Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
27869691
PubMed Central
PMC5129356
DOI
10.3390/ijerph13111146
PII: ijerph13111146
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial degradation, bioremediation, contaminated soil, pentachlorophenol, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, wood preservation,
- MeSH
- Bacteria metabolismus MeSH
- benzofurany analýza metabolismus MeSH
- biodegradace * MeSH
- biotransformace MeSH
- látky znečišťující půdu analýza metabolismus MeSH
- lidé MeSH
- pentachlorfenol metabolismus MeSH
- polychlorované dibenzodioxiny metabolismus MeSH
- půda chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- benzofurany MeSH
- látky znečišťující půdu MeSH
- pentachlorfenol MeSH
- polychlorované dibenzodioxiny MeSH
- půda MeSH
Pentachlorophenol (PCP) is a toxic and persistent wood and cellulose preservative extensively used in the past decades. The production process of PCP generates polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) as micropollutants. PCDD/Fs are also known to be very persistent and dangerous for human health and ecosystem functioning. Several physico-chemical and biological technologies have been used to remove PCP and PCDD/Fs from the environment. Bacterial degradation appears to be a cost-effective way of removing these contaminants from soil while causing little impact on the environment. Several bacteria that cometabolize or use these pollutants as their sole source of carbon have been isolated and characterized. This review summarizes current knowledge on the metabolic pathways of bacterial degradation of PCP and PCDD/Fs. PCP can be successfully degraded aerobically or anaerobically by bacteria. Highly chlorinated PCDD/Fs are more likely to be reductively dechlorinated, while less chlorinated PCDD/Fs are more prone to aerobic degradation. The biochemical and genetic basis of these pollutants' degradation is also described. There are several documented studies of effective applications of bioremediation techniques for the removal of PCP and PCDD/Fs from soil and sediments. These findings suggest that biodegradation can occur and be applied to treat these contaminants.
Zobrazit více v PubMed
World Health Organization (WHO) Pentachlorophenol. [(accessed on 17 July 2015)]. Available online: http://www.inchem.org/documents/ehc/ehc/ehc71.htm.
Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profile for Pentachlorophenol. U.S. Department of Health and Human Services, Public Health Service; Atlanta, GA, USA: 2001.
EuroChlor . Pentachlorophenol. EuroChlor; Brussels, Belgium: 1999. Euro Chlor Risk Assessment for the Marine Environment; OSPARCOM Region—North Sea.
World Health Organization (WHO) Pentachlorophenol in Drinking-Water. World Health Organization; Geneva, Switzerland: 1998. Background Document for Development of WHO Guidelines for Drinking-Water Quality.
Food and Agriculture Organization of the United Nations (FAO) Pentachlorophenol and Its Salts and Esters. United Nations Environment Programme; Rome, Italy: Geneva, Switzerland: 1996. Decision Guidance Documents.
Muller F., Caillard L. Chlorophenols. Ullmann’s Encycl. Ind. Chem. 2011;45:43–50.
Fisher B. Pentachlorophenol: Toxicology and environmental fate. J. Pestic. Reform. 1991;11:1–5.
Yu J., Nestrick T.J., Allen R., Savage P.E. Microcontaminants in pentachlorophenol synthesis. 1. New bioassay for microcontaminant quantification. Ind. Eng. Chem. Res. 2006;45:5199–5204. doi: 10.1021/ie0602106. DOI
Holt E., Weber R., Stevenson G., Gaus C. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) impurities in pesticides: A neglected source of contemporary relevance. Environ. Sci. Technol. 2010;44:5409–5415. doi: 10.1021/es903915k. PubMed DOI
Anasonye F., Winquist E., Kluczek-Turpeinen B., Rasanen M., Salonen K., Steffen K.T., Tuomela M. Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. Chemosphere. 2014;110:85–90. doi: 10.1016/j.chemosphere.2014.03.079. PubMed DOI
Persson Y., Lundstedt S., Oberg L., Tysklind M. Levels of chlorinated compounds (CPs, PCPPs, PCDEs, PCDFs and PCDDs) in soils at contaminated sawmill sites in Sweden. Chemosphere. 2007;66:234–242. doi: 10.1016/j.chemosphere.2006.05.052. PubMed DOI
Kitunen V.H., Valo R.J., Salkinoja-Salonen M.S. Contamination of soil around wood-preserving facilities by polychlorinated aromatic compounds. Environ. Sci. Technol. 1987;21:96–101. doi: 10.1021/es00155a012. DOI
Salo S., Verta M., Malve O., Korhonen M., Lehtoranta J., Kiviranta H., Isosaari P., Ruokojarvi P., Koistinen J., Vartiainen T. Contamination of River Kymijoki sediments with polychlorinated dibenzo-p-dioxins, dibenzofurans and mercury and their transport to the Gulf of Finland in the Baltic Sea. Chemosphere. 2008;73:1675–1683. doi: 10.1016/j.chemosphere.2008.07.085. PubMed DOI
Weber R., Masunaga S. PCDD/PCDF contamination from historical pesticide use and production—A case study using data from Japan and Germany; Proceedings of the International HCH and Pesticides Forum; Sofia, Bulgaria. 26–28 May 2005.
Nie Z., Tang Z., Zhu X., Yang Y., Fu H., Die Q., Wang Q., Huang Q. Occurrence, possible sources, and temporal trends of polychlorinated dibenzo-p-dioxins and dibenzofurans in water and sediment from the lower Yangtze River basin, Jiangsu and Shanghai areas of Eastern China. Environ. Sci. Pollut. Res. 2013;20:8751–8762. doi: 10.1007/s11356-013-1832-5. PubMed DOI
Lin J., Xu Y., Brookes P.C., He Y., Xu J. Spatial and temporal variations in pentachlorophenol dissipation at the aerobic—Anaerobic interfaces of flooded paddy soils. Environ. Pollut. 2013;178:433–440. doi: 10.1016/j.envpol.2013.03.059. PubMed DOI
Arora P.K., Bae H. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Fact. 2014;13 doi: 10.1186/1475-2859-13-31. PubMed DOI PMC
Orser C., Lange C. Molecular analysis of pentachlorophenol degradation. Biodegradation. 1994;5:277–288. doi: 10.1007/BF00696465. PubMed DOI
Kozak V.P., Simsiman G.V., Chesters G., Stensby D., Harkin J. Reviews of the Environmental Effects of Pollutants. XI. Chlorophenols. U.S. Environmental Protection Agency; Washington, DC, USA: 1979. p. 492.
U.S. Environmental Protection Agency (EPA) Integrated Risk Information System (IRIS) on Pentachlorophenol. [(accessed on 14 May 2015)]; Available online: http://www.epa.gov/iris/subst/0086.htm.
Cooper G.S., Jones S. Pentachlorophenol and cancer risk: Focusing the lens on specific chlorophenols and contaminants. Environ. Health Perspect. 2008;116:1001–1008. doi: 10.1289/ehp.11081. PubMed DOI PMC
Takeuchi M., Hamana K., Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 2001;51:1405–1417. doi: 10.1099/00207713-51-4-1405. PubMed DOI
Fetzner S. Bacterial dehalogenation. Appl. Microbiol. Biotechnol. 1998;50:633–657. doi: 10.1007/s002530051346. PubMed DOI
Xun L., Orser C.S. Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J. Bacteriol. 1991;173:4447–4453. doi: 10.1128/jb.173.14.4447-4453.1991. PubMed DOI PMC
Orser C.S., Lange C.C., Xun L., Zahrt T.C., Schneider B.J. Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J. Bacteriol. 1993;175:411–416. doi: 10.1128/jb.175.2.411-416.1993. PubMed DOI PMC
Lange C.C., Schneider B.J., Orser C.S. Verification of the role of pcp 4-monooxygenase in chlorine elimination from pentachlorophenol by Flavobacterium sp. strain ATCC 39723. Biochem. Biophys. Res. Commun. 1996;219:146–149. doi: 10.1006/bbrc.1996.0196. PubMed DOI
Orser C.S., Dutton J., Lange C., Jablonski P., Xun L., Hargis M. Characterization of a Flavobacterium glutathione S-transferase gene involved reductive dechlorination. J. Bacteriol. 1993;175:2640–2644. doi: 10.1128/jb.175.9.2640-2644.1993. PubMed DOI PMC
Ohtsubo Y., Miyauchi K., Kanda K., Hatta T., Kiyohara H., Senda T., Nagata Y., Mitsui Y., Takagi M. PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC39723, is a novel type of ring-cleavage dioxygenase. FEBS Lett. 1999;459:395–398. doi: 10.1016/S0014-5793(99)01305-8. PubMed DOI
Steiert J.G., Crawford R.L. Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem. Biophys. Res. Commun. 1986;141:825–830. doi: 10.1016/S0006-291X(86)80247-9. PubMed DOI
Uotila J.S., Kitunen V.H., Saastamoinen T., Coote T., Häggblom M.M., Salkinoja-Salonen M.S. Characterization of Aromatic Dehalogenases of Mycobacterium fortuitum CG-2. J. Bacteriol. 1992;174:5669–5675. doi: 10.1128/jb.174.17.5669-5675.1992. PubMed DOI PMC
Uotila J.S., Salkinoja-Salonen M.S., Apajalahti J.H. Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-I. Biodegradation. 1991;2:25–31. doi: 10.1007/BF00122422. PubMed DOI
Apajalahti J.H.A., Salkinoja-Salonen M.S. Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J. Bacteriol. 1987;169:5125–5130. doi: 10.1128/jb.169.11.5125-5130.1987. PubMed DOI PMC
Hiraishi A. Biodiversity of dehalorespiring bacteria with special emphasis on polychlorinated biphenyl/dioxin dechlorinators. Microbes Environ. 2008;23:1–12. doi: 10.1264/jsme2.23.1. PubMed DOI
Field J.A., Sierra-Alvarez R. Microbial degradation of chlorinated phenols. Rev. Environ. Sci. Bio/Technol. 2008;7:211–241. doi: 10.1007/s11157-007-9124-5. DOI
Holliger C., Wohlfarth G., Diekert G. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 1998;22:383–398. doi: 10.1111/j.1574-6976.1998.tb00377.x. DOI
Bunge M., Lechner U. Anaerobic reductive dehalogenation of polychlorinated dioxins. Appl. Microbiol. Biotechnol. 2009;84:429–444. doi: 10.1007/s00253-009-2084-7. PubMed DOI
Jugder B.-E., Ertan H., Bohl S., Lee M., Marquis C.P., Manefield M. Organohalide respiring bacteria and reductive dehalogenases: Key tools in organohalide bioremediation. Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.00249. PubMed DOI PMC
Adriaens P., Grbic’-Galic D. Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Chemosphere. 1994;29:2253–2259. doi: 10.1016/0045-6535(94)90392-1. DOI
Richardson R.E. Genomic insights into organohalide respiration. Curr. Opin. Biotechnol. 2013;24:498–505. doi: 10.1016/j.copbio.2013.02.014. PubMed DOI
Mikesell M.D., Boyd S.A. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 1986;52:861–865. PubMed PMC
Stuart S.L., Woods S.L. Kinetic evidence for pentachlorophenol-dependent growth of a dehalogenating population in a pentachlorophenol- and acetate-fed methanogenic culture. Biotechnol. Bioeng. 1998;57:420–429. doi: 10.1002/(SICI)1097-0290(19980220)57:4<420::AID-BIT5>3.0.CO;2-O. PubMed DOI
Villemur R. The pentachlorophenol-dehalogenating Desulfitobacterium hafniense strain PCP-1. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2013;368 doi: 10.1098/rstb.2012.0319. PubMed DOI PMC
Van de Pas B.A., Smidt H., Hagen W.R., van der Oost J., Schraa G., Stams A.J.M., de Vos W.M. Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J. Biol. Chem. 1999;274:20287–20292. doi: 10.1074/jbc.274.29.20287. PubMed DOI
Bisaillon A., Beaudet R., Lepine F., Deziel E., Villemur R. Identification and characterization of a novel CprA reductive dehalogenase specific to highly chlorinated phenols from Desulfitobacterium hafniense strain PCP-1. Appl. Environ. Microbiol. 2010;76:7536–7540. doi: 10.1128/AEM.01362-10. PubMed DOI PMC
Thibodeau J., Gauthier A., Duguay M., Villemur R., Lepine F., Juteau P., Beaudet R. Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from Desulfitobacterium frappieri PCP-1. Appl. Environ. Microbiol. 2004;70:4532–4537. doi: 10.1128/AEM.70.8.4532-4537.2004. PubMed DOI PMC
Boyer A., Page-BeLanger R., Saucier M., Villemur R., Lepine F., Juteau P., Beaudet R. Purification, cloning and sequencing of an enzyme mediating the reductive dechlorination of 2,4,6-trichlorophenol from Desulfitobacterium frappieri PCP-1. Biochem. J. 2003;373:297–303. doi: 10.1042/bj20021837. PubMed DOI PMC
Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profile for Chlorinated Dibenzo-p-Dioxins (CDDs) [(accessed on 9 July 2015)]; Available online: http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=366&tid=63. PubMed
Barring H., Bucheli T.D., Broman D., Gustafsson O. Soot-water distribution coefficients for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenylethers determined with the soot cosolvency-column method. Chemosphere. 2002;49:515–523. doi: 10.1016/S0045-6535(02)00389-2. PubMed DOI
Cornelissen G., Gustafsson Ö., Bucheli T.D., Jonker M.T., Koelmans A.A., van Noort P.C. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 2005;39:6881–6895. doi: 10.1021/es050191b. PubMed DOI
Srogi K. Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: A review. Environ. Chem. Lett. 2008;6:1–28. doi: 10.1007/s10311-007-0105-2. DOI
Otles S., Yildiz H. Dioxin in food and human health. Electron. J. Environ. Agric. Food Chem. 2003;2:593–608.
Hoekstra E.J., de Weerd H., de Leer E.W., Brinkman U.A.T. Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ. Sci. Technol. 1999;33:2543–2549. doi: 10.1021/es9900104. DOI
Lavric E.D., Konnov A.A., De Ruyck J. Dioxin levels in wood combustion—A review. Biomass Bioenergy. 2004;26:115–145. doi: 10.1016/S0961-9534(03)00104-1. DOI
Gu C., Li H., Teppen B.J., Boyd S.A. Octachlorodibenzodioxin formation on Fe(III)-montmorillonite clay. Environ. Sci. Technol. 2008;42:4758–4763. doi: 10.1021/es7029834. PubMed DOI
Gu C., Liu C., Ding Y., Li H., Teppen B.J., Johnston C.T., Boyd S.A. Clay mediated route to natural formation of Polychlorodibenzo-p-dioxins. Environ. Sci. Technol. 2011;45:3445–3451. doi: 10.1021/es104225d. PubMed DOI
Wittich R.-M. Degradation of dioxin-like compounds by microorganisms. Appl. Microbiol. Biotechnol. 1998;49:489–499. doi: 10.1007/s002530051203. PubMed DOI
World Health Organization (WHO) Dioxins and Their Effects on Human Health. [(accessed on 19 July 2015)]. Available online: http://www.who.int/mediacentre/factsheets/fs225/en/
World Health Organization (WHO) Polychlorinated Dibenzo-p-dioxins and Dibenzofurans. [(accessed on 23 June 2015)]. Available online: http://www.inchem.org/documents/ehc/ehc/ehc88.htm.
Dahlgren J., Warshaw R., Horsak R.D., Parker F.M., III, Takhar H. Exposure assessment of residents living near a wood treatment plant. Environ. Res. 2003;92:99–109. doi: 10.1016/S0013-9351(02)00064-6. PubMed DOI
Fries G.F., Feil V.J., Zaylskie R.G., Bialek K.M., Rice C.P. Treated wood in livestock facilities: Relationships among residues of pentachlorophenol, dioxins, and furans in wood and beef. Environ. Pollut. 2002;116:301–307. doi: 10.1016/S0269-7491(01)00122-1. PubMed DOI
Huwe J.K., Davison K., Feil V.J., Larsen G., Lorentzsen M., Zaylskie R., Tiernan T.O. Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in cattle raised at agricultural research facilities across the USA and the influence of pentachlorophenol-treated wood. Food Addit.Contam. 2004;21:182–194. doi: 10.1080/02652030310001639503. PubMed DOI
Field J.A., Sierra-Alvarez R. Microbial degradation of chlorinated dioxins. Chemosphere. 2008;71:1005–1018. doi: 10.1016/j.chemosphere.2007.10.039. PubMed DOI
Hong H.B., Nam I.H., Murugesan K., Kim Y.M., Chang Y.S. Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. Biodegradation. 2004;15:303–313. doi: 10.1023/B:BIOD.0000042185.04905.0d. PubMed DOI
Zanaroli G., Negroni A., Häggblom M.M., Fava F. Microbial dehalogenation of organohalides in marine and estuarine environments. Curr. Opin. Biotechnol. 2015;33:287–295. doi: 10.1016/j.copbio.2015.03.013. PubMed DOI
Hiraishi A. Biodiversity of dioxin-degrading microorganisms and potential utilization in bioremediation. Microbes Environ. 2003;18:105–125. doi: 10.1264/jsme2.18.105. DOI
Chang Y.-S. Recent developments in microbial biotransformation and biodegradation of dioxins. J. Mol. Microbiol. Biotechnol. 2008;15:152–171. doi: 10.1159/000121327. PubMed DOI
Klečka G.M., Gibson D.T. Metabolism of dibenzo-p-dioxin by a Pseudomonas species. Biochem. J. 1979;180:639–645. doi: 10.1042/bj1800639. PubMed DOI PMC
Wittich R.M., Wilkes H., Sinnwell V., Francke W., Fortnagel P. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 1992;58:1005–1010. PubMed PMC
Nojiri H., Omori T. Molecular bases of aerobic bacterial degradation of dioxins: Involvement of angular dioxygenation. Biosci. Biotechnol. Biochem. 2002;66:2001–2016. doi: 10.1271/bbb.66.2001. PubMed DOI
Jin S., Zhu T., Xu X., Xu Y. Biodegradation of dibenzofuran by Janibacter terrae strain XJ-1. Curr. Microbiol. 2006;53:30–36. doi: 10.1007/s00284-005-0180-1. PubMed DOI
Miyauchi K., Sukda P., Nishida T., Ito E., Matsumoto Y., Masai E., Fukuda M. Isolation of dibenzofuran-degrading bacterium, Nocardioides sp. DF412, and characterization of its dibenzofuran degradation genes. J. Biosci. Bioeng. 2008;105:628–635. doi: 10.1263/jbb.105.628. PubMed DOI
Sukda P., Gouda N., Ito E., Miyauchi K., Masai E., Fukuda M. Characterization of a transcriptional regulatory gene involved in dibenzofuran degradation by Nocardioides sp. strain DF412. Biosci. Biotechnol. Biochem. 2009;73:508–516. doi: 10.1271/bbb.80496. PubMed DOI
Jaiswal P.K., Thakur I.S. Isolation and characterization of dibenzofuran-degrading Serratia marcescens from alkalophilic bacterial consortium of the chemostat. Curr. Microbiol. 2007;55:447–454. doi: 10.1007/s00284-007-9013-8. PubMed DOI
Yabuuchi E., Yamamoto H., Terakubo S., Okamura N., Naka T., Fujiwara N., Kobayashi K., Kosako Y., Hiraishi A. Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int. J. Syst. Evol. Microbiol. 2001;51:281–292. doi: 10.1099/00207713-51-2-281. PubMed DOI
Armengaud J., Happe B., Timmis K.N. Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: Catabolic genes dispersed on the genome. J. Bacteriol. 1998;180:3954–3966. PubMed PMC
Armengaud J., Timmis K.N., Wittich R.M. A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. J. Bacteriol. 1999;181:3452–3461. PubMed PMC
Wilkes H., Wittich R., Timmis K.N., Fortnagel P., Francke W. Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 1996;62:367–371. PubMed PMC
Nam I.H., Kim Y.M., Schmidt S., Chang Y.S. Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin by Sphingomonas wittichii strain RW1. Appl. Environ. Microbiol. 2006;72:112–116. doi: 10.1128/AEM.72.1.112-116.2006. PubMed DOI PMC
Ballerstedt H., Kraus A., Lechner U. Reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin and its products by anaerobic mixed cultures from Saale River sediment. Environ. Sci. Technol. 1997;31:1749–1753. doi: 10.1021/es960737h. DOI
Ahn Y.B., Liu F., Fennell D.E., Haggblom M.M. Biostimulation and bioaugmentation to enhance dechlorination of polychlorinated dibenzo-p-dioxins in contaminated sediments. FEMS Microbiol. Ecol. 2008;66:271–281. doi: 10.1111/j.1574-6941.2008.00557.x. PubMed DOI
Beurskens J.E., De Wolf J., Toussaint E., van der Steen J., Slot P.C., Commandeur L., Parsons J.R. Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment. Environ. Toxicol. Chem. 1995;14:939–943. doi: 10.1002/etc.5620140603. DOI
Bunge M., Ballerstedt H., Lechner U. Regiospecific dechlorination of spiked tetra- and trichlorodibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated Spittelwasser sediments. Chemosphere. 2001;43:675–681. doi: 10.1016/S0045-6535(00)00420-3. PubMed DOI
McMurdie P.J., Behrens S.F., Muller J.A., Goke J., Ritalahti K.M., Wagner R., Goltsman E., Lapidus A., Holmes S., Loffler F.E., et al. Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet. 2009;5:e1000714. doi: 10.1371/journal.pgen.1000714. PubMed DOI PMC
Wagner A., Segler L., Kleinsteuber S., Sawers G., Smidt H., Lechner U. Regulation of reductive dehalogenase gene transcription in Dehalococcoides mccartyi. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2013;368:20120317. doi: 10.1098/rstb.2012.0317. PubMed DOI PMC
Smidt H., de Vos W.M. Anaerobic microbial dehalogenation. Annu. Rev. Microbiol. 2004;58:43–73. doi: 10.1146/annurev.micro.58.030603.123600. PubMed DOI
Löffler F.E., Yan J., Ritalahti K.M., Adrian L., Edwards E.A., Konstantinidis K.T., Müller J.A., Fullerton H., Zinder S.H., Spormann A.M. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 2013;63:625–635. PubMed
Seshadri R., Adrian L., Fouts D.E., Eisen J.A., Phillippy A.M., Methe B.A., Ward N.L., Nelson W.C., Deboy R.T., Khouri H.M., et al. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science. 2005;307:105–108. doi: 10.1126/science.1102226. PubMed DOI
Kube M., Beck A., Zinder S.H., Kuhl H., Reinhardt R., Adrian L. Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat. Biotechnol. 2005;23:1269–1273. doi: 10.1038/nbt1131. PubMed DOI
Wang S., Chng K.R., Wilm A., Zhao S., Yang K.-L., Nagarajan N., He J. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proc. Natl. Acad. Sci. USA. 2014;111:12103–12108. doi: 10.1073/pnas.1404845111. PubMed DOI PMC
Laine M.M., Jørgensen K.S. Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Appl. Environ. Microbiol. 1996;62:1507–1513. PubMed PMC
Laine M.M., Jørgensen K.S. Effective and safe composting of chlorophenol-contaminated soil in pilot scale. Environ. Sci. Technol. 1997;31:371–378. doi: 10.1021/es960176u. DOI
Jaspers C.J., Ewbank G., McCarthy A.J., Penninckx M.J. Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost. J. Appl. Microbiol. 2002;92:127–133. doi: 10.1046/j.1365-2672.2002.01520.x. PubMed DOI
Zeng G., Yu Z., Chen Y., Zhang J., Li H., Yu M., Zhao M. Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresour. Technol. 2011;102:5905–5911. doi: 10.1016/j.biortech.2011.02.088. PubMed DOI
Laine M.M., Ahtiainen J., Wågman N., Öberg L.G., Jørgensen K.S. Fate and toxicity of chlorophenols, polychlorinated dibenzo-p-dioxins, and dibenzofurans during composting of contaminated sawmill soil. Environ. Sci. Technol. 1997;31:3244–3250. doi: 10.1021/es970233z. DOI
Narihiro T., Kaiya S., Futamata H., Hiraishi A. Removal of polychlorinated dioxins by semi-aerobic fed-batch composting with biostimulation of “Dehalococcoides”. J. Biosci. Bioeng. 2010;109:249–256. doi: 10.1016/j.jbiosc.2009.08.498. PubMed DOI
Miller M.N., Stratton G.W., Murray G. Effects of nutrient amendmentsand temperature on the biodegradationof pentachlorophenol contaminated soil. Water Air Soil Pollut. 2004;151:87–101. doi: 10.1023/B:WATE.0000009903.22105.30. DOI
Sinkkonen A., Kauppi S., Simpanen S., Rantalainen A.L., Strommer R., Romantschuk M. Layer of organic pine forest soil on top of chlorophenol-contaminated mineral soil enhances contaminant degradation. Environ. Sci. Pollut. Res. 2013;20:1737–1745. doi: 10.1007/s11356-012-1047-1. PubMed DOI
Kao C.M., Wu M.J. Enhanced TCDD degradation by Fenton’s reagent preoxidation. J. Hazard. Mater. 2000;74:197–211. doi: 10.1016/S0304-3894(00)00161-8. PubMed DOI
Kao C.M., Chen S.C., Liu J.K., Wu M.J. Evaluation of TCDD biodegradability under different redox conditions. Chemosphere. 2001;44:1447–1454. doi: 10.1016/S0045-6535(00)00464-1. PubMed DOI
Chen W.Y., Wu J.H., Lin Y.Y., Huang H.J., Chang J.E. Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-p-dioxins and dibenzofurans: Microcosm study and microbial community analysis. J. Hazard. Mater. 2013;261:351–361. doi: 10.1016/j.jhazmat.2013.07.039. PubMed DOI
Chen W.-Y., Wu J.-H., Lin S.-C., Chang J.-E. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions. J. Hazard. Mater. 2016;312:159–168. doi: 10.1016/j.jhazmat.2016.03.060. PubMed DOI
Binh N.D., Imsapsangworn C., Kim Oanh N.T., Parkpian P., Karstensen K., Giao P.H., DeLaune R.D. Sequential anaerobic-aerobic biodegradation of 2,3,7,8-TCDD contaminated soil in the presence of CMC-coated nZVI and surfactant. Environ. Technol. 2016;37:388–398. doi: 10.1080/09593330.2015.1070918. PubMed DOI
Liu H., Park J.-W., Häggblom M.M. Enriching for microbial reductive dechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Pollut. 2014;184:222–230. doi: 10.1016/j.envpol.2013.08.019. PubMed DOI
Alkorta I., Garbisu C. Phytoremediation of organic contaminants in soils. Bioresour. Technol. 2001;79:273–276. doi: 10.1016/S0960-8524(01)00016-5. PubMed DOI
Reichenauer T.G., Germida J.J. Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem. 2008;1:708–717. doi: 10.1002/cssc.200800125. PubMed DOI
Rezek J., in der Wiesche C., Macková M., Zadražil F., Macek T. The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere. 2008;70:1603–1608. doi: 10.1016/j.chemosphere.2007.08.003. PubMed DOI
Macek T., Macková M., Káš J. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 2000;18:23–34. doi: 10.1016/S0734-9750(99)00034-8. PubMed DOI
Kurzawová V., Uhlík O., Macek T., Macková M. Interactions of microbes and plants and their importance in phyto/rhizoremediation in PCB contaminated soil. Listy Cukrov. Reparske. 2010;126:396–397.
Wang Y., Oyaizu H. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. J. Hazard. Mater. 2009;168:760–764. doi: 10.1016/j.jhazmat.2009.02.082. PubMed DOI
Wang Y., Oyaizu H. Enhanced remediation of dioxins-spiked soil by a plant-microbe system using a dibenzofuran-degrading Comamonas sp. and Trifolium repens L. Chemosphere. 2011;85:1109–1114. doi: 10.1016/j.chemosphere.2011.07.028. PubMed DOI
Futamata H., Uchida T., Yoshida N., Yonemitsu Y., Hiraishi A. Distribution of dibenzofuran-degrading bacteria in soils polluted with different levels of polychlorinated dioxins. Microbes Environ. 2004;19:172–177. doi: 10.1264/jsme2.19.172. DOI
Hanano A., Ammouneh H., Almousally I., Alorr A., Shaban M., Alnaser A.A., Ghanem I. Traceability of polychlorinated dibenzo-dioxins/furans pollutants in soil and their ecotoxicological effects on genetics, functions and composition of bacterial community. Chemosphere. 2014;108:326–333. doi: 10.1016/j.chemosphere.2014.01.061. PubMed DOI
Chen W.Y., Wu J.H., Chang J.E. Pyrosequencing analysis reveals high population dynamics of the soil microcosm degrading octachlorodibenzofuran. Microbes Environ. 2014;29:393–400. doi: 10.1264/jsme2.ME14001. PubMed DOI PMC
Yoshida N., Takahashi N., Hiraishi A. Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Appl. Environ. Microbiol. 2005;71:4325–4334. doi: 10.1128/AEM.71.8.4325-4334.2005. PubMed DOI PMC
Hiraishi A., Kaiya S., Miyakoda H., Futamata H. Biotransformation of polychlorinated dioxins and microbial community dynamics in sediment microcosms at different contamination levels. Microbes Environ. 2005;20:227–242. doi: 10.1264/jsme2.20.227. DOI
Kaiya S., Utsunomiya S., Suzuki S., Yoshida N., Futamata H., Yamada T., Hiraishi A. Isolation and functional gene analyses of aromatic-hydrocarbon-degrading bacteria from a polychlorinated-dioxin-dechlorinating process. Microbes Environ. 2012;27:127–135. doi: 10.1264/jsme2.ME11283. PubMed DOI PMC
Singer A.C., Crowley D.E., Thompson I.P. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol. 2003;21:123–130. doi: 10.1016/S0167-7799(02)00041-0. PubMed DOI
Chaudhry Q., Blom-Zandstra M., Gupta S., Joner E.J. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ. Sci. Pollut. Res. Int. 2005;12:34–48. doi: 10.1065/espr2004.08.213. PubMed DOI
Uhlík O., Musilová L., Rídl J., Hroudová M., Vlček C., Koubek J., Holečková M., Macková M., Macek T. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl. Microbiol. Biotechnol. 2013;97:9245–9256. doi: 10.1007/s00253-012-4627-6. PubMed DOI
Donnelly P.K., Hegde R.S., Fletcher J.S. Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere. 1994;28:981–988. doi: 10.1016/0045-6535(94)90014-0. DOI
Pham T.T., Pino Rodriguez N.J., Hijri M., Sylvestre M. Optimizing polychlorinated biphenyl degradation by flavonoid-induced cells of the rhizobacterium Rhodococcus erythropolis U23A. PLoS ONE. 2015;10:e0126033. doi: 10.1371/journal.pone.0126033. PubMed DOI PMC
Toussaint J.-P., Pham T., Barriault D., Sylvestre M. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl. Microbiol. Biotechnol. 2012;95:1589–1603. doi: 10.1007/s00253-011-3824-z. PubMed DOI