Osteoblast adhesion, migration, and proliferation variations on chemically patterned nanocrystalline diamond films evaluated by live-cell imaging
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
27935192
DOI
10.1002/jbm.a.35969
Knihovny.cz E-zdroje
- Klíčová slova
- adhesion, live-cell imaging, migration, osteoblasts, patterned surface, proliferation,
- MeSH
- buněčná adheze MeSH
- buněčné linie MeSH
- lidé MeSH
- membrány umělé * MeSH
- nanodiamanty chemie MeSH
- osteoblasty * cytologie metabolismus MeSH
- pohyb buněk * MeSH
- proliferace buněk * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- membrány umělé * MeSH
- nanodiamanty MeSH
Cell fate modulation by adapting the surface of a biocompatible material is nowadays a challenge in implantology, tissue engineering as well as in construction of biosensors. Nanocrystalline diamond (NCD) thin films are considered promising in these fields due to their extraordinary physical and chemical properties and diverse ways in which they can be modified structurally and chemically. The initial cell distribution, the rate of cell adhesion, distance of cell migration and also the cell proliferation are influenced by the NCD surface termination. Here, we use real-time live-cell imaging to investigate the above-mentioned processes on oxidized NCD (NCD-O) and hydrogenated NCD (NCD-H) to elucidate cell preference to the NCD-O especially on surfaces with microscopic surface termination patterns. Cells adhere more slowly and migrate farther on NCD-H than on NCD-O. Cells seeded with a fetal bovine serum (FBS) supplement in the medium move across the surface prior to adhesion. In the absence of FBS, the cells adhere immediately, but still exhibit different migration and proliferation on NCD-O/H regions. We discuss the impact of these effects on the formation of cell arrays on micropatterned NCD. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1469-1478, 2017.
Citace poskytuje Crossref.org