• This record comes from PubMed

Bacterial metabolites from intra- and inter-species influencing thermotolerance: the case of Bacillus cereus and Geobacillus stearothermophilus

. 2017 May ; 62 (3) : 183-189. [epub] 20161128

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 27896600
DOI 10.1007/s12223-016-0487-2
PII: 10.1007/s12223-016-0487-2
Knihovny.cz E-resources

Bacterial metabolites with communicative functions could provide protection against stress conditions to members of the same species. Yet, information remains limited about protection provided by metabolites in Bacillus cereus and inter-species. This study investigated the effect of extracellular compounds derived from heat shocked (HS) and non-HS cultures of B. cereus and Geobacillus stearothermophilus on the thermotolerance of non-HS vegetative and sporulating B. cereus. Cultures of B. cereus and G. stearothermophilus were subjected to HS (42 or 65 °C respectively for 30 min) or non-HS treatments. Cells and supernatants were separated, mixed in a combined array, and then exposed to 50 °C for 60 min and viable cells determined. For spores, D values (85 and 95 °C) were evaluated after 120 h. In most cases, supernatants from HS B. cereus cultures added to non-HS B. cereus cells caused their thermotolerance to increase (D 50 12.2-51.9) when compared to supernatants from non-HS cultures (D 50 7.4-21.7). While the addition of supernatants from HS and non-HS G. stearothermophilus cultures caused the thermotolerance of non-HS cells from B. cereus to decrease initially (D 50 3.7-7.1), a subsequent increase was detected in most cases (D 50 18-97.7). In most cases, supernatants from sporulating G. stearothermophilus added to sporulating cells of B. cereus caused the thermotolerance of B. cereus 4810 spores to decline, whereas that of B. cereus 14579 increased. This study clearly shows that metabolites in supernatants from either the same or different species (such as G. stearothermophilus) influence the thermotolerance of B. cereus.

See more in PubMed

J Food Prot. 2011 Oct;74(10):1662-9 PubMed

Mol Microbiol. 2012 Jul;85(1):67-88 PubMed

Appl Environ Microbiol. 2002 Jul;68(7):3486-95 PubMed

Appl Environ Microbiol. 1992 Apr;58(4):1411-4 PubMed

Annu Rev Microbiol. 1982;36:75-99 PubMed

Mol Microbiol. 2005 Aug;57(4):1159-74 PubMed

J Appl Microbiol. 2004;97(1):214-9 PubMed

Annu Rev Microbiol. 2009;63:99-118 PubMed

Int J Syst Evol Microbiol. 2003 May;53(Pt 3):695-704 PubMed

PLoS One. 2012;7(12):e51047 PubMed

Microbiology. 2008 Jul;154(Pt 7):1845-58 PubMed

Appl Environ Microbiol. 1990 Oct;56(10):3216-9 PubMed

J Mol Biol. 2007 Mar 16;367 (1):212-23 PubMed

Sci Prog. 2005;88(Pt 2):71-99 PubMed

J Food Prot. 2012 Apr;75(4):690-4 PubMed

Mikrobiologiia. 2005 Jan-Feb;74(1):26-33 PubMed

Proteomics. 2002 Sep;2(9):1316-24 PubMed

J Bacteriol. 2007 May;189(9):3556-63 PubMed

J Bacteriol. 1998 Dec;180(24):6681-8 PubMed

J Bacteriol. 1998 Aug;180(15):3873-81 PubMed

Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):233-43 PubMed

Food Microbiol. 2014 Aug;41:8-18 PubMed

Lett Appl Microbiol. 2009 Jan;48(1):133-9 PubMed

Microbiology. 2010 Dec;156(Pt 12):3782-90 PubMed

Cell Stress Chaperones. 2003 Fall;8(3):207-17 PubMed

Microbiology. 2001 Jul;147(Pt 7):1875-85 PubMed

J Bacteriol. 2002 Oct;184(19):5275-81 PubMed

J Food Prot. 2014 Oct;77(10):1656-63 PubMed

Mol Microbiol. 2012 Sep;85(6):1029-43 PubMed

Curr Microbiol. 2002 Aug;45(2):144-50 PubMed

Extremophiles. 2006 Aug;10(4):321-6 PubMed

Appl Biochem Biotechnol. 2011 Sep;165(1):235-42 PubMed

Bacteriol Rev. 1969 Mar;33(1):48-71 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...