Changes in the Expression of Biofilm-Associated Surface Proteins in Staphylococcus aureus Food-Environmental Isolates Subjected to Sublethal Concentrations of Disinfectants

. 2016 ; 2016 () : 4034517. [epub] 20161027

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27868063

Sublethal concentrations (sub-MICs) of certain disinfectants are no longer effective in removing biofilms from abiotic surfaces and can even promote the formation of biofilms. Bacterial cells can probably adapt to these low concentrations of disinfectants and defend themselves by way of biofilm formation. In this paper, we report on three Staphylococcus aureus biofilm formers (strong B+++, moderate B++, and weak B+) that were cultivated with sub-MICs of commonly used disinfectants, ethanol or chloramine T, and quantified using Syto9 green fluorogenic nucleic acid stain. We demonstrate that 1.25-2.5% ethanol and 2500 μg/mL chloramine T significantly enhanced S. aureus biofilm formation. To visualize differences in biofilm compactness between S. aureus biofilms in control medium, 1.25% ethanol, or 2500 μg/mL chloramine T, scanning electron microscopy was used. To describe changes in abundance of surface-exposed proteins in ethanol- or chloramine T-treated biofilms, surface proteins were prepared using a novel trypsin shaving approach and quantified after dimethyl labeling by LC-LTQ/Orbitrap MS. Our data show that some proteins with adhesive functions and others with cell maintenance functions and virulence factor EsxA were significantly upregulated by both treatments. In contrast, immunoglobulin-binding protein A was significantly downregulated for both disinfectants. Significant differences were observed in the effect of the two disinfectants on the expression of surface proteins including some adhesins, foldase protein PrsA, and two virulence factors.

Zobrazit více v PubMed

Ray B., Bhunia A. K. Fundamental Food Microbiology. CRC Press, Taylor & Francis Group; 2008.

Gutiérrez D., Delgado S., Vázquez-Sánchez D., et al. Incidence of staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Applied and Environmental Microbiology. 2012;78(24):8547–8554. doi: 10.1128/AEM.02045-12. PubMed DOI PMC

Arciola C. R., Campoccia D., Gamberini S., Baldassarri L., Montanaro L. Prevalence of cna, fnbA and fnbB adhesin genes among Staphylococcus aureus isolates from orthopedic infections associated to different types of implant. FEMS Microbiology Letters. 2005;246(1):81–86. doi: 10.1016/j.femsle.2005.03.035. PubMed DOI

Foster T. J., Höök M. Surface protein adhesins of Staphylococcus aureus . Trends in Microbiology. 1998;6(12):484–488. doi: 10.1016/s0966-842x(98)01400-0. PubMed DOI

Halliman D. G., Ahearn D. G. Relative susceptibilities to vancomycin and quinupristin-dalfopristin of adhered and planktonic vancomycin-resistant and vancomycin-susceptible coagulase-negative staphylococci. Current Microbiology. 2004;48(3):214–218. doi: 10.1007/s00284-003-4091-8. PubMed DOI

Bridier A., Briandet R., Thomas V., Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 2011;27(9):1017–1032. doi: 10.1080/08927014.2011.626899. PubMed DOI

Cucarella C., Solano C., Valle J., Amorena B., Lasa Í., Penadés J. R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology. 2001;183(9):2888–2896. doi: 10.1128/jb.183.9.2888-2896.2001. PubMed DOI PMC

Latasa C., Solano C., Penadés J. R., Lasa I. Biofilm-associated proteins. Comptes Rendus—Biologies. 2006;329(11):849–857. doi: 10.1016/j.crvi.2006.07.008. PubMed DOI

Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Götz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infection and Immunity. 1999;67(10):5427–5433. PubMed PMC

Abraham N. M., Jefferson K. K. Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. Microbiology. 2012;158(6):1504–1512. doi: 10.1099/mic.0.057018-0. PubMed DOI PMC

Geoghegan J. A., Monk I. R., O'Gara J. P., Foster T. J. Subdomains N2N3 of fibronectin binding protein a mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. Journal of Bacteriology. 2013;195(11):2675–2683. doi: 10.1128/jb.02128-12. PubMed DOI PMC

Schroeder K., Jularic M., Horsburgh S. M., et al. Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation. PLoS ONE. 2009;4(10) doi: 10.1371/journal.pone.0007567.e7567 PubMed DOI PMC

Geoghegan J. A., Corrigan R. M., Gruszka D. T., et al. Role of surface protein SasG in biofilm formation by Staphylococcus aureus. Journal of Bacteriology. 2010;192(21):5663–5673. doi: 10.1128/JB.00628-10. PubMed DOI PMC

Merino N., Toledo-Arana A., Vergara-Irigaray M., et al. Protein A-mediated multicellular behavior in Staphylococcus aureus . Journal of Bacteriology. 2009;191(3):832–843. doi: 10.1128/jb.01222-08. PubMed DOI PMC

Foster T. J., Geoghegan J. A., Ganesh V. K., Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nature Reviews Microbiology. 2014;12(1):49–62. doi: 10.1038/nrmicro3161. PubMed DOI PMC

Patti J. M., Allen B. L., McGavin M. J., Höök M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annual Review of Microbiology. 1994;48:585–617. doi: 10.1146/annurev.mi.48.100194.003101. PubMed DOI

McAleese F. M., Walsh E. J., Sieprawska M., Potempa J., Foster T. J. Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. The Journal of Biological Chemistry. 2001;276(32):29969–29978. doi: 10.1074/jbc.m102389200. PubMed DOI

Bischoff M., Dunman P., Kormanec J., et al. Microarray-based analysis of the Staphylococcus aureus σ B Regulon. Journal of Bacteriology. 2004;186(13):4085–4099. PubMed PMC

Chiou R. Y.-Y., Phillips R. D., Zhao P., Doyle M. P., Beuchat L. R. Ethanol-mediated variations in cellular fatty acid composition and protein profiles of two genotypically different strains of Escherichia coliO157:H7. Applied and Environmental Microbiology. 2004;70(4):2204–2210. doi: 10.1128/aem.70.4.2204-2210.2004. PubMed DOI PMC

Silveira M. G., Baumgärtner M., Rombouts F. M., Abee T. Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni . Applied and Environmental Microbiology. 2004;70(5):2748–2755. doi: 10.1128/aem.70.5.2748-2755.2004. PubMed DOI PMC

Fried V. A., Novick A. Organic solvents as probes for the structure and function of the bacterial membrane: effects of ethanol on the wild Type and an ethanol-resistant mutant of Escherichia coli K-12. Journal of Bacteriology. 1973;114(1):239–248. PubMed PMC

Terracciano J. S., Kashket E. R. Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum . Applied and Environmental Microbiology. 1986;52(1):86–91. PubMed PMC

Stief T. W. The physiology and pharmacology of singlet oxygen. Medical Hypotheses. 2003;60(4):567–572. doi: 10.1016/S0306-9877(03)00026-4. PubMed DOI PMC

Rolland S. L., Carrick T. E., Walls A. W., McCabe J. F. Dentin decontamination using chloramine T prior to experiments involving bacteria. Dental Materials. 2007;23(12):1468–1472. doi: 10.1016/j.dental.2007.01.001. PubMed DOI

Bal Krishna K. C., Sathasivan A., Ginige M. P. Microbial community changes with decaying chloramine residuals in a lab-scale system. Water Research. 2013;47(13):4666–4679. doi: 10.1016/j.watres.2013.04.035. PubMed DOI

Rode T. M., Langsrud S., Holck A., Møretrø T. Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. International Journal of Food Microbiology. 2007;116(3):372–383. doi: 10.1016/j.ijfoodmicro.2007.02.017. PubMed DOI

Tjalsma H., Lambooy L., Hermans P. W., Swinkels D. W. Shedding & shaving: disclosure of proteomic expressions on a bacterial face. Proteomics. 2008;8(7):1415–1428. doi: 10.1002/pmic.200700550. PubMed DOI

Solis N., Larsen M. R., Cordwell S. J. Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control. Proteomics. 2010;10(10):2037–2049. doi: 10.1002/pmic.200900564. PubMed DOI

Rodríguez-Ortega M. J., Norais N., Bensi G., et al. Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nature Biotechnology. 2006;24(2):191–197. doi: 10.1038/nbt1179. PubMed DOI

Doro F., Liberatori S., Rodríguez-Ortega M. J., et al. Surfome analysis as a fast track to vaccine discovery: identification of a novel protective antigen for group B Streptococcus hypervirulent strain COH1. Molecular and Cellular Proteomics. 2009;8(7):1728–1737. doi: 10.1074/mcp.m800486-mcp200. PubMed DOI PMC

Dreisbach A., van der Kooi-Pol M. M., Otto A., et al. Surface shaving as a versatile tool to profile global interactions between human serum proteins and the Staphylococcus aureus cell surface. Proteomics. 2011;11(14):2921–2930. doi: 10.1002/pmic.201100134. PubMed DOI

Ythier M., Resch G., Waridel P., et al. Proteomic and transcriptomic profiling of Staphylococcus aureus surface LPXTG-proteins: correlation with agr genotypes and adherence phenotypes. Molecular and Cellular Proteomics. 2012;11(11):1123–1139. doi: 10.1074/mcp.m111.014191. PubMed DOI PMC

Stepanović S., Vuković D., Hola V., et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891–899. doi: 10.1111/j.1600-0463.2007.apm_630.x. PubMed DOI

Wiśniewski J. R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nature Methods. 2009;6(5):359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Boersema P. J., Raijmakers R., Lemeer S., Mohammed S., Heck A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature Protocols. 2009;4(4):484–494. doi: 10.1038/nprot.2009.21. PubMed DOI

Tashiro Y., Inagaki A., Ono K., et al. Low concentrations of ethanol stimulate biofilm and pellicle formation in Pseudomonas aeruginosa. Bioscience, Biotechnology and Biochemistry. 2014;78(1):178–181. doi: 10.1080/09168451.2014.877828. PubMed DOI

Houari A., Di Martino P. Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Letters in Applied Microbiology. 2007;45(6):652–656. doi: 10.1111/j.1472-765X.2007.02249.x. PubMed DOI

Korem M., Gov Y., Rosenberg M. Global gene expression in Staphylococcus aureus following exposure to alcohol. Microbial Pathogenesis. 2010;48(2):74–84. doi: 10.1016/j.micpath.2009.11.002. PubMed DOI

Redelman C. V., Maduakolam C., Anderson G. G. Alcohol treatment enhances Staphylococcus aureus biofilm development. FEMS Immunology & Medical Microbiology. 2012;66(3):411–418. doi: 10.1111/1574-695x.12005. PubMed DOI

Di Ciccio P., Vergara A., Festino A. R., et al. Biofilm formation by Staphylococcus aureus on food contact surfaces: relationship with temperature and cell surface hydrophobicity. Food Control. 2015;50:930–936. doi: 10.1016/j.foodcont.2014.10.048. DOI

da Silva Meira Q. G., de Medeiros Barbosa I., Alves Aguiar Athayde A. J., de Siqueira-Júnior J. P., de Souza E. L. Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sensitivity to sanitizers. Food Control. 2012;25(2):469–475. doi: 10.1016/j.foodcont.2011.11.030. DOI

Zmantar T., Kouidhi B., Miladi H., Mahdouani K., Bakhrouf A. A microtiter plate assay for Staphylococcus aureus biofilm quantification at various pH levels and hydrogen peroxide supplementation. New Microbiologica. 2010;33(2):137–145. PubMed

Post D. M. B., Held J. M., Ketterer M. R., et al. Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry. BMC Microbiology. 2014;14(1, article 329) doi: 10.1186/s12866-014-0329-9. PubMed DOI PMC

Resch A., Leicht S., Saric M., et al. Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics. 2006;6(6):1867–1877. doi: 10.1002/pmic.200500531. PubMed DOI

Resch A., Rosenstein R., Nerz C., Götz F. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Applied and Environmental Microbiology. 2005;71(5):2663–2676. doi: 10.1128/AEM.71.5.2663-2676.2005. PubMed DOI PMC

Arrecubieta C., Matsunaga I., Asai T., Naka Y., Deng M. C., Lowy F. D. Vaccination with clumping factor A and fibronectin binding protein A to prevent Staphylococcus aureus infection of an aortic patch in mice. Journal of Infectious Diseases. 2008;198(4):571–575. doi: 10.1086/590210. PubMed DOI PMC

Carneiro C. R. W., Postol E., Nomizo R., Reis L. F. L., Brentani R. R. Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus . Microbes and Infection. 2004;6(6):604–608. doi: 10.1016/j.micinf.2004.02.003. PubMed DOI

Seyer D., Cosette P., Siroy A., et al. Proteomic comparison of outer membrane protein patterns of sessile and planktonic Pseudomonas aeruginosa cells. Biofilms. 2005;2(1):27–36. doi: 10.1017/s1479050505001638. DOI

Wang Y., Yi L., Wu Z., et al. Comparative proteomic analysis of streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins. PLoS ONE. 2012;7(4, article e33371) doi: 10.1371/journal.pone.0033371. PubMed DOI PMC

Jones R. C., Deck J., Edmondson R. D., Hart M. E. Relative quantitative comparisons of the extracellular protein profiles of Staphylococcus aureus UAMS-1 and its sarA, agr, and sarA agr regulatory mutants using one-dimensional polyacrylamide gel electrophoresis and nanocapillary liquid chromatography coupled with tandem mass spectrometry. Journal of Bacteriology. 2008;190(15):5265–5278. doi: 10.1128/jb.00383-08. PubMed DOI PMC

Becher D., Hempel K., Sievers S., et al. A proteomic view of an important human pathogen—towards the quantification of the entire Staphylococcus aureus proteome. PLoS ONE. 2009;4(12) doi: 10.1371/journal.pone.0008176.e8176 PubMed DOI PMC

Curreem S. O. T., Watt R. M., Lau S. K. P., Woo P. C. Y. Two-dimensional gel electrophoresis in bacterial proteomics. Protein and Cell. 2012;3(5):346–363. doi: 10.1007/s13238-012-2034-5. PubMed DOI PMC

Islam N., Kim Y., Ross J. M., Marten M. R. Proteomic analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear stress conditions. Proteome Science. 2014;12(1, article 21) doi: 10.1186/1477-5956-12-21. PubMed DOI PMC

Mohamed N., Visai L., Speziale P., Ross J. M. Quantification of Staphylococcus aureus cell surface adhesins using flow cytometry. Microbial Pathogenesis. 2000;29(6):357–361. doi: 10.1006/mpat.2000.0399. PubMed DOI

Grandi G. Bacterial surface proteins and vaccines. F1000 Biology Reports. 2010;2, article 36 doi: 10.3410/b2-36. PubMed DOI PMC

Bøhle L. A., Riaz T., Egge-Jacobsen W., et al. Identification of surface proteins in Enterococcus faecalis V583. BMC Genomics. 2011;12, article 135 doi: 10.1186/1471-2164-12-135. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...