Laser Desorption Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry of Au m Fe n+/- Clusters Generated from Gold-Iron Nanoparticles and their Giant Nanoflowers. Electrochemical and/or Plasma Assisted Synthesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27853975
DOI
10.1007/s13361-016-1547-1
PII: 10.1007/s13361-016-1547-1
Knihovny.cz E-zdroje
- Klíčová slova
- Laser desorption ionization, Mass spectrometry, Nanoflowers, Nanoparticles, Plasma-assisted, Stainless steel,
- Publikační typ
- časopisecké články MeSH
Gold nanoparticles (NP) with average diameter ~100 nm synthesized from tetrachloroauric acid solution using stainless steel as a reducing agent were found to contain iron. Applying simultaneously high frequency (HF) plasma discharge in solution during the electrochemical reduction, giant gold-iron nanoflowers with average size ~1000-5000 nm were formed. Scanning electron microscopy (SEM) shows the morphology of the nanopowders produced as polygonal yet nearly spherical, whereas iron content in both products determined by energy dispersive X-ray analysis (EDX) was found to be at ~2.5 at. %. Laser desorption ionization (LDI) of both nanomaterials and mass spectrometric analysis show the formation of Au m Fe n+/- (m = 1-35; n = 1-3) clusters. Structure of few selected clusters in neutral or monocharged forms were computed by density functional theory (DFT) calculations and it was found that typical distances of an iron nucleus from adjacent gold nuclei lie in the interval 2.5 to 2.7 Å. Synthetized Au-Fe nanoparticles were found stable for at least 2 mo at room temperature (even in aqueous solution) without any stabilizing agent. Produced Au-Fe nanoparticles in combination with standard MALDI matrices enhance ionization of peptides and might find use in nanomedicine. Graphical Abstract ᅟ.
Zobrazit více v PubMed
Acc Chem Res. 2011 Oct 18;44(10):914-24 PubMed
Acc Chem Res. 2008 Dec;41(12):1587-95 PubMed
Science. 2000 Mar 17;287(5460):1989-92 PubMed
PLoS One. 2013 Oct 09;8(10):e77486 PubMed
Nanotechnology. 2013 Jan 18;24(2):025606 PubMed
Nano Lett. 2015 Aug 12;15(8):5075-80 PubMed
Materials (Basel). 2014 Jul 17;7(7):5169-5201 PubMed
Talanta. 2014 Jan;118:321-7 PubMed
Rapid Commun Mass Spectrom. 2014 Dec 30;28(24):2753-8 PubMed
J Phys Chem B. 2006 Apr 13;110(14):7122-8 PubMed
Rapid Commun Mass Spectrom. 2014 Jul 30;28(14):1601-8 PubMed
Rapid Commun Mass Spectrom. 2015 Sep 15;29(17 ):1585-1595 PubMed
J Am Chem Soc. 2008 Jan 30;130(4):1138-9 PubMed
Langmuir. 2012 Mar 6;28(9):4051-9 PubMed
Nanoscale. 2012 Jul 21;4(14):4125-9 PubMed
J Nanosci Nanotechnol. 2013 Sep;13(9):6140-4 PubMed
Langmuir. 2008 Sep 2;24(17):9855-60 PubMed