Interplay with the Mre11-Rad50-Nbs1 complex and phosphorylation by GSK3β implicate human B-Myb in DNA-damage signaling
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28128338
PubMed Central
PMC5269693
DOI
10.1038/srep41663
PII: srep41663
Knihovny.cz E-zdroje
- MeSH
- ATM protein metabolismus MeSH
- biologické modely MeSH
- buněčné linie MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- dvouřetězcové zlomy DNA MeSH
- enzymy opravy DNA chemie metabolismus MeSH
- fosforylace MeSH
- homologní protein MRE11 chemie metabolismus MeSH
- hydrolasy působící na anhydridy kyselin MeSH
- interakční proteinové domény a motivy MeSH
- jaderné proteiny chemie metabolismus MeSH
- kinasa glykogensynthasy 3beta metabolismus MeSH
- lidé MeSH
- mitóza genetika MeSH
- multiproteinové komplexy metabolismus MeSH
- mutace MeSH
- oprava DNA MeSH
- poškození DNA * MeSH
- proteiny buněčného cyklu chemie genetika metabolismus MeSH
- regulace genové exprese MeSH
- sekvence aminokyselin MeSH
- signální transdukce * MeSH
- trans-aktivátory chemie genetika metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATM protein MeSH
- DNA vazebné proteiny MeSH
- enzymy opravy DNA MeSH
- homologní protein MRE11 MeSH
- hydrolasy působící na anhydridy kyselin MeSH
- jaderné proteiny MeSH
- kinasa glykogensynthasy 3beta MeSH
- multiproteinové komplexy MeSH
- MYBL2 protein, human MeSH Prohlížeč
- NBN protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- RAD50 protein, human MeSH Prohlížeč
- trans-aktivátory MeSH
B-Myb, a highly conserved member of the Myb transcription factor family, is expressed ubiquitously in proliferating cells and controls the cell cycle dependent transcription of G2/M-phase genes. Deregulation of B-Myb has been implicated in oncogenesis and loss of genomic stability. We have identified B-Myb as a novel interaction partner of the Mre11-Rad50-Nbs1 (MRN) complex, a key player in the repair of DNA double strand breaks. We show that B-Myb directly interacts with the Nbs1 subunit of the MRN complex and is recruited transiently to DNA-damage sites. In response to DNA-damage B-Myb is phosphorylated by protein kinase GSK3β and released from the MRN complex. A B-Myb mutant that cannot be phosphorylated by GSK3β disturbs the regulation of pro-mitotic B-Myb target genes and leads to inappropriate mitotic entry in response to DNA-damage. Overall, our work suggests a novel function of B-Myb in the cellular DNA-damage signalling.
Friedrich Miescher Institute for Biomedical Research Maulbeerstr 66 CH 4058 Basel Switzerland
Graduate School of Chemistry Westfälische Wilhelms Universität D 48149 Münster Germany
Institut for Biochemistry Westfälische Wilhelms Universität D 48149 Münster Germany
Zobrazit více v PubMed
Sala A. B-Myb, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur. J. Cancer 41, 2479–2484 (2005). PubMed
Korenjak M. et al.. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 119, 181–193 (2004). PubMed
Lewis P. W. et al.. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev. 23, 2929–2940 (2004). PubMed PMC
Georlette D. et al.. Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells. Genes Dev. 21, 2880–2896 (2007). PubMed PMC
Schmit F. et al.. LINC, a human complex that is related to pRB-containing complexes in invertebrates regulates the expression of G2/M genes. Cell Cycle 6, 1903–1913 (2007). PubMed
Pilkinton M., Sandoval R. & Colamonici O. R. Mammalian Mip/LIN-9 interacts with either the p107, p130/E2F4 repressor complex or B-Myb in a cell cycle-phase-dependent context distinct from the Drosophila dREAM complex. Oncogene 26, 7535–7543 (2007). PubMed
Osterloh L. et al.. The human synMuv-like protein LIN-9 is required for transcription of G2/M genes and for entry into mitosis. EMBO J. 26, 144–157 (2007). PubMed PMC
Wen H., Andrejka L., Ashton J., Karess R. & Lipsick J. S. Epigenetic regulation of gene expression by Drosophila Myb and E2F2-RBF via the Myb-MuvB/dREAM complex. Genes Dev. 22, 601–614 (2008). PubMed PMC
Knight A. S., Notaridou M. & Watson R. J. A Lin-9 complex is recruited by B-Myb to activate transcription of G2/M genes in undifferentiated embryonal carcinoma cells. Oncogene 28, 1737–1747 (2009). PubMed
Sadasivam S., Duan S. & DeCaprio J. A. The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes Dev. 26, 474–489 (2012). PubMed PMC
Charrasse S., Carena I., Brondani V., Klempnauer K.-H. & Ferrari S. Degradation of B-Myb by ubiquitin-mediated proteolysis: involvement of the Cdc34-SCF(p45Skp2) pathway. Oncogene 19, 2986–2995 (2000). PubMed
Robinson C. et al.. Cell-cycle regulation of B-Myb protein expression: specific phosphorylation during the S phase of the cell cycle. Oncogene 12, 1855–1864 (1996). PubMed
Lane S., Farlie P. & Watson R. B-Myb function can be markedly enhanced by cyclin A-dependent kinase and protein truncation. Oncogene 14, 2445–2453 (1997). PubMed
Sala A. et al.. Activation of human B-MYB by cyclins. Proc. Natl. Acad. Sci. USA 94, 532–536 (1997). PubMed PMC
Ziebold U., Bartsch O., Marais R., Ferrari S. & Klempnauer K.-H. Phosphorylation and activation of B-Myb by cyclin A-Cdk2. Curr. Biol. 7, 253–260 (1997). PubMed
Saville M. K. & Watson R. J. The cell-cycle regulated transcription factor B-Myb is phosphorylated by cyclin A/Cdk2 at sites that enhance its transactivation properties. Oncogene 17, 2679–2689 (1998). PubMed
Bartsch O., Horstmann S., Toprak K., Klempnauer K.-H. & Ferrari S. Identification of cyclin A/Cdk2 phosphorylation sites in B-Myb. Eur. J. Biochem. 260, 384–391 (1999). PubMed
Horstmann S., Ferrari S. & Klempnauer K.-H. Regulation of B-Myb activity by cyclin D1. Oncogene 19, 298–306 (2000). PubMed
Schubert S., Horstmann S., Bartusel T. & Klempnauer K.-H. The co-operation of B-Myb with the coactivator p300 is orchestrated by cyclins A and D1. Oncogene 23, 1392–1404 (2004). PubMed
Cervellera M. N. & Sala A. Poly(ADP-ribose) polymerase is a B-MYB coactivator. J. Biol. Chem. 275, 10692–10696 (2000). PubMed
Ying G. G. et al.. Nucleolin, a novel partner for the Myb transcription factor family that regulates their activity. J. Biol. Chem. 275, 4152–4158 (2000). PubMed
Johnson L. R. et al.. Effects of B-Myb on gene transcription: phosphorylation-dependent activity and acetylation by p300. J. Biol. Chem. 277, 4088–4097 (2002). PubMed
Bartusel T. & Klempnauer K.-H. Transactivation mediated by B-Myb is dependent on TAF(II)250. Oncogene 22, 2932–2941 (2003). PubMed
Li X. & McDonnell D. P. The transcription factor B-Myb is maintained in an inhibited state in target cells through its interaction with the nuclear corepressors N-CoR and SMRT. Mol. Cell. Biol. 11, 3663–3673 (2002). PubMed PMC
Yamauchi T. et al.. A B-Myb complex containing clathrin and filamin is required for mitotic spindle function. EMBO J. 27, 1852–1862 (2008). PubMed PMC
Werwein E. et al.. B-Myb promotes S-phase independently of its sequence-specific DNA binding activity and interacts with polymerase delta-interacting protein 1 (Pdip1). Cell Cycle 11, 4047–4058 (2012). PubMed PMC
Lorvellec M. et al.. B-Myb is critical for proper DNA duplication during an unperturbed S phase in mouse embryonic stem cells. Stem Cells 28, 1751–1759 (2010). PubMed PMC
Ahlbory D., Appl H., Lang D. & Klempnauer K.-H. Disruption of B-myb in DT40 cells reveals novel function for B-Myb in the response to DNA-damage. Oncogene 24, 7127–7134 (2005). PubMed
Mannefeld M., Klassen E. & Gaubatz S. B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells. Cancer Res. 69, 4073–4080 (2009). PubMed
Werwein E., Dzuganova M., Usadel C. & Klempnauer K.-H. B-Myb switches from Cyclin/Cdk-dependent to Jnk- and p38 kinase-dependent phosphorylation and associates with SC35 bodies after UV stress. Cell Death Dis. 4, e511 (2013). PubMed PMC
Williams G. J., Lees-Miller S. P. & Tainer J. A. Mre11-Rad50-Nbs1 conformations and the control of sensing,signaling, and effector responses at DNA double-strand breaks. DNA Repair 9, 1299–1306 (2010). PubMed PMC
Thompson L. H. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: The molecular choreography. Mutation Res. 751, 158–246 (2012). PubMed
Carney J. P. et al.. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998). PubMed
Tauchi H. et al.. The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50-hMRE11-NBS1 complex DNA repair activity. J. Biol. Chem. 276, 12–15 (2001). PubMed
Suzuki K., Yamauchi M., Oka Y., Suzuki M. & Yamashita S. A novel and simple micro-irradiation technique for creating localized DNA double-strand breaks. Nucleic Acids Res. 38, e129 (2010). PubMed PMC
Löbrich M. et al.. Gamma H2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 9, 662–669 (2010). PubMed
Lloyd J. et al.. A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell 139, 100–111 (2009). PubMed PMC
Williams R. S. et al.. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139, 87–99 (2009). PubMed PMC
Pierce A. J., Johnson R. D., Thompson L. H. & Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13, 2633–2638 (1999). PubMed PMC
Bennardo N., Cheng A., Huang N. & Stark J. M. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 4, e1000110 (2008). PubMed PMC
Pontano L. L. et al.. Genotoxic stress-induced cyclin D1 phosphorylation and proteolysis are required for genomic stability. Mol. Cell. Biol. 23, 7245–7258 (2008). PubMed PMC
Gatei M. et al.. ATM protein-dependent phosphorylation of Rad50 protein regulates DNA repair and cell cycle control. J. Biol. Chem. 286, 31542–31556 (2011). PubMed PMC
Lavin M. F., Kozlov S., Gatei M. & Kijas A. W. ATM-dependent phosphorylation of all three members of the MRN complex: From sensor to adaptor. Biomolecules 5, 2877–2902 (2015). PubMed PMC
Melander F. et al.. Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J. Cell Biol. 181, 213–226 (2008). PubMed PMC
Chapman J. R. & Jackson S. P. Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep. 9, 795–801 (2008). PubMed PMC
Spycher C. et al.. Constitutive phosphorylation of MDC1 physically links the MRE11–RAD50–NBS1 complex to damaged chromatin. J. Cell Biol. 181, 227–240 (2008). PubMed PMC
Zhou Y. & Paull T. T. DNA-dependent protein kinase regulates DNA end resection in concert with Mre11-Rad50-Nbs1 (MRN) and Ataxia Telangiectasia-mutated (ATM). J.Biol. Chem. 288, 37112–37125. PubMed PMC
Oka O. et al.. Interaction of the transactivation domain of B-Myb with the TAZ2 domain of the coactivator p300: molecular features and properties of the complex. PLoS One 7, e52906 (2012). PubMed PMC
Klein D. K. et al.. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control. Nat. Commun. 6, 5800 (2015). PubMed