Juxtaglomerular cell tumor (JxGCT) is a rare type of renal neoplasm demonstrating morphologic overlap with some mesenchymal tumors such as glomus tumor (GT) and solitary fibrous tumor (SFT). Its oncogenic drivers remain elusive, and only a few cases have been analyzed with modern molecular techniques. In prior studies, loss of chromosomes 9 and 11 appeared to be recurrent. Recently, whole-genome analysis identified alterations involving genes of MAPK-RAS pathway in a subset, but no major pathogenic alterations have been discovered in prior whole transcriptome analyses. Considering the limited understanding of the molecular features of JxGCTs, we sought to assess a collaborative series with a multiomic approach to further define the molecular characteristics of this entity. Fifteen tumors morphologically compatible with JxGCTs were evaluated using immunohistochemistry for renin, single-nucleotide polymorphism array (SNP), low-pass whole-genome sequencing, and RNA sequencing (fusion assay). In addition, methylation analysis comparing JxGCT, GT, and SFT was performed. All cases tested with renin (n=11) showed positive staining. Multiple chromosomal abnormalities were identified in all cases analyzed (n=8), with gains of chromosomes 1p, 10, 17, and 19 and losses of chromosomes 9, 11, and 21 being recurrent. A pathogenic HRAS mutation was identified in one case as part of the SNP array analysis. Thirteen tumors were analyzed by RNA sequencing, with 2 revealing in-frame gene fusions: TFG::GPR128 (interpreted as stochastic) and NAB2::STAT6 . The latter, originally diagnosed as JxGCT, was reclassified as SFT and excluded from the series. No fusions were detected in the remaining 11 cases; of note, no case harbored NOTCH fusions previously described in GT. Genomic methylation analysis showed that JxGCT, GT, and SFT form separate clusters, confirming that JxGCT represents a distinct entity (ie, different from GT). The results of our study show that JxGCTs are a distinct tumor type with a recurrent pattern of chromosomal imbalances that may play a role in oncogenesis, with MAPK-RAS pathway activation being likely a driver in a relatively small subset.
- MeSH
- Adult MeSH
- Epigenesis, Genetic MeSH
- Epigenomics MeSH
- Gene Fusion * MeSH
- Genetic Predisposition to Disease MeSH
- Genomics MeSH
- Immunohistochemistry MeSH
- Polymorphism, Single Nucleotide MeSH
- Juxtaglomerular Apparatus pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation MeSH
- Biomarkers, Tumor * genetics MeSH
- Kidney Neoplasms * genetics pathology chemistry MeSH
- Whole Genome Sequencing MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
AIMS: Cardiac resynchronization therapy (CRT) is guideline recommended for the treatment of symptomatic heart failure (HF) with reduced left ventricular ejection fraction and prolonged QRS. However, patients with common comorbidities, such as persistent/permanent atrial fibrillation (AF), are often under-represented in clinical trials. METHODS: The Strategic Management to Optimize Response to Cardiac Resynchronization Therapy (SMART) registry (NCT03075215) was a global, multicentre, registry that enrolled de novo CRT implants, or upgrade from pacemaker or implantable cardioverter defibrillator to CRT-defibrillator (CRT-D), using a quadripolar left ventricular lead in real-world clinical practice. The primary endpoint was CRT response between baseline and 12 month follow-up defined as a clinical composite score (CCS) consisting of all-cause mortality, HF-associated hospitalization, New York Heart Association (NYHA) class and quality of life global assessment. RESULTS: The registry enrolled 2035 patients, of which 1558 had completed CCS outcomes at 12 months. The patient cohort was 33.0% female, mean age at enrolment was 67.5 ± 10.4 years and the mean left ventricular ejection fraction was 29.6 ± 7.9%. Notably, there was a high prevalence of mildly symptomatic patients (NYHA class I/II 51.3%), non-left bundle branch block (LBBB) morphology (38.0%), AF (37.2%) and diabetes mellitus (34.7%) at baseline. CCS at 12 months improved in 58.9% (n = 917) of patients; 20.1% (n = 313) of patients stabilized and 21.0% (n = 328) worsened. Several patient characteristics were associated with a lower likelihood of response to CRT including older age, ischaemic aetiology, renal dysfunction, AF, non-LBBB morphology and diabetes. Higher HF hospitalization (P < 0.001) and all-cause mortality (P < 0.001) were observed in patients with AF. These patients also had lower percentages of ventricular pacing than patients in sinus rhythm at baseline and follow-up (P < 0.001, both). A further association between AF and non-LBBB was observed with 81.4% of AF non-LBBB patients experiencing an HF hospitalization compared with 92.5% of non-AF LBBB patients (P < 0.001). Mortality between subgroups was also statistically significant (P = 0.019). CONCLUSIONS: This large, global registry enrolled a CRT-D population with higher incidence of comorbidities that have been historically underrepresented in clinical trials and provides new insight into factors influencing response to CRT. As defined by CCS, 58.9% of patients improved and 20.1% stabilized. Patients with AF had particularly worse clinical outcomes, higher HF hospitalization and mortality rates and lower percentages of ventricular pacing. High incidence of HF hospitalization in patients with AF and non-LBBB in this real-world cohort suggests that ablation may play an important role in increasing future CRT response rates.
- MeSH
- Global Health MeSH
- Ventricular Function, Left * physiology MeSH
- Quality of Life * MeSH
- Middle Aged MeSH
- Humans MeSH
- Follow-Up Studies MeSH
- Registries * MeSH
- Aged MeSH
- Cardiac Resynchronization Therapy * methods MeSH
- Heart Failure * therapy physiopathology mortality MeSH
- Stroke Volume * physiology MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
Adult granulosa cell tumors (AGCTs) of the ovary are characterized by their propensity for late recurrences and are primarily managed surgically due to the limited efficacy of systemic treatment. The FOXL2 p.C134W somatic mutation has been identified in ∼95% of AGCT cases, and TERT promoter alterations have been linked to worse overall survival. This study highlights the potential prognostic significance of FOXO1 mutations, suggesting that they may be associated with poorer overall survival and shorter time to recurrence. A total of 183 primary AGCTs and 44 recurrences without corresponding primary tumors were analyzed. The primary AGCTs were categorized into 3 groups: 77 nonrecurrent tumors, 18 tumors that later recurred (including 9 cases with matched primary-recurrence pairs), and 88 tumors with unknown recurrence status. Targeted next-generation sequencing was conducted on 786 cancer-related genes to investigate their genetic profile. The study aimed to identify the molecular alterations associated with AGCT pathogenesis and recurrence rate, comparing primary versus recurrent tumors, and primary recurrent versus primary nonrecurrent cases. Our findings confirmed the high prevalence (99%) of the FOXL2 p.C134W mutation in AGCTs. Secondary truncating FOXL2 mutations were observed in 5% of cases. Two cases with typical AGCT morphology were FOXL2 wild-type, harboring mutations in KRAS or KMT2D instead, suggesting alternative genetic pathways. TERT promoter mutations were found in 43% of cases, more frequently in recurrences. Other recurrent mutations detected in the cohort included KMT2D (10%), FOXO1 (7%), CHEK2 (5%), TP53 (3.5%), PIK3CA (3.5%), and AKT1 (3%). Two recurrent, FOXL2-mutated cases also carried DICER1 mutations. One tumor exhibited MSI-high status and a tumor mutation burden of 19 mut/Mb.Our results indicate the need for further investigation into the role of FOXO1 as a potential prognostic marker in AGCTs.
- MeSH
- Adult MeSH
- Forkhead Box Protein O1 * genetics metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Recurrence, Local * genetics MeSH
- Mutation * MeSH
- Granulosa Cell Tumor * genetics pathology MeSH
- Ovarian Neoplasms * genetics pathology MeSH
- Prognosis MeSH
- Disease Progression MeSH
- Forkhead Box Protein L2 genetics MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Telomerase genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
TFE3 rearrangements characterize histogenetically, topographically, and biologically diverse neoplasms. Besides being a universal defining feature in alveolar soft part sarcoma (ASPS) and clear cell stromal tumor of the lung, TFE3 fusions have been reported in subsets of renal cell carcinoma, perivascular epithelioid cell tumor (PEComa), epithelioid hemangioendothelioma and ossifying fibromyxoid tumors. TFE3 -related neoplasms are rare in the head and neck and may pose diagnostic challenges. We herein describe 22 TFE3 fusion neoplasms affecting 11 males and 11 females aged 4 to 79 years (median, 25) and involving different head and neck sites: sinonasal cavities (n = 8), tongue (n = 4), oral cavity/oropharynx (n = 3), salivary glands (n = 2), orbit (n = 2), and soft tissue or unspecified sites (n = 3). Based on morphology and myomelanocytic immunophenotype, 10 tumors qualified as ASPS, 7 as PEComas (3 melanotic; all sinonasal), and 5 showed intermediate (indeterminate) histology overlapping with ASPS and PEComa. Immunohistochemistry for TFE3 was homogeneously strongly positive in all cases. Targeted RNA sequencing/FISH testing confirmed TFE3 fusions in 14 of 16 successfully tested cases (88%). ASPSCR1 was the most frequent fusion partner in ASPS (4 of 5 cases); one ASPS had a rare VCP::TFE3 fusion. The 6 successfully tested PEComas had known fusion partners as reported in renal cell carcinoma and PEComas ( NONO, PRCC, SFPQ , and PSPC1 ). The indeterminate tumors harbored ASPSCR1::TFE3 (n = 2) and U2AF2::TFE3 (n = 1) fusions, respectively. This large series devoted to TFE3-positive head and neck tumors illustrates the recently proposed morphologic overlap in the spectrum of TFE3 -associated mesenchymal neoplasms. While all PEComas were sinonasal, ASPS was never sinonasal and occurred in diverse head and neck sites with a predilection for the tongue. The indeterminate (PEComa-like) category is molecularly more akin to ASPS but shows different age, sex, and anatomic distribution compared with classic ASPS. We report VCP as a novel fusion partner in ASPS and PSPC1 as a novel TFE3 fusion partner in PEComa (detected in one PEComa). Future studies should shed light on the most appropriate terminological subtyping of these highly overlapping tumors.
- MeSH
- Sarcoma, Alveolar Soft Part * genetics pathology MeSH
- Child MeSH
- Adult MeSH
- Phenotype MeSH
- Genetic Predisposition to Disease MeSH
- Gene Rearrangement * MeSH
- In Situ Hybridization, Fluorescence MeSH
- Immunohistochemistry MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Biomarkers, Tumor * genetics analysis MeSH
- Head and Neck Neoplasms * genetics pathology chemistry MeSH
- Perivascular Epithelioid Cell Neoplasms * genetics pathology chemistry MeSH
- Child, Preschool MeSH
- Aged MeSH
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors * genetics MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
AIMS: Sinonasal adenosquamous carcinoma (ASC) is a rare tumour classified as a variant of squamous cell carcinoma, exhibiting both squamous and glandular differentiation. ASC has a poorer prognosis compared to sinonasal mucoepidermoid carcinoma (MEC), another uncommon tumour in this region. ASC is believed to originate from metaplastic squamous epithelium, though it may also arise from respiratory epithelium in respiratory epithelial adenomatoid hamartoma (REAH) or seromucinous glands in seromucinous hamartoma (SH). METHODS AND RESULTS: Five cases of sinonasal ASC were retrieved from our registry. Initially, they were classified as sinonasal MEC (n = 3), ASC (n = 2), and carcinoma ex REAH (n = 1). All cases showed adenosquamous malignant proliferation beneath the surface respiratory epithelium with occasional squamous metaplasia, except for one case that showed dysplasia. The respiratory epithelium exhibited an inverted growth pattern consistent with REAH/SH, and displayed atypical sinonasal glands (ASGSH) arising within seromucinous hamartoma. Next-generation sequencing (NGS) revealed multiple pathogenic mutations in two cases, and in case 4 GGA2::PRKCB and EYA2::SERINC3 gene fusions. One case was positive for high-risk HPV. None of the cases exhibited CRTC1/3::MAML2 gene fusion. CONCLUSION: The connection between ASGSH and ASC has not been described in the literature. There is a growing need for additional studies on the morphological, immunohistochemical, and genetic aspects of these tumours. SH/REAH may serve as precursor lesions in the progression of atypical sinonasal glands to malignancy, and their role in tumour development deserves further investigation.
- MeSH
- Carcinoma, Adenosquamous * pathology genetics MeSH
- Adult MeSH
- Hamartoma * pathology genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Paranasal Sinus Neoplasms pathology genetics MeSH
- Respiratory Mucosa pathology MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Wilson disease (WD) primarily presents with hepatic and neurological symptoms. While hepatic symptoms typically precede the neurological manifestations, copper accumulates in the brain already in this patient group and leads to subclinical brain MRI abnormalities including T2 hyperintensities and atrophy. This study aimed to assess brain morphological changes in mild hepatic WD. WD patients without a history of neurologic symptoms and decompensated cirrhosis and control participants underwent brain MRI at 3T scanner including high-resolution T1-weighted images. A volumetric evaluation was conducted on the following brain regions: nucleus accumbens, caudate, pallidum, putamen, thalamus, amygdala, hippocampus, midbrain, pons, cerebellar gray matter, white matter (WM), and superior peduncle, using Freesurfer v7 software. Whole-brain analyses using voxel- and surface-based morphometry were performed using SPM12. Statistical comparisons utilized a general linear model adjusted for total intracranial volume, age, and sex. Twenty-six WD patients with mild hepatic form (30 ± 9 years [mean age ± SD]); 11 women; mean treatment duration 13 ± 12 (range 0-42) years and 28 healthy controls (33 ± 9 years; 15 women) were evaluated. Volumetric analysis revealed a significantly smaller pons volume and a trend for smaller midbrain and cerebellar WM in WD patients compared to controls. Whole-brain analysis revealed regions of reduced volume in the pons, cerebellar, and lobar WM in the WD group. No significant differences in gray matter density or cortical thickness were found. Myelin or WM in general seems vulnerable to low-level copper toxicity, with WM volume loss showing promise as a marker for assessing brain involvement in early WD stages.
- MeSH
- White Matter pathology diagnostic imaging MeSH
- Adult MeSH
- Hepatolenticular Degeneration * pathology diagnostic imaging MeSH
- Liver pathology diagnostic imaging MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Young Adult MeSH
- Brain * pathology diagnostic imaging MeSH
- Gray Matter pathology diagnostic imaging MeSH
- Case-Control Studies MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
During development, tooth germs undergo various morphological changes resulting from interactions between the oral epithelium and ectomesenchyme. These processes are influenced by the extracellular matrix, the composition of which, along with cell adhesion and signaling, is regulated by metalloproteinases. Notably, these include matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs). Our analysis of previously published scRNAseq datasets highlight that these metalloproteinases show dynamic expression patterns during tooth development, with expression in a wide range of cell types, suggesting multiple roles in tooth morphogenesis. To investigate this, Marimastat, a broad-spectrum inhibitor of MMPs, ADAMs, and ADAMTSs, was applied to ex vivo cultures of mouse molar tooth germs. The treated samples exhibited significant changes in tooth germ size and morphology, including an overall reduction in size and an inversion of the typical bell shape. The cervical loop failed to extend, and the central area of the inner enamel epithelium protruded. Marimastat treatment also disrupted proliferation, cell polarization, and organization compared with control tooth germs. In addition, a decrease in laminin expression was observed, leading to a disruption in continuity of the basement membrane at the epithelial-mesenchymal junction. Elevated hypoxia-inducible factor 1-alpha gene (Hif-1α) expression correlated with a disruption to blood vessel development around the tooth germs. These results reveal the crucial role of metalloproteinases in tooth growth, shape, cervical loop elongation, and the regulation of blood vessel formation during prenatal tooth development.NEW & NOTEWORTHY Inhibition of metalloproteinases during tooth development had a wide-ranging impact on molar growth affecting proliferation, cell migration, and vascularization, highlighting the diverse role of these proteins in controlling development.
- MeSH
- Hypoxia-Inducible Factor 1, alpha Subunit metabolism genetics MeSH
- Matrix Metalloproteinase Inhibitors pharmacology MeSH
- Hydroxamic Acids pharmacology MeSH
- Metalloproteases metabolism genetics MeSH
- Molar embryology growth & development metabolism enzymology MeSH
- Morphogenesis MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Odontogenesis * MeSH
- Cell Proliferation * MeSH
- Gene Expression Regulation, Developmental MeSH
- Tooth Germ embryology metabolism enzymology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Yeasts are unicellular fungi that occur in a wide range of ecological niches, where they perform numerous functions. Furthermore, these microorganisms are used in industrial processes, food production, and bioremediation. Understanding the physiological and adaptive characteristics of yeasts is of great importance from ecological, biotechnological, and industrial perspectives. In this context, we evaluated the abilities to assimilate and ferment different carbon sources, to produce extracellular hydrolytic enzymes, and to tolerate salt stress, heavy metal stress, and UV-C radiation of two isolates of Eremothecium coryli, isolated from Momordica indica fruits. The two isolates were molecularly identified based on sequencing of the 18S-ITS1-5.8S-ITS2 region. Our isolates were able to assimilate nine carbon sources (dextrose, galactose, mannose, cellobiose, lactose, maltose, sucrose, melezitose, and pectin) and ferment three (glucose, maltose, and sucrose). The highest values of cellular dry weight were observed in the sugars maltose, sucrose, and melezitose. We observed the presence of hyphae and pseudohyphae in all assimilated carbon sources. The two isolates were also capable of producing amylase, catalase, pectinase, and proteases, with the highest values of enzymatic activity found in amylase. Furthermore, the two isolates were able to grow in media supplemented with copper, iron, manganese, nickel, and zinc and to tolerate saline stress in media supplemented with 5% NaCl. However, we observed a decrease in CFU at higher concentrations of these metals and NaCl. We also observed morphological changes in the presence of metals, which include changes in cell shape and cellular dimorphisms. The isolates were sensitive to UV-C radiation in the shortest exposure time (1 min). Our findings reinforce the importance of endophytic yeasts for biotechnological and industrial applications and also help to understand how these microorganisms respond to environmental variations caused by human activities.
- MeSH
- Endophytes * isolation & purification genetics metabolism physiology classification radiation effects MeSH
- Fermentation MeSH
- Phylogeny MeSH
- Stress, Physiological * MeSH
- Carbohydrate Metabolism * MeSH
- Fruit * microbiology MeSH
- Saccharomycetales * isolation & purification genetics physiology metabolism radiation effects classification MeSH
- Metals, Heavy toxicity MeSH
- Ultraviolet Rays MeSH
- Publication type
- Journal Article MeSH
Human migration is an increasingly common phenomenon and migrants are at risk of disadvantageous treatment. We reasoned that migrants may receive differential treatment by locals based on the closeness of their facial features to the host average. Residents of Türkiye, the country with the largest number of refugees currently, served as participants. Because many of these refugees are of Arabic origin, we created target facial stimuli varying along the axis connecting Turkish and Arabic morphological prototypes (excluding skin colour) computed using geometric morphometrics and available databases. Participants made judgements of two universal dimensions of social perception-warmth and competence-on these faces. We predicted that participants judging faces manipulated towards the Turkish average would provide higher warmth and competence ratings compared to judging the same faces manipulated towards the Arabic average. Bayesian statistical tools were employed to estimate parameter values in multilevel models with intercorrelated varying effects. The findings did not support the prediction and revealed raters (as well as target faces) to be an important source of variation in social judgements. In the absence of simple cues (e.g. skin colour, group labels), the effect of facial morphology on social judgements may be much more complex than previously assumed.
- MeSH
- Bayes Theorem MeSH
- Adult MeSH
- Humans MeSH
- Judgment * MeSH
- Adolescent MeSH
- Young Adult MeSH
- Face anatomy & histology MeSH
- Facial Recognition physiology MeSH
- Social Perception * MeSH
- Stereotyping * MeSH
- Refugees psychology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Turkey MeSH
A Mycobacterium smegmatis transcriptional regulator, MSMEG_5850, and its ortholog in M. tuberculosis, rv0775 were annotated as putative TetR Family Transcriptional Regulators. Our previous study revealed MSMEG_5850 is involved in global transcriptional regulation in M. smegmatis and the presence of gene product supported the survival of bacteria during nutritional starvation. Phylogenetic analysis showed that MSMEG_5850 diverged early in comparison to its counterparts in virulent strains. Therefore, the expression pattern of MSMEG_5850 and its counterpart, rv0775, was compared during various in-vitro growth and stress conditions. Expression of MSMEG_5850 was induced under different environmental stresses while no change in expression was observed under mid-exponential and stationary phases. No expression of rv0775 was observed under any stress condition tested, while the gene was expressed during the mid-exponential phase that declined in the stationary phase. The effect of MSMEG_5850 on the survival of M. smegmatis under stress conditions and growth pattern was studied using wild type, knockout, and supplemented strain. Deletion of MSMEG_5850 resulted in altered colony morphology, biofilm/pellicle formation, and growth pattern of M. smegmatis. The survival rate of wild-type MSMEG_5850 was higher in comparison to knockout under different environmental stresses. Overall, this study suggested the role of MSMEG_5850 in the growth and adaptation/survival of M. smegmatis under stress conditions.
- MeSH
- Bacterial Proteins * genetics metabolism MeSH
- Biofilms growth & development MeSH
- Phylogeny MeSH
- Stress, Physiological * MeSH
- Microbial Viability MeSH
- Mycobacterium smegmatis * genetics growth & development physiology metabolism MeSH
- Gene Expression Regulation, Bacterial MeSH
- Transcription Factors * genetics metabolism MeSH
- Publication type
- Journal Article MeSH