Paclitaxel triggers molecular and cellular changes in the choroid plexus

. 2024 ; 5 () : 1488369. [epub] 20241125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39654799

Paclitaxel is a widely used chemotherapeutic agent for treating various solid tumors. However, resulting neuropathic pain, often a lifelong side effect of paclitaxel, can limit dosing and compromise optimal treatment. The choroid plexus, located in the brain ventricles, spreads peripheral inflammatory reactions into the brain. Our study is the first to analyze the effects of paclitaxel on inflammatory alterations in the choroid plexus. We hypothesized that the choroid plexus could respond directly to paclitaxel and simultaneously be indirectly altered via circulating damage-associated molecular patterns (DAMPs) produced by paclitaxel application. Using immunohistochemical and Western blot analysis, we examined the levels of toll-like receptor 9 (TLR9) and formyl peptide receptor 2 (FPR2), along with the pro-inflammatory cytokines interleukin 6 (IL6) and tumor necrosis factor α (TNFα) in choroid plexus epithelial cells of male Wistar rats following paclitaxel treatment. Moreover, we utilized an in vitro model of choroid plexus epithelial cells, the Z310 cells, to investigate the changes in these cells in response to paclitaxel and DAMPs (CpG ODN). Our results demonstrate that paclitaxel increases TLR9 and FPR2 levels in the choroid plexus while inducing IL6 and TNFα upregulation in both acute and chronic manners. In vitro experiments further revealed that paclitaxel directly interacts with epithelial cells of the choroid plexus, leading to increased levels of TLR9, FPR2, IL6, and TNFα. Additionally, treatment of cells with CpG ODN, an agonist of TLR9, elicited upregulation of IL6 and TNFα. Our findings determined that paclitaxel influences the choroid plexus through both direct and indirect mechanisms, resulting in inflammatory profile alterations. Given the pivotal role of the choroid plexus in brain homeostasis, a compromised choroid plexus following chemotherapy may facilitate the spread of peripheral inflammation into the brain, consequently exacerbating the development of neuropathic pain.

Zobrazit více v PubMed

Park S, Krishnan A, Lin C, Goldstein D, Friedlander M, Kiernan M. Mechanisms underlying chemotherapy-induced neurotoxicity and the potential for neuroprotective strategies. CMC. (2008) 15:3081–94. 10.2174/092986708786848569 PubMed DOI

Carlson K, Ocean AJ. Peripheral neuropathy with microtubule-targeting agents: occurrence and management approach. Clin Breast Cancer. (2011) 11:73–81. 10.1016/j.clbc.2011.03.006 PubMed DOI

Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: what do we know about mechanisms? Neurosci Lett. (2015) 596:90–107. 10.1016/j.neulet.2014.10.014 PubMed DOI

Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: a current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol. (2020) 324:113121. 10.1016/j.expneurol.2019.113121 PubMed DOI PMC

Masocha W. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice. PeerJ. (2015) 3:e1350. 10.7717/peerj.1350 PubMed DOI PMC

Nashawi H, Masocha W, Edafiogho IO, Kombian SB. Paclitaxel causes electrophysiological changes in the anterior cingulate Cortex via modulation of the γ-aminobutyric acid-ergic system. MPP. (2016) 25:423–8. 10.1159/000447775 PubMed DOI PMC

Janes K, Little JW, Li C, Bryant L, Chen C, Chen Z, et al. The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J Biol Chem. (2014) 289:21082–97. 10.1074/jbc.M114.569574 PubMed DOI PMC

Kalynovska N, Diallo M, Sotakova-Kasparova D, Palecek J. Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy. J Cell Mol Med. (2020) 24:7949–58. 10.1111/jcmm.15427 PubMed DOI PMC

Lees JG, Makker PGS, Tonkin RS, Abdulla M, Park SB, Goldstein D, et al. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer. (2017) 73:22–9. 10.1016/j.ejca.2016.12.006 PubMed DOI

Miaskowski C, Topp K, Conley YP, Paul SM, Melisko M, Schumacher M, et al. Perturbations in neuroinflammatory pathways are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors. J Neuroimmunol. (2019) 335:577019. 10.1016/j.jneuroim.2019.577019 PubMed DOI PMC

Huehnchen P, Muenzfeld H, Boehmerle W, Endres M. Blockade of IL-6 signaling prevents paclitaxel-induced neuropathy in C57Bl/6 mice. Cell Death Dis. (2020) 11:1–13. 10.1038/s41419-020-2239-0 PubMed DOI PMC

Peters CM, Jimenez-Andrade JM, Kuskowski MA, Ghilardi JR, Mantyh PW. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res. (2007) 1168:46–59. 10.1016/j.brainres.2007.06.066 PubMed DOI PMC

Gornstein E, Schwarz TL. The paradox of paclitaxel neurotoxicity: mechanisms and unanswered questions. Neuropharmacol. (2014) 76:175–83. 10.1016/j.neuropharm.2013.08.016 PubMed DOI

Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. (2010) 464:104–7. 10.1038/nature08780 PubMed DOI PMC

Lesser GJ, Grossman SA, Eller S, Rowinsky EK. The distribution of systemically administered [3H]-paclitaxel in rats: a quantitative autoradiographic study. Cancer Chemother Pharmacol. (1995) 37:173–8. 10.1007/BF00685646 PubMed DOI

Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM. Toll-like receptor 4 signaling contributes to paclitaxel-induced peripheral neuropathy. J Pain. (2014) 15:712–25. 10.1016/j.jpain.2014.04.001 PubMed DOI PMC

Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN Neurol. (2012) 2012:1. 10.5402/2012/701950 PubMed DOI PMC

Devorak J, Torres-Platas SG, Davoli MA, Prud’homme J, Turecki G, Mechawar N. Cellular and molecular inflammatory profile of the choroid Plexus in depression and suicide. Front Psychiatry. (2015) 6. 10.3389/fpsyt.2015.00138 PubMed DOI PMC

Skipor J, Szczepkowska A, Kowalewska M, Herman A, Lisiewski P. Profile of toll-like receptor mRNA expression in the choroid plexus in adult ewes. Acta Vet Hung. (2015) 63:69–78. 10.1556/avet.2014.027 PubMed DOI

Chakravarty S, Herkenham M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J. Neurosci. (2005) 25:1788–96. 10.1523/JNEUROSCI.4268-04.2005 PubMed DOI PMC

Crossgrove JS, Li GJ, Zheng W. The choroid plexus removes β-amyloid from brain cerebrospinal fluid. Exp Biol Med. (2005) 230:771–6. 10.1177/153537020523001011 PubMed DOI PMC

Karimy JK, Reeves BC, Kahle KT. Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury. Expert Opin Ther Targets. (2020) 24:525–33. 10.1080/14728222.2020.1752182 PubMed DOI PMC

Akeret K, Buzzi RM, Thomson BR, Schwendinger N, Klohs J, Schulthess-Lutz N, et al. MyD88-TLR4-dependent choroid plexus activation precedes perilesional inflammation and secondary brain edema in a mouse model of intracerebral hemorrhage. J Neuroinflamm. (2022) 19:290. 10.1186/s12974-022-02641-5 PubMed DOI PMC

Yu Y, Ye RD. Microglial aβ receptors in Alzheimer’s disease. Cell Mol Neurobiol. (2015) 35:71–83. 10.1007/s10571-014-0101-6 PubMed DOI PMC

Cattaneo F, Guerra G, Ammendola R. Expression and signaling of formyl-peptide receptors in the brain. Neurochem Res. (2010) 35:2018–26. 10.1007/s11064-010-0301-5 PubMed DOI

Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain. (2001) 94(3):293–304 10.1016/S0304-3959(01)00363-3 PubMed DOI

Monnot AD, Zheng W. Culture of choroid plexus epithelial cells and in vitro model of blood-CSF barrier. Methods Mol. Biol. (2013) 945:13–29. 10.1007/978-1-62703-125-7_2 PubMed DOI PMC

Zamboni L, DeMartino C. Buffered picric-acid formaldehyde: a new rapid fixation for electron microscopy. J Cell Biol. (1967) 35(2):148A.

Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhänel M, Spruß T, et al. Transport of paclitaxel (taxol) across the blood-brain barrier in vitro and in vivo. J. Clin. Invest. (2002) 110:1309–18. 10.1172/JCI0215451 PubMed DOI PMC

Marques F, Falcao AM, Sousa JC, Coppola G, Geschwind D, Sousa N, et al. Altered iron metabolism is part of the choroid Plexus response to peripheral inflammation. Endocrinol. (2009) 150:2822–8. 10.1210/en.2008-1610 PubMed DOI

Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood–cerebrospinal fluid barrier in disease. Fluids Barriers CNS. (2020) 17:35. 10.1186/s12987-020-00196-2 PubMed DOI PMC

Park SB, Goldstein D, Krishnan AV, Lin CS-Y, Friedlander ML, Cassidy J, et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin. (2013) 63:419–37. 10.3322/caac.21204 PubMed DOI

Xiao WH, Zheng H, Zheng FY, Nuydens R, Meert TF, Bennett GJ. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience. (2011) 199:461–9. 10.1016/j.neuroscience.2011.10.010 PubMed DOI PMC

Verstappen CCP, Postma TJ, Hoekman K, Heimans JJ. Peripheral neuropathy due to therapy with paclitaxel, gemcitabine, and cisplatin in patients with advanced ovarian cancer. J Neurooncol. (2003) 63:201–5. 10.1023/A:1023952106955 PubMed DOI

Wu Z, Wang S, Wu I, Mata M, Fink DJ. Activation of TLR-4 to produce tumour necrosis factor-α in neuropathic pain caused by paclitaxel: the role of soluble TNF-α in paclitaxel-induced pain. Eur J Pain. (2015) 19:889–98. 10.1002/ejp.613 PubMed DOI

Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory process involved in different preclinical models of chemotherapy-induced peripheral neuropathy. Front Immunol. (2021) 11. 10.3389/fimmu.2020.626687 PubMed DOI PMC

Araldi D, Khomula EV, Bonet IJM, Bogen O, Green PG, Levine JD. Role of pattern recognition receptors in chemotherapy-induced neuropathic pain. Brain. (2024) 147:1025–42. 10.1093/brain/awad339 PubMed DOI PMC

Su C-J, Zhang J-T, Zhao F-L, Xu D-L, Pan J, Liu T. Resolvin D1/N-formyl peptide receptor 2 ameliorates paclitaxel-induced neuropathic pain through the activation of IL-10/Nrf2/HO-1 pathway in mice. Front Immunol. (2023) 14:1091753. 10.3389/fimmu.2023.1091753 PubMed DOI PMC

Myers JS, Pierce J, Pazdernik T. Neurotoxicology of chemotherapy in relation to cytokine release, the blood-brain barrier, and cognitive impairment. Oncol Nurs Forum. (2008) 35:916–20. 10.1188/08.ONF.916-920 PubMed DOI

Grazioli S, Pugin J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front Immunol. (2018) 9:832. 10.3389/fimmu.2018.00832 PubMed DOI PMC

Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. (2018) 18:e27. 10.4110/in.2018.18.e27 PubMed DOI PMC

Konsman JP, Parnet P, Dantzer R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci. (2002) 25:154–9. 10.1016/S0166-2236(00)02088-9 PubMed DOI

Lee B-N, Dantzer R, Langley KE, Bennett GJ, Dougherty PM, Dunn AJ, et al. A cytokine-based neuroimmunologic mechanism of cancer-related symptoms. Neuroimmunomodulation. (2004) 11:279–92. 10.1159/000079408 PubMed DOI

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. (2006) 124:783–801. 10.1016/j.cell.2006.02.015 PubMed DOI

Nicotra L, Loram LC, Watkins LR, Hutchinson MR. Toll-like receptors in chronic pain. Exp Neurol. (2012) 234:316–29. 10.1016/j.expneurol.2011.09.038 PubMed DOI PMC

Cattaneo F, Parisi M, Ammendola R. Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int J Mol Sci. (2013) 14:7193–230. 10.3390/ijms14047193 PubMed DOI PMC

De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine. (2015) 74:181–9. 10.1016/j.cyto.2015.02.025 PubMed DOI

Achek A, Yesudhas D, Choi S. Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res. (2016) 39:1032–49. 10.1007/s12272-016-0806-9 PubMed DOI

Trojan E, Tylek K, Leśkiewicz M, Lasoń W, Brandenburg L-O, Leopoldo M, et al. The N-formyl peptide receptor 2 (FPR2) agonist MR-39 exhibits anti-inflammatory activity in LPS-stimulated organotypic hippocampal cultures. Cells. (2021) 10:1524. 10.3390/cells10061524 PubMed DOI PMC

Stevens SL, Ciesielski TMP, Marsh BJ, Yang T, Homen DS, Boule J-L, et al. Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab. (2008) 28:1040–7. 10.1038/sj.jcbfm.9600606 PubMed DOI PMC

Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. (2015) 13:2. 10.1186/s12987-016-0027-0 PubMed DOI PMC

Laflamme N, Rivest S. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J. (2001) 15:155–63. 10.1096/fj.00-0339com PubMed DOI

Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. (2010) 140:805–20. 10.1016/j.cell.2010.01.022 PubMed DOI

Qi J, Buzas K, Fan H, Cohen JI, Wang K, Mont E, et al. Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J Immunol. (2011) 186:6417–26. 10.4049/jimmunol.1001241 PubMed DOI PMC

Mottahedin A, Joakim Ek C, Truvé K, Hagberg H, Mallard C. Choroid plexus transcriptome and ultrastructure analysis reveals a TLR2-specific chemotaxis signature and cytoskeleton remodeling in leukocyte trafficking. Brain Behav Immun. (2019) 79:216–27. 10.1016/j.bbi.2019.02.004 PubMed DOI PMC

Marques F, Sousa JC, Coppola G, Falcao AM, Rodrigues AJ, Geschwind DH, et al. Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation. J Cereb Blood Flow Metab. (2009) 29:921–32. 10.1038/jcbfm.2009.15 PubMed DOI

Marques F, Sousa JC. The choroid plexus is modulated by various peripheral stimuli: implications to diseases of the central nervous system. Front Cell Neurosci. (2015) 9. 10.3389/fncel.2015.00136 PubMed DOI PMC

Schwerk C, Rybarczyk K, Essmann F, Seibt A, Mölleken M-L, Zeni P, et al. TNF induces choroid plexus epithelial cell barrier alterations by apoptotic and nonapoptotic mechanisms. J Biomed Biotech. (2010) 2010:1–10. 10.1155/2010/307231 PubMed DOI PMC

Schwerk C, Papandreou T, Schuhmann D, Nickol L, Borkowski J, Steinmann U, et al. Polar invasion and translocation of Neisseria meningitidis and Streptococcus suis in a novel human model of the blood-cerebrospinal fluid barrier. PLoS One. (2012) 7:e30069. 10.1371/journal.pone.0030069 PubMed DOI PMC

Stridh L, Ek CJ, Wang X, Nilsson H, Mallard C. Regulation of toll-like receptors in the choroid plexus in the immature brain after systemic inflammatory stimuli. Transl Stroke Res. (2013) 4:220–7. 10.1007/s12975-012-0248-8 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...