Laser Desorption Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry of Au m Fe n+/- Clusters Generated from Gold-Iron Nanoparticles and their Giant Nanoflowers. Electrochemical and/or Plasma Assisted Synthesis

. 2017 Feb ; 28 (2) : 215-223. [epub] 20161116

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27853975
Odkazy

PubMed 27853975
DOI 10.1007/s13361-016-1547-1
PII: 10.1007/s13361-016-1547-1
Knihovny.cz E-zdroje

Gold nanoparticles (NP) with average diameter ~100 nm synthesized from tetrachloroauric acid solution using stainless steel as a reducing agent were found to contain iron. Applying simultaneously high frequency (HF) plasma discharge in solution during the electrochemical reduction, giant gold-iron nanoflowers with average size ~1000-5000 nm were formed. Scanning electron microscopy (SEM) shows the morphology of the nanopowders produced as polygonal yet nearly spherical, whereas iron content in both products determined by energy dispersive X-ray analysis (EDX) was found to be at ~2.5 at. %. Laser desorption ionization (LDI) of both nanomaterials and mass spectrometric analysis show the formation of Au m Fe n+/- (m = 1-35; n = 1-3) clusters. Structure of few selected clusters in neutral or monocharged forms were computed by density functional theory (DFT) calculations and it was found that typical distances of an iron nucleus from adjacent gold nuclei lie in the interval 2.5 to 2.7 Å. Synthetized Au-Fe nanoparticles were found stable for at least 2 mo at room temperature (even in aqueous solution) without any stabilizing agent. Produced Au-Fe nanoparticles in combination with standard MALDI matrices enhance ionization of peptides and might find use in nanomedicine. Graphical Abstract ᅟ.

Zobrazit více v PubMed

Acc Chem Res. 2011 Oct 18;44(10):914-24 PubMed

Acc Chem Res. 2008 Dec;41(12):1587-95 PubMed

Science. 2000 Mar 17;287(5460):1989-92 PubMed

PLoS One. 2013 Oct 09;8(10):e77486 PubMed

Nanotechnology. 2013 Jan 18;24(2):025606 PubMed

Nano Lett. 2015 Aug 12;15(8):5075-80 PubMed

Materials (Basel). 2014 Jul 17;7(7):5169-5201 PubMed

Talanta. 2014 Jan;118:321-7 PubMed

Rapid Commun Mass Spectrom. 2014 Dec 30;28(24):2753-8 PubMed

J Phys Chem B. 2006 Apr 13;110(14):7122-8 PubMed

Rapid Commun Mass Spectrom. 2014 Jul 30;28(14):1601-8 PubMed

Rapid Commun Mass Spectrom. 2015 Sep 15;29(17 ):1585-1595 PubMed

J Am Chem Soc. 2008 Jan 30;130(4):1138-9 PubMed

Langmuir. 2012 Mar 6;28(9):4051-9 PubMed

Nanoscale. 2012 Jul 21;4(14):4125-9 PubMed

J Nanosci Nanotechnol. 2013 Sep;13(9):6140-4 PubMed

Langmuir. 2008 Sep 2;24(17):9855-60 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...