–453. (10.1016/j.icarus.2014.08.017) DOI

Culka A, Kindlová H, Drahota P, Jehlička J. 2016. Raman spectroscopic identification of arsenate minerals in situ at outcrops with handheld (532 nm, 785 nm) instruments. Spectrochim. Acta Part A 154, 193–199. (10.1016/j.saa.2015.10.025) PubMed DOI

Tournié A, Prinsloo LC, Paris C, Colomban P, Smith B. 2011. The first in situ Raman spectroscopic study of San rock art in South Africa: procedures and preliminary results. J. Raman Spectrosc. 42, 399–406. (10.1002/jrs.2682) DOI

Colomban P, Tournié A. 2007. On-site Raman identification and dating of ancient/modern stained glasses at the Sainte-Chapelle, Paris. J. Cult. Herit. 8, 242–256. (10.1016/j.culher.2007.04.002) DOI

Karampelas S, Worle M, Hunger K, Lanz H. 2012. Micro-Raman spectroscopy on two chalices from the Benedictine Abbey of Einsiedeln: identification of gemstones. J. Raman Spectrosc. 43, 1833–1838. (10.1002/jrs.4069) DOI

Hänni HA, Schubiger B, Kiefert L, Häberli S. 1998. Raman investigations on two historical objects from Basel Cathedral: the Reliquary Cross and Dorothy Monstrance. Gems Gemol. 34, 102–125. (10.5741/GEMS.34.2.102) DOI

Reiche I, Pages-Camagna S, Lambacher L. 2004. In situ Raman spectroscopic investigations of the adorning gemstones on the reliquary Heinrich's Cross from the treasury of Basel Cathedral. J. Raman Spectrosc. 35, 719–725. (10.1002/jrs.1197) DOI

Petrová Z, Jehlička J, Čapoun T, Hanus R, Trojek T, Goliáš V. 2012. Gemstones and noble metals adorning the sceptre of the faculty of science of Charles University in Prague: integrated analysis by Raman and XRF handheld instruments. J. Raman Spectrosc. 43, 1275–1280. (10.1002/jrs.4043) DOI

Osterrothová K, Minaříková L, Culka A, Kuntoš J, Jehlička J. 2014. In situ study of stones adorning a silver Torah shield using portable Raman spectrometers. J. Raman Spectrosc. 45, 830–837. (10.1002/jrs.4541) DOI

Bersani D, Azzi G, Lambruschi E, Barone G, Mazzoleni P, Raneri S, Longobardo U, Lottici PP. 2014. Characterization of emeralds by micro-Raman spectroscopy. J. Raman Spectrosc. 45, 1293–1300. (10.1002/jrs.4524) DOI

Barone G, Bersani D, Lottici PP, Mazzoleni P, Raneri S, Longobardo U. 2016. Red gemstone characterization by micro-Raman spectroscopy: the case of rubies and their imitations. J. Raman Spectrosc. (10.1002/jrs.4919) DOI

Vítek P, Jehlička J, Edwards HGM. 2013. Practical considerations for the field application of miniaturized portable Raman instrumentation for the identification of minerals. Appl. Spectrosc. 67, 767–778. (10.1366/12-06774) PubMed DOI

Jehlička J, Culka A, Vandenabeele P, Edwards HGM. 2011. Critical evaluation of a handheld raman spectrometer with near infrared (785 nm) excitation for field identification of minerals. Spectrochim. Acta Part A 80, 36–40. (10.1016/j.saa.2011.01.005) PubMed DOI

Weatherall JC, et al. 2013. Adapting Raman spectra from laboratory spectrometers to portable detection libraries. Appl. Spectrosc. 67, 149–157. (10.1366/12-06759) PubMed DOI

Vandenabeele P, Jehlička J, Vítek P, Edwards HGM. 2012. On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices. Planet. Space Sci. 62, 48–54. (10.1016/j.pss.2011.12.006) DOI

Baštová M, Cvachová T. 2001. Pražská Loreta. Průvodce poutním místem. Order of Minor Chapucines: Prague, Czech Republic.

Diviš J. 1967. Loretánská klenotnice. In Staletá Praha III, 47 (ed. Z Buříval). Orbis: Prague, Czech Republic.

Hráský J. 1987. Zlatníci pražského baroka, pp. 151–152. Praha.

Kolesov BA, Geiger CA. 1998. Raman spectra of silicate garnets. Phys. Chem. Miner. 25, 142–151. (10.1007/s002690050097) DOI

Gillet P, Le Cléac'h A, Madon M. 1990. High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures. J. Geophys. Res. 95, 21 635–21 655. (10.1029/JB095iB13p21635) DOI

Colomban P, Tournié A, Bellot-Gurlet L. 2006. Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide. J. Raman Spectrosc. 37, 841–852. (10.1002/jrs.1515) DOI

Pezzotti G, Zhu WL. 2015. Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina. Phys. Chem. Chem. Phys. 17, 2608–2627. (10.1039/c4cp04244a) PubMed DOI

Barone G, et al. 2014. A portable versus micro-Raman equipment comparison for gemmological purposes: the case of sapphires and their imitations. J. Raman Spectrosc. 45, 1309–1317. (10.1002/jrs.4555) DOI

Charoy B, deDonato P, Barres O, PintoCoelho C. 1996. Channel occupancy in an alkali-poor beryl from Serra Branca (Goias, Brazil): spectroscopic characterization. Am. Mineral. 81, 395–403. (10.2138/am-1996-3-414) DOI

Gillet P, Biellmann C, Reynard B, McMillan P. 1993. Raman-spectroscopic studies of carbonates. 1. High-pressure and high-temperature behavior of calcite, magnesite, dolomite and aragonite. Phys. Chem. Miner. 20, 1–18. (10.1007/BF00202245) DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...