Sexual Dimorphism of the Human Tibia through Time: Insights into Shape Variation Using a Surface-Based Approach

. 2016 ; 11 (11) : e0166461. [epub] 20161115

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu historické články, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27846265

In this paper we present a three-dimensional (3D) morphometrical assessment of human tibia sexual dimorphism based on whole bone digital representation. To detect shape-size and shape differences between sexes, we used geometric morphometric tools and colour-coded surface deviation maps. The surface-based methodology enabled analysis of sexually dimorphic features throughout the shaft and articular ends of the tibia. The overall study dataset consisted of 183 3D models of adult tibiae from three Czech population subsets, dating to the early medieval (9-10th century) (N = 65), early 20th century (N = 61) and 21st-century (N = 57). The time gap between the chronologically most distant and contemporary datasets was more than 1200 years. The results showed that, in all three datasets, sexual dimorphism was pronounced. There were some sex-dimorphic characteristics common to all three samples, such as tuberosity protrusion, anteriorly bowed shaft and relatively larger articular ends in males. Diachronic comparisons also revealed substantial shape variation related to the most dimorphic area. Male/female distinctions showed a consistent temporal trend regarding the location of dimorphic areas (shifting distally with time), while the maximal deviation between male and female digitized surfaces fluctuated and reached the lowest level in the 21st-century sample. Sex determination on a whole-surface basis yielded the lowest return of correct sex assignment in the 20th-century group, which represented the lowest socioeconomic status. The temporal variation could be attributed to changes in living conditions, the decreasing lower limb loading/labour division in the last 12 centuries having the greatest effect. Overall, the results showed that a surface-based approach is successful for analysing complex long bone geometry.

Zobrazit více v PubMed

Carlson KJ, Marchi D (2014) Introduction: Towards refining the concept of mobility In Carlson KJ, Marchi D, editors. Reconstructing mobility: Environmental, behavioral and morphological determinants. New York: Springer; pp. 1–11.

Ruff CB (1987) Sexual dimorphism in human lower limb bone structure: Relationship to subsistence strategy and sexual division of labor. J Hum Evol 16: 391–416.

Ruff CB, Hayes WC (1983) Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation. II. Sex, age and side differences. Am J Phys Anthrop 60: 383–400. 10.1002/ajpa.1330600309 PubMed DOI

Sládek V, Holt BM, Berner M, Ruff CB (2005) Changes in mobility patterns from the European Upper Paleolithic through Bronze Age as reflected in femoral and tibial cross-sectional geometry. Am J Phys Anthropol S40: 192.

Sládek V, Berner M, Sailer R (2006) Mobility in Central European Late Eneolithic and Early Bronze Age: Tibial cross-sectional geometry. J Archaeol Sci 33: 470–482. PubMed

Brzobohatá H, Krajíček V, Velemínský P, Poláček L, Velemínská J (2014). The shape variability of human tibial epiphyses in an early medieval Great Moravian population (9th-10th century AD): A geometric morphometric assessment. Antropol Anz 71: 219–236. PubMed

Brzobohatá H, Krajíček V, Horák Z, Velemínská J (2015) Sex classification using the three-dimensional tibia form or shape including population specificity approach. J Forensic Sci 60: 29–40. 10.1111/1556-4029.12641 PubMed DOI

Eckstein F, Faber S, Mühlbauer R, Hohe J, Englmeier KH, Reiser M, et al. (2002) Functional adaptation of human joints to mechanical stimuli. Osteoarthr Cart 10: 44–50. PubMed

Stevens SD, Viðarsdóttir US (2008) Morphological changes in the shape of the non-pathological bony knee joint with age: A morphometric analysis of the distal femur and proximal tibia in three populations of known age at death. Int J Osteoarchaeol 18: 352–371.

Frelat MA, Mitteroecker P (2011). Postnatal ontogeny of tibia and femur form in two human populations: a multivariate morphometric analysis. Am J Hum Biol 23: 796–804. 10.1002/ajhb.21217 PubMed DOI

Frelat MA, Katina S, Weber GW, Bookstein FL (2012) Technical note: A novel geometric morphometric approach to the study of long bone shape variation. Am J Phys Anthropol 149: 628–638. 10.1002/ajpa.22177 PubMed DOI

Costello A (2015) An analysis of sexual dimorphism using geometric morphometrics of the femur and tibia: The use of GM in assessing sex of fragmented remains. Am J Phys Anthropol 156: 111.

Polly PD, MacLeod N. (2008) Locomotion in Fossil Carnivora: An application of eigensurface analysis for morphometric comparison of 3d surfaces. Paleontol Electron 11: 10A

Boyer DM, Puente J, Gladman JT, Glynn C, Mukherjee S, Yapuncich GS, et al. (2015). A new fully automated approach for aligning and comparing shapes. Anat Rec, 298: 249–276. PubMed

Sievwright H, MacLeod N (2012) Eigensurface analysis, ecology, and modelling of morphological adaptation in the falconiform humerus (Falconiformes: Aves). Zool J Linn Soc 165: 390–419.

Hutton TJ, Buxton BF, Hammond P, Potts HW (2003) Estimating average growth trajectories in shape-space using Kernel Smoothing. IEEE Trans Med Imag 22: 747–753. PubMed

Hammond P (2007) The use of 3D face shape modelling in dysmorphology. Arch Dis Child 92: 1120–1126. 10.1136/adc.2006.103507 PubMed DOI PMC

Velemínská J, Bigoni L, Krajíček V, Borský J, Šmahelová D, Cagáňová V, et al. (2012) Surface facial modelling and allometry in relation to sexual dimorphism. Homo 63: 81–93. 10.1016/j.jchb.2012.02.002 PubMed DOI

Bejdová Š, Krajíček V, Peterka M, Trefný P, Velemínská J (2012) Variability in palatal shape and size in patients with bilateral complete cleft lip and palate assessed using dense surface model construction and 3D geometric morphometrics. J Craniomaxillofac Surg 40: 201–208. 10.1016/j.jcms.2011.04.013 PubMed DOI

Krajíček V, Dupej J, Velemínská J, Pelikán J (2012) Morphometric analysis of mesh asymmetry. Journal of WSCG 20: 65–72.

Matthews T, du Plessis A (2016) Using X-ray computed tomography analysis tools to compare the skeletal element morphology of fossil and modern frog (Anura) species. Paleontol Electron 19.1: 1–46.

Abdel Fatah EE, Shirley NR, Mahfouz MR, Auerbach BM. (2012) A three-dimensional analysis of bilateral directional asymmetry in the human clavicle. Am J Phys Anthropol 149: 547–559. 10.1002/ajpa.22156 PubMed DOI

Mahfouz MR, Merkl BC, Abdel Fatah EE, Booth R, Argenson JN (2007) Automatic methods for characterization of sexual dimorphism of adult femora: distal femur. Comput Methods Biomech Biomed Engin 10: 447–456. 10.1080/10255840701552093 PubMed DOI

Radzi S, Uesugi M, Baird A, Mishra S, Schuetz M, Schmutz B (2014) Assessing the bilateral geometrical differences of the tibia—Are they the same? Med Eng Phys 36: 1618–1625. 10.1016/j.medengphy.2014.09.007 PubMed DOI

Karell MA, Langstaff HK, Halazonetis DJ, Minghetti C, Frelat M Kranioti EF (2016) A novel method for pair-matching using three-dimensional digital models of bone: mesh-to-mesh value comparison. Int J Legal Med 10.1007/s00414-016-1334-3 PubMed DOI PMC

González-Reimers E, Velasco-Vázquet J, Arnay-de-la-Rosa M, Santolarie-Fernandez F (2000) Sex determination by discriminant function analysis of the right tibia in the prehispanic population of the Canary Islands. Forensic Sci Int 108: 165–72. PubMed

Holland TD (1991) Sex assessment using the proximal tibia. Am J Phys Anthropol 85: 221–227. 10.1002/ajpa.1330850210 PubMed DOI

Işcan MY, Yoshino M, Kato S (1994). Sex determination from the tibia. J Forensic Sci 39: 785–792. PubMed

Šlaus M, Bedic´ Ž, Strinovic´ D, Petrovecki V (2013) Sex determination by discriminant function analysis of the tibia for contemporary Croats. Forensic Sci Int 226: 302e1–e4. PubMed

Dargel J, Michael J, Feiser J, Ivo R, Koebke J (2011) Human knee joint anatomy revisited: morphometry in the light of sex-specific total knee arthroplasty. J Arthroplasty 26: 346–353. 10.1016/j.arth.2009.12.019 PubMed DOI

Gray JP, Wolfe LD (1980) Height and sexual dimorphism of stature among human societies. Am J Phys Anthropol 53: 441–456. 10.1002/ajpa.1330530314 PubMed DOI

Lazenby RA (2001) Sex dimorphism and bilateral asymmetry: Modeling developmental instability and functional adaptation. Am J Phys Anthropol 114: 96.

Danubio ME, Sanna E (2008) Secular changes in human biological variables in Western countries: An updated review and synthesis. J Anthropol Sci 86: 91–112. PubMed

Brauer GW (1982) Size sexual dimorphism and secular trend: indicators of subclinical malnutrition? In: Hall RL, editor. Sexual dimorphism in Homo sapiens: A question of size. New York: Praeger; pp. 245–259

Webb EA, Kuh D, Pajak A, Kubinova R, Malyutina S, Bobak M (2008) Estimation of secular trends in adult height, and childhood socioeconomic circumstances in three Eastern European populations. Econ Hum Biol 6:228–236. 10.1016/j.ehb.2008.03.001 PubMed DOI

Auerbach BM, Ruff CB (2004) Human body mass estimation: A comparison of “morphometric” and “mechanical” methods. Am J Phys Anthropol 125: 331–342. 10.1002/ajpa.20032 PubMed DOI

Bigoni L, Krajíček V, Sládek V, Velemínský P, Velemínská J (2013) Skull shape asymmetry and the socioeconomic structure of an early medieval central European society. Am J Phys Anthrop 150: 349–364. 10.1002/ajpa.22210 PubMed DOI

Pachner P (1937) Pohlavní rozdíly na lidské pánvi. Prague: Czech Academy of Science.

Kujanová M, Bigoni L, Velemínská J, Velemínský P (2008) Limb bones asymmetry and stress in medieval and recent populations of Central Europe. Int J Osteoarchaeol 18: 476–91.

Stock JT (2006) Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy. Am J Phys Anthropol 131: 194–204. 10.1002/ajpa.20398 PubMed DOI

Macintosh AA, Pinhasi R, Stock JT. (2014) Lower limb skeletal biomechanics track long-term decline in mobility across ~ 6150 years of agriculture in Central Europe. J Archaeol Sci 52: 376–90.

Berner M, Sládek V, Ruff C, Holt BM, Niskanen M, Galeta P et al. (2012). Variation in sexual dimorphism of postcranial robusticity and body proportions in European Holocene populations. Am J Phys Anthropol 147: 98.

Ruff CB, Holt B, Niskanen M, Sládek V, Berner M, Garofalo E, et al. (2015) Gradual decline in mobility with the adoption of food production in Europe. Proc Natl Acad Sci USA 112: 7147–7152. 10.1073/pnas.1502932112 PubMed DOI PMC

Krajíček V (2015) Correspondence Problem in Geometric Morphometric Tasks. Ph.D. Thesis, Charles University in Prague.

Brůžek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117: 157–168. 10.1002/ajpa.10012 PubMed DOI

Buikstra JE, Ubelaker HD (1994) Standards for data collection from human skeletal remains Proc Sem Field Mus Nat Hist. Fayetteville: Arkansas Archeological Survey Research Series.

Schmitt A, Murail P, Cunha E, Rougé D (2002) Variability of the pattern of aging on the human skeleton: Evidence from bone indicators and implications on age at death estimation. J Forensic Sci 47: 1203–1209. PubMed

Adams JW, Olah A, McCurry MR, Potze S (2015) Surface model and tomographic archive of fossil primate and other mammal holotype and paratype specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa. PLoS ONE 10(10): e0139800 10.1371/journal.pone.0139800 PubMed DOI PMC

Brzobohatá H, Prokop J, Horák M, Jančárek A, Velemínská J (2012) Accuracy and benefits of 3D bone surface modelling: a comparison of two methods of surface data acquisition reconstructed by laser scanning and computed tomography outputs. Coll Antropol 36: 801–806. PubMed

MeshLab [computer program] Visual Computing Lab—ISTI—CNR. http://meshlab.sourceforge.net/

Morphome3cs [computer program] 2.0 version. Department of Software and Computer Science Education, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; http://www.morphome3cs.com

Wang H, Fei B (2013) Nonrigid Point Registration for 2D curves and 3D surfaces and its applications in small animal imaging, Phys Med Biol 58(12) PubMed PMC

Peres-Neto PR, Jackson DA, Somers KM (2005) How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal 49: 947–997.

Campbell GP, Curran JM (2009). The interpretation of elemental composition measurements from forensic glass evidence III. Sci Justice 49: 2–7. 10.1016/j.scijus.2008.09.001 PubMed DOI

R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: http://www.R-project.org.

Kranioti EF, Bastir M, Sánchez-Meseguer A, Rosas A (2009) A geometric-morphometric study of the Cretan humerus for sex identification. Forensic Sci Int 189: 111e1–8. PubMed

Lee UY, Kim IB, Kwak DS (2015) Sex determination using discriminant analysis of upper and lower extremity bones: New approach using the volume and surface area of digital model. Forensic Sci Int 253: 135.e1–e4. PubMed

Scheuer L (2002) Application of osteology to forensic medicine. Clin Anat 15: 297–312. 10.1002/ca.10028 PubMed DOI

Duyar I, Pelin C (2003) Body height estimation based on tibia length in different stature groups. Am J Phys Anthropol 122: 23–27. 10.1002/ajpa.10257 PubMed DOI

Squyres N, Ruff CB (2015) Body mass estimation from knee breadth, with application to early hominins. Am J Phys Anthropol 158: 198–208. PubMed

Ruff CB, Scott WW, Liu AYC (1991) Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults. Am J Phys Anthropol 86: 397–413. 10.1002/ajpa.1330860306 PubMed DOI

Hrdlička A (1898) Study of the normal tibia. Am Anthrop 11: 307–312.

Lieberman DE, Devlin MJ, Pearson OM (2001) Articular area responses to biomechanical loading: Effects of exercise, age and skeletal location. Am J Phys Anthropol 116: 266–277. 10.1002/ajpa.1123 PubMed DOI

Pearson OM, Lieberman DE (2004) The aging of Wolff’s „law“: ontogeny and responses to mechanical loading in cortical bone. Yrbk Phys Anthropol 47: 63–99. PubMed

Ruff CB, Holt B, Trinkaus E (2006) Who’s afraid of the big bad Wolff?: „Wolff’s law”and bone functional adaptation. Am J Phys Anthropol 129: 484–498. 10.1002/ajpa.20371 PubMed DOI

von Cramon-Taubadel N, Stock JT, Pinhasi R (2013) Skull and limb morphology differentially track population history and environmental factors in the transition to agriculture in Europe. Proc R Soc Lond B Biol Sci 280(1767): 20131337. PubMed PMC

Betti L, von Cramon-Taubadel N, and Lycett SJ (2012) Human pelvis and long bones reveal differential preservation of ancient population history and migration out of Africa. Hum Biol 84: 139–152. 10.3378/027.084.0203 PubMed DOI

Svoboda J, Vašků Z, Cílek V (2003) Velká kniha o klimatu zemí Koruny české. Prague: Regia.

Vance VL, Steyn M, L Abbé EN, Becker PJ (2010) A cross-sectional analysis of age related changes in the osteometric dimensions of long bones in modern South Africans of European and African descent. Forensic Sci Int 199: 110.e1–e9. PubMed

Larsen CS (2015) Bioarchaeology: Interpreting behavior from the human skeleton. Cambridge: Cambridge University Press, pp. 241–242.

Ruff CB, Hayes WC (1988) Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 6: 886–896. 10.1002/jor.1100060613 PubMed DOI

Borgognini-Tarli SM, Repetto E (1986). Methodological considerations on the study of sexual dimorphism in past human populations. Hum Ecol 1: 51–66.

Ramsthaler F, Kettner M, Gehl A, Verhoff MA (2010) Digital forensic osteology: Morphological sexing of skeletal remains using volume-rendered cranial CT scans. Forensic Sci Int 195: 148–152. 10.1016/j.forsciint.2009.12.010 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...