Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy

. 2020 Jul ; 24 (14) : 7949-7958. [epub] 20200602

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32485058

Paclitaxel-induced peripheral neuropathy (PIPN) is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous system. Antihypertensive drug losartan, an angiotensin II receptor type 1 (AT1R) blocker, was shown to have anti-inflammatory and neuroprotective effects in disease models, predominantly via activation of peroxisome proliferator-activated receptor gamma (PPARγ). Here, the effect of systemic losartan treatment (100 mg/kg/d) on mechanical allodynia and neuroinflammation was evaluated in rat PIPN model. The expression of pro-inflammatory markers protein and mRNA levels in dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) were measured with Western blot, ELISA and qPCR 10 and 21 days after PIPN induction. Losartan treatment attenuated mechanical allodynia significantly. Paclitaxel induced overexpression of C-C motif chemokine ligand 2 (CCL2), tumour necrosis alpha (TNFα) and interleukin-6 (IL-6) in DRGs, where the presence of macrophages was demonstrated. Neuroinflammatory changes in DRGs were accompanied with glial activation and pro-nociceptive modulators production in SCDH. Losartan significantly attenuated paclitaxel-induced neuroinflammatory changes and induced expression of pro-resolving markers (Arginase 1 and IL-10) indicating a possible shift in macrophage polarization. Considering the safety profile of losartan, acting also as partial PPARγ agonist, it may be considered as a novel treatment strategy for PIPN patients.

Zobrazit více v PubMed

Mielke S, Sparreboom A, Mross K. Peripheral neuropathy: a persisting challenge in paclitaxel‐based regimes. Eur J Cancer. 2006;42:24‐30. PubMed

Kirikae T, Ojima I, Fuero‐Oderda C, et al. Structural significance of the acyl group at the C‐10 position and the A ring of the taxane core of paclitaxel for inducing nitric oxide and tumor necrosis factor production by murine macrophages. FEBS Lett. 2000;478:221‐226. PubMed

Li Y, Adamek P, Zhang H, et al. The cancer chemotherapeutic paclitaxel increases human and rodent sensory neuron responses to TRPV1 by activation of TLR4. J Neurosci. 2015;35:13487‐13500. PubMed PMC

Adamek P, Heles M, Palecek J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. Neuropharmacology. 2019;146:163‐174. PubMed

Siebert H, Sachse A, Kuziel WA, Maeda N, Bruck W. The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system. J Neuroimmunol. 2000;110:177‐185. PubMed

Kallenborn‐Gerhardt W, Hohmann SW, Syhr KM, et al. Nox2‐dependent signaling between macrophages and sensory neurons contributes to neuropathic pain hypersensitivity. Pain. 2014;155:2161‐2170. PubMed

Wink DA, Hines HB, Cheng RY, et al. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol. 2011;89:873‐891. PubMed PMC

Dijkstra CD, Dopp EA, Joling P, Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985;54:589‐599. PubMed PMC

Kalynovska N, Diallo M, Palecek J. Losartan treatment attenuates the development of neuropathic thermal hyperalgesia induced by peripheral nerve injury in rats. Life Sci. 2019;220:147‐155. PubMed

Rossi GP. Losartan metabolite EXP3179: an AT1‐receptor‐independent treatment strategy for patients with the metabolic syndrome? Hypertension. 2009;54:710‐712. PubMed

Garrido‐Gil P, Joglar B, Rodriguez‐Perez AI, Guerra MJ, Labandeira‐Garcia JL. Involvement of PPAR‐gamma in the neuroprotective and anti‐inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease. J Neuroinflammation. 2012;9:38. PubMed PMC

Saavedra JM, Sanchez‐Lemus E, Benicky J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications. Psychoneuroendocrinology. 2011;36:1‐18. PubMed PMC

Heikkinen S, Argmann CA, Champy MF, Auwerx J. Evaluation of glucose homeostasis. Curr Protoc Mol Biol. 2007;77(1). 10.1002/0471142727.mb29b03s77. PubMed DOI

Bouhlel MA, Brozek J, Derudas B, et al. Unlike PPARgamma, PPARalpha or PPARbeta/delta activation does not promote human monocyte differentiation toward alternative macrophages. Biochem Biophys Res Comm. 2009;386:459‐462. PubMed

Croasdell A, Duffney PF, Kim N, Lacy SH, Sime PJ, Phipps RP. PPARgamma and the innate immune system mediate the resolution of inflammation. PPAR Res. 2015;2015:549691. PubMed PMC

Loane DJ, Deighan BF, Clarke RM, Griffin RJ, Lynch AM, Lynch MA. Interleukin‐4 mediates the neuroprotective effects of rosiglitazone in the aged brain. Neurobiol Aging. 2009;30:920‐931. PubMed

Song GJ, Nam Y, Jo M, et al. A novel small‐molecule agonist of PPAR‐gamma potentiates an anti‐inflammatory M2 glial phenotype. Neuropharmacology. 2016;109:159‐169. PubMed

Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J. Neuronal interleukin‐4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci. 2015;35:11281‐11291. PubMed PMC

Culman J, von Heyer C, Piepenburg B, Rascher W, Unger T. Effects of systemic treatment with irbesartan and losartan on central responses to angiotensin II in conscious, normotensive rats. Eur J Pharmacol. 1999;367:255‐265. PubMed

Kappert K, Tsuprykov O, Kaufmann J, et al. Chronic treatment with losartan results in sufficient serum levels of the metabolite EXP3179 for PPARgamma activation. Hypertension. 2009;54:738‐743. PubMed

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method. Methods. 2001;25:402‐408. PubMed

Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain. 2001;94:293‐304. PubMed

Xiao WH, Zheng H, Zheng FY, Nuydens R, Meert TF, Bennett GJ. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel‐evoked painful peripheral neuropathy in the rat. Neuroscience. 2011;199:461‐469. PubMed PMC

Reeves BN, Dakhil SR, Sloan JA, et al. Further data supporting that paclitaxel‐associated acute pain syndrome is associated with development of peripheral neuropathy: North Central Cancer Treatment Group trial N08C1. Cancer. 2012;118:5171‐5178. PubMed PMC

Yan X, Maixner DW, Yadav R, et al. Paclitaxel induces acute pain via directly activating toll like receptor 4. Mol Pain. 2015;11:10. PubMed PMC

Kim E, Hwang SH, Kim HK, Abdi S, Kim HK. Losartan, an angiotensin II Type 1 receptor antagonist, alleviates mechanical hyperalgesia in a rat model of chemotherapy‐induced neuropathic pain by inhibiting inflammatory cytokines in the dorsal root ganglia. Mol Neurobiol. 2019;56(11):7408‐7419. PubMed

Leonard EJ, Skeel A, Yoshimura T. Biological aspects of monocyte chemoattractant protein‐1 (MCP‐1). Adv Exp Med Biol. 1991;305:57‐64. PubMed

Zhang H, Li Y, de Carvalho‐Barbosa M, et al. Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy‐induced peripheral neuropathy. J Pain. 2016;17:775‐786. PubMed PMC

Liu CC, Lu N, Cui Y, et al. Prevention of paclitaxel‐induced allodynia by minocycline: Effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol Pain. 2010;6:76. PubMed PMC

Nishida K, Kuchiiwa S, Oiso S, et al. Up‐regulation of matrix metalloproteinase‐3 in the dorsal root ganglion of rats with paclitaxel‐induced neuropathy. Cancer Sci. 2008;99:1618‐1625. PubMed PMC

Peters CM, Jimenez‐Andrade JM, Jonas BM, et al. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol. 2007;203:42‐54. PubMed

Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime Rep. 2014;6:13. PubMed PMC

Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953‐964. PubMed

Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci USA. 2005;102:9936‐9941. PubMed PMC

Sheffler LA, Wink DA, Melillo G, Cox GW. Exogenous nitric oxide regulates IFN‐gamma plus lipopolysaccharide‐induced nitric oxide synthase expression in mouse macrophages. J Immunol. 1995;155:886‐894. PubMed

Zhang H, Yoon SY, Dougherty PM. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel‐induced painful neuropathy. J Pain. 2012;13:293‐303. PubMed PMC

Yan X, Li F, Maixner DW, et al. Interleukin‐1beta released by microglia initiates the enhanced glutamatergic activity in the spinal dorsal horn during paclitaxel‐associated acute pain syndrome. Glia. 2019;67:482‐497. PubMed

Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood‐brain barrier. Hypertension. 2014;63:572‐579. PubMed PMC

Saavedra JM. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders. Clin Sci. 2012;123:567‐590. PubMed PMC

Lo MW, Goldberg MR, McCrea JB, Lu H, Furtek CI, Bjornsson TD. Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans. Clin Pharmacol Ther. 1995;58:641‐649. PubMed

Stearns RA, Chakravarty PK, Chen R, Chiu SH. Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metab Dispos. 1995;23:207‐215. PubMed

Kramer C, Sunkomat J, Witte J, et al. Angiotensin II receptor‐independent antiinflammatory and antiaggregatory properties of losartan: role of the active metabolite EXP3179. Circ Res. 2002;90:770‐776. PubMed

Andoh T, Kuraishi Y. Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I. FASEB J. 2004;18:182‐184. PubMed

Vanderwall AG, Noor S, Sun MS, et al. Effects of spinal non‐viral interleukin‐10 gene therapy formulated with d‐mannose in neuropathic interleukin‐10 deficient mice: Behavioral characterization, mRNA and protein analysis in pain relevant tissues. Brain Behav Immun. 2018;69:91‐112. PubMed PMC

Ledeboer A, Sloane EM, Milligan ED, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain. 2005;115:71‐83. PubMed

Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23‐35. PubMed

Wakabayashi K, Okamura M, Tsutsumi S, et al. The peroxisome proliferator‐activated receptor gamma/retinoid X receptor alpha heterodimer targets the histone modification enzyme PR‐Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol Cell Biol. 2009;29:3544‐3555. PubMed PMC

Spicarova D, Nerandzic V, Palecek J. Modulation of spinal cord synaptic activity by tumor necrosis factor alpha in a model of peripheral neuropathy. J Neuroinflammation. 2011;8:177. PubMed PMC

Spicarova D, Adamek P, Kalynovska N, Mrozkova P, Palecek J. TRPV1 receptor inhibition decreases CCL2‐induced hyperalgesia. Neuropharmacology. 2014;81:75‐84. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...