Detailed molecular characterization of a novel IDS exonic mutation associated with multiple pseudoexon activation
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
27837218
DOI
10.1007/s00109-016-1484-2
PII: 10.1007/s00109-016-1484-2
Knihovny.cz E-zdroje
- Klíčová slova
- Complex splicing aberration, De novo splice site, IDS, Pseudoexon, Splice site competition,
- MeSH
- bodová mutace MeSH
- exony MeSH
- glykoproteiny genetika MeSH
- introny MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- místa sestřihu RNA MeSH
- mladiství MeSH
- mukopolysacharidóza II genetika MeSH
- mutace MeSH
- sestřih RNA MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykoproteiny MeSH
- IDS protein, human MeSH Prohlížeč
- messenger RNA MeSH
- místa sestřihu RNA MeSH
UNLABELLED: Mutations affecting splicing underlie the development of many human genetic diseases, but rather rarely through mechanisms of pseudoexon activation. Here, we describe a novel c.1092T>A mutation in the iduronate-2-sulfatase (IDS) gene detected in a patient with significantly decreased IDS activity and a clinical diagnosis of mild mucopolysaccharidosis II form. The mutation created an exonic de novo acceptor splice site and resulted in a complex splicing pattern with multiple pseudoexon activation in the patient's fibroblasts. Using an extensive series of minigene splicing experiments, we showed that the competition itself between the de novo and authentic splice site led to the bypass of the authentic one. This event then resulted in activation of several cryptic acceptor and donor sites in the upstream intron. As this was an unexpected and previously unreported mechanism of aberrant pseudoexon inclusion, we systematically analysed and disproved that the patient's mutation induced any relevant change in surrounding splicing regulatory elements. Interestingly, all pseudoexons included in the mature transcripts overlapped with the IDS alternative terminal exon 7b suggesting that this sequence represents a key element in the IDS pre-mRNA architecture. These findings extend the spectrum of mechanisms enabling pseudoexon activation and underscore the complexity of mutation-induced splicing aberrations. KEY MESSAGE: Novel exonic IDS gene mutation leads to a complex splicing pattern. Mutation activates multiple pseudoexons through a previously unreported mechanism. Multiple cryptic splice site (ss) activation results from a bypass of authentic ss. Authentic ss bypass is due to a competition between de novo and authentic ss.
Center for Medical Genetics UZ Brussel and Vrije Universiteit Brussel 1090 Brussels Belgium
Central European Institute of Technology Masaryk University Brno Czech Republic
International Centre for Genetic Engineering and Biotechnology Trieste Italy
Zobrazit více v PubMed
Nat Struct Mol Biol. 2006 Jan;13(1):5-7 PubMed
Eur J Immunol. 2010 Jun;40(6):1778-85 PubMed
Mol Genet Genomic Med. 2015 Jul;3(4):320-6 PubMed
Hum Mutat. 2007 Feb;28(2):150-8 PubMed
Hum Mutat. 1999;13(2):170 PubMed
J Clin Invest. 1994 Apr;93(4):1852-9 PubMed
J Med Genet. 2012 Oct;49(10):609-17 PubMed
Hum Mutat. 2006 Mar;27(3):294-5 PubMed
Hum Mutat. 2005 May;25(5):491-7 PubMed
J Med Genet. 2010 Jun;47(6):398-403 PubMed
FEBS J. 2010 Feb;277(4):841-55 PubMed
J Biol Chem. 2003 Jul 18;278(29):26580-8 PubMed
Biochem Soc Trans. 2012 Aug;40(4):846-9 PubMed
Hum Genet. 2014 Jan;133(1):1-9 PubMed
Nat Rev Mol Cell Biol. 2005 May;6(5):386-98 PubMed
Mol Genet Metab. 2016 Nov;119(3):258-269 PubMed
Genes Dev. 1998 Jul 1;12(13):1998-2012 PubMed
Trends Biochem Sci. 1998 Jun;23(6):198-9 PubMed
Hum Mol Genet. 2016 Jun 1;25(11):2256-2268 PubMed
Hum Mutat. 2003 Oct;22(4):338-9 PubMed
Nucleic Acids Res. 1985 Feb 25;13(4):1347-68 PubMed
J Biol Chem. 2009 Oct 16;284(42):28953-7 PubMed
Hum Mol Genet. 1995 Apr;4(4):615-21 PubMed
Hum Mol Genet. 1993 Nov;2(11):1871-5 PubMed
J Mol Med (Berl). 2006 Aug;84(8):692-700 PubMed
J Clin Endocrinol Metab. 2001 Aug;86(8):3840-4 PubMed
Hum Mutat. 2012 Jan;33(1):81-5 PubMed
Genome Res. 2011 Aug;21(8):1360-74 PubMed
J Inherit Metab Dis. 2006 Dec;29(6):743-54 PubMed
Nucleic Acids Res. 2007;35(13):4250-63 PubMed
Mol Genet Metab. 2016 Jul;118(3):190-7 PubMed
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11093-8 PubMed
Nucleic Acids Res. 2007;35(19):6399-413 PubMed
Nat Rev Genet. 2002 Apr;3(4):285-98 PubMed
J Inherit Metab Dis. 1997 Jul;20(3):453-6 PubMed
Nucleic Acids Res. 2003 Mar 1;31(5):1375-86 PubMed
Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):49-60 PubMed
Cell. 2009 Feb 20;136(4):777-93 PubMed
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W189-92 PubMed
Hum Mutat. 2006 May;27(5):427-35 PubMed
Genes Dev. 2004 Jun 1;18(11):1241-50 PubMed
Am J Hum Genet. 1996 Dec;59(6):1202-9 PubMed
Mol Cell Biol. 2009 Oct;29(20):5620-31 PubMed
Genomics. 1995 Sep 1;29(1):291-3 PubMed
Hum Mutat. 2008 Dec;29(12 ):1412-24 PubMed
EMBO J. 1994 Mar 1;13(5):1197-204 PubMed
Hum Mutat. 2010 Apr;31(4):437-44 PubMed
PLoS One. 2011;6(9):e25492 PubMed
Kobe J Med Sci. 2007;53(5):229-40 PubMed
FEBS Lett. 2005 Mar 28;579(9):1900-3 PubMed
Nat Rev Genet. 2007 Oct;8(10):749-61 PubMed
Deep Intronic Mutation in SERPING1 Caused Hereditary Angioedema Through Pseudoexon Activation