Ultrastructure of the midgut in Heteroptera (Hemiptera) with different feeding habits
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
28064339
DOI
10.1007/s00709-016-1051-2
PII: 10.1007/s00709-016-1051-2
Knihovny.cz E-zdroje
- Klíčová slova
- Basal labyrinth, Comparative morphology, Digestive cells, Phytophagy, Regenerative cells, Spherocrystals, Zoophagy,
- MeSH
- býložravci MeSH
- gastrointestinální trakt fyziologie ultrastruktura MeSH
- Heteroptera ultrastruktura MeSH
- masožravci MeSH
- regenerace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Heteroptera have diverse feeding habits with phytophagous, zoophagous, and haematophagous species. This dietary diversity associated with the monophyly of Heteroptera makes these insects a good object for comparative studies of the digestive tract. This work compares the ultrastructure of the middle midgut region in the phytophagous Coptosoma scutellatum (Plataspidae), Graphosoma lineatum (Pentatomidae), Kleidocerys resedae (Lygaeidae), and zoophagous Rhynocoris iracundus (Reduviidae), Nabis rugosus (Nabidae), and Himacerus apterus (Nabidae), to verify if diet affects midgut cells in phylogenetically related insects. The middle region of the midgut was used for comparison because it is the main site for digestion and absorption of the midgut. The digestive cell ultrastructure was similar in the six species, with features of secretory, absorptive, transport, storage, and excretory cells, suggesting a stronger correlation of middle digestive cell ultrastructure with the phylogeny of these species than with the different heteropteran feeding habits.
Departamento de Biologia Geral Universidade Federal de Viçosa UFV Viçosa Minas Gerais Brazil
Department of Animal Histology and Embryology University of Silesia Katowice Poland
Faculty of Science Department of Zoology Charles University Vinicna 7 128 44 Prague 2 Czechia
Zobrazit více v PubMed
Tissue Cell. 1988;20(2):291-301 PubMed
Neotrop Entomol. 2017 Feb;46(1):45-57 PubMed
In Vitro Cell Dev Biol Anim. 2001 Jun;37(6):338-42 PubMed
Micron. 2010 Jul;41(5):448-54 PubMed
Micron. 2006;37(2):161-8 PubMed
Biocell. 2008 Apr;32(1):61-7 PubMed
C R Biol. 2010 May;333(5):405-15 PubMed
Tissue Cell. 2005 Jun;37(3):223-32 PubMed
Arthropod Struct Dev. 2013 May;42(3):237-46 PubMed
Zoolog Sci. 2008 Jul;25(7):753-9 PubMed
J Exp Biol. 2009 Jun;212(Pt 11):1731-44 PubMed
J Exp Biol. 2003 Jun;206(Pt 11):1867-76 PubMed
Arthropod Struct Dev. 2013 Jul;42(4):277-85 PubMed
Micron. 2002;33(7-8):647-54 PubMed
J Insect Physiol. 2003 Jan;49(1):11-24 PubMed
Parasitol Int. 2014 Jun;63(3):506-12 PubMed
Braz J Med Biol Res. 1988;21(4):675-734 PubMed
Microsc Res Tech. 2012 Apr;75(4):397-407 PubMed
Protoplasma. 2010 Nov;247(1-2):91-101 PubMed
Micron. 2012 Feb;43(2-3):245-50 PubMed
Folia Biol (Krakow). 2014;62(3):259-67 PubMed
Arthropod Struct Dev. 2014 Sep;43(5):477-92 PubMed
J Exp Biol. 1999 Sep;202(Pt 18):2449-60 PubMed
J Insect Physiol. 2010 Mar;56(3):296-303 PubMed
J Trop Med Hyg. 1981 Oct;84(5):209-14 PubMed
J Insect Physiol. 2012 Feb;58(2):211-9 PubMed
J Med Entomol. 2009 May;46(3):435-41 PubMed
Arthropod Struct Dev. 2004 Apr;33(2):139-48 PubMed