Modulated DISP3/PTCHD2 expression influences neural stem cell fate decisions

. 2017 Jan 30 ; 7 () : 41597. [epub] 20170130

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28134287

Neural stem cells (NSCs) are defined by their dual ability to self-renew through mitotic cell division or differentiate into the varied neural cell types of the CNS. DISP3/PTCHD2 is a sterol-sensing domain-containing protein, highly expressed in neural tissues, whose expression is regulated by thyroid hormone. In the present study, we used a mouse NSC line to investigate what effect DISP3 may have on the self-renewal and/or differentiation potential of the cells. We demonstrated that NSC differentiation triggered significant reduction in DISP3 expression in the resulting astrocytes, neurons and oligodendrocytes. Moreover, when DISP3 expression was disrupted, the NSC "stemness" was suppressed, leading to a larger population of cells undergoing spontaneous neuronal differentiation. Conversely, overexpression of DISP3 resulted in increased NSC proliferation. When NSCs were cultured under differentiation conditions, we observed that the lack of DISP3 augmented the number of NSCs differentiating into each of the neural cell lineages and that neuronal morphology was altered. In contrast, DISP3 overexpression resulted in impaired cell differentiation. Taken together, our findings imply that DISP3 may help dictate the NSC cell fate to either undergo self-renewal or switch to the terminal differentiation cell program.

Zobrazit více v PubMed

Gage F. H. Mammalian neural stem cells. Science 287, 1433–1438, doi: 10.1126/science.287.5457.1433 (2000). PubMed DOI

Temple S. The development of neural stem cells. Nature 414, 112–117, doi: 10.1038/35102174 (2001). PubMed DOI

Gotz M. & Huttner W. B. The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6, 777–788, doi: 10.1038/nrm1739 (2005). PubMed DOI

Bond A. M., Ming G. L. & Song H. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later. Cell Stem Cell 17, 385–395, doi: 10.1016/j.stem.2015.09.003 (2015). PubMed DOI PMC

Davis A. A. & Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372, 263–266, doi: 10.1038/372263a0 (1994). PubMed DOI

Reynolds B. A., Tetzlaff W. & Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12, 4565–4574 (1992). PubMed PMC

Vescovi A. L. et al.. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156, 71–83, doi: 10.1006/exnr.1998.6998 (1999). PubMed DOI

Reynolds B. A. & Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710, doi: 10.1126/science.1553558 (1992). PubMed DOI

Lois C. & Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90, 2074–2077, doi: 10.1073/pnas.90.5.2074 (1993). PubMed DOI PMC

Gritti A. et al.. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16, 1091–1100 (1996). PubMed PMC

Palmer T. D., Markakis E. A., Willhoite A. R., Safar F. & Gage F. H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 19, 8487–8497 (1999). PubMed PMC

Reynolds B. A. & Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175, 1–13, doi: 10.1006/dbio.1996.0090 (1996). PubMed DOI

Keller G. M. In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7, 862–869, doi: 10.1016/0955-0674(95)80071-9 (1995). PubMed DOI

Tropepe V. et al.. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78, doi: 10.1016/S0896-6273(01)00263-X (2001). PubMed DOI

Ying Q. L., Stavridis M., Griffiths D., Li M. & Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21, 183–186, doi: 10.1038/nbt780 (2003). PubMed DOI

Bain G., Kitchens D., Yao M., Huettner J. E. & Gottlieb D. I. Embryonic stem cells express neuronal properties in vitro. Dev Biol 168, 342–357, doi: 10.1006/dbio.1995.1085 (1995). PubMed DOI

Kawasaki H. et al.. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40, doi: 10.1016/S0896-6273(00)00083-0 (2000). PubMed DOI

Conti L. et al.. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3, e283, doi: 10.1371/journal.pbio.0030283 (2005). PubMed DOI PMC

Glaser T., Pollard S. M., Smith A. & Brustle O. Tripotential differentiation of adherently expandable neural stem (NS) cells. PLoS One 2, e298, doi: 10.1371/journal.pone.0000298 (2007). PubMed DOI PMC

Zikova M., Corlett A., Bendova Z., Pajer P. & Bartunek P. DISP3, a sterol-sensing domain-containing protein that links thyroid hormone action and cholesterol metabolism. Mol Endocrinol 23, 520–528, doi: 10.1210/me.2008-0271 (2009). PubMed DOI PMC

Zikova M. et al.. DISP3 promotes proliferation and delays differentiation of neural progenitor cells. FEBS Lett 588, 4071–4077, doi: 10.1016/j.febslet.2014.09.036 (2014). PubMed DOI

Kuwabara P. E. & Labouesse M. The sterol-sensing domain: multiple families, a unique role? Trends Genet 18, 193–201, doi: 10.1016/S0168-9525(02)02640-9 (2002). PubMed DOI

Knobloch M. et al.. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230, doi: 10.1038/nature11689 (2013). PubMed DOI PMC

Stoll E. A. et al.. Neural Stem Cells in the Adult Subventricular Zone Oxidize Fatty Acids to Produce Energy and Support Neurogenic Activity. Stem Cells 33, 2306–2319, doi: 10.1002/stem.2042 (2015). PubMed DOI PMC

Hamilton L. K. et al.. Aberrant Lipid Metabolism in the Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer’s Disease. Cell Stem Cell 17, 397–411, doi: 10.1016/j.stem.2015.08.001 (2015). PubMed DOI

Manoranjan B. et al.. Medulloblastoma stem cells: where development and cancer cross pathways. Pediatr Res 71, 516–522, doi: 10.1038/pr.2011.62 (2012). PubMed DOI

Wang D. et al.. HCA-vision: Automated neurite outgrowth analysis. J Biomol Screen 15, 1165–1170, doi: 10.1177/1087057110382894 (2010). PubMed DOI

Shalem O. et al.. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87, doi: 10.1126/science.1247005 (2014). PubMed DOI PMC

Watson J. V., Chambers S. H. & Smith P. J. A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry 8, 1–8, doi: 10.1002/cyto.990080101 (1987). PubMed DOI

Smyth G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, Article3, doi: 10.2202/1544-6115.1027 (2004). PubMed DOI

Gentleman R. C. et al.. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5, R80, doi: 10.1186/gb-2004-5-10-r80 (2004). PubMed DOI PMC

Valach J. et al.. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors. Int J Cancer 131, 2499–2508, doi: 10.1002/ijc.27550 (2012). PubMed DOI

Storey J. D. & Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100, 9440–9445, doi: 10.1073/pnas.1530509100 (2003). PubMed DOI PMC

Klisch T. J. et al.. In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. Proc Natl Acad Sci USA 108, 3288–3293, doi: 10.1073/pnas.1100230108 (2011). PubMed DOI PMC

Ayrault O. et al.. Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma-initiating cells. Cancer Res 70, 5618–5627, doi: 10.1158/0008-5472.CAN-09-3740 (2010). PubMed DOI PMC

Northcott P. A. et al.. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29, 1408–1414, doi: 10.1200/JCO.2009.27.4324 (2011). PubMed DOI PMC

Lathia J. D., Heddleston J. M., Venere M. & Rich J. N. Deadly teamwork: neural cancer stem cells and the tumor microenvironment. Cell Stem Cell 8, 482–485, doi: 10.1016/j.stem.2011.04.013 (2011). PubMed DOI PMC

Galli R. et al.. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64, 7011–7021, doi: 10.1158/0008-5472.CAN-04-1364 (2004). PubMed DOI

Hemmati H. D. et al.. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100, 15178–15183, doi: 10.1073/pnas.2036535100 (2003). PubMed DOI PMC

Gibson P. et al.. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099, doi: 10.1038/nature09587 (2010). PubMed DOI PMC

Lin C. Y. et al.. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530, 57–62, doi: 10.1038/nature16546 (2016). PubMed DOI PMC

Ikonen E. & Holtta-Vuori M. Cellular pathology of Niemann-Pick type C disease. Semin Cell Dev Biol 15, 445–454, doi: 10.1016/j.semcdb.2004.03.001 (2004). PubMed DOI

Yang S. R. et al.. NPC1 gene deficiency leads to lack of neural stem cell self-renewal and abnormal differentiation through activation of p38 mitogen-activated protein kinase signaling. Stem Cells 24, 292–298, doi: 10.1634/stemcells.2005-0221 (2006). PubMed DOI

Ernst C. Proliferation and Differentiation Deficits are a Major Convergence Point for Neurodevelopmental Disorders. Trends Neurosci, doi: 10.1016/j.tins.2016.03.001 (2016). PubMed DOI

Efthymiou A. G. et al.. Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling. Stem Cells Transl Med 4, 230–238, doi: 10.5966/sctm.2014-0127 (2015). PubMed DOI PMC

Wassif C. A. et al.. Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome. Am J Hum Genet 63, 55–62, doi: 10.1086/301936 (1998). PubMed DOI PMC

Lee R. W., Conley S. K., Gropman A., Porter F. D. & Baker E. H. Brain magnetic resonance imaging findings in Smith-Lemli-Opitz syndrome. Am J Med Genet A 161A, 2407–2419, doi: 10.1002/ajmg.a.36096 (2013). PubMed DOI PMC

Tierney E. et al.. Behavior phenotype in the RSH/Smith-Lemli-Opitz syndrome. Am J Med Genet 98, 191–200, doi: 10.1002/1096-8628(20010115)98:2%3C191::AID-AJMG1030%3E3.0.CO;2-M (2001). PubMed DOI

Francis K. R. et al.. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/beta-catenin defects in neuronal cholesterol synthesis phenotypes. Nat Med 22, 388–396, doi: 10.1038/nm.4067 (2016). PubMed DOI PMC

European Chromosome 16 Tuberous Sclerosis, C. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305–1315, doi: 10.1016/0092-8674(93)90618-Z (1993). PubMed DOI

Costa V. et al.. mTORC1 Inhibition Corrects Neurodevelopmental and Synaptic Alterations in a Human Stem Cell Model of Tuberous Sclerosis. Cell Rep 15, 86–95, doi: 10.1016/j.celrep.2016.02.090 (2016). PubMed DOI

Frazier T. W. et al.. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry 20, 1132–1138, doi: 10.1038/mp.2014.125 (2015). PubMed DOI PMC

Sugathan A. et al.. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci USA 111, E4468–4477, doi: 10.1073/pnas.1405266111 (2014). PubMed DOI PMC

Sprenger C. C., Damon S. E., Hwa V., Rosenfeld R. G. & Plymate S. R. Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) is a potential tumor suppressor protein for prostate cancer. Cancer Research 59, 2370–2375 (1999). PubMed

Ruan W. J. et al.. IGFBP7 plays a potential tumor suppressor role in colorectal carcinogenesis. Cancer Biology & Therapy 6, 354–359, doi: 10.4161/cbt.6.3.3702 (2007). PubMed DOI

Rupp C. et al.. IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene 34, 815–825, doi: 10.1038/onc.2014.18 (2015). PubMed DOI

Smith E., Ruszkiewicz A. R., Jamieson G. G. & Drew P. A. IGFBP7 is associated with poor prognosis in oesophageal adenocarcinoma and is regulated by promoter DNA methylation. British Journal of Cancer 110, 775–782, doi: 10.1038/bjc.2013.783 (2014). PubMed DOI PMC

Sato Y. et al.. Relationship between expression of IGFBP7 and clinicopathological variables in gastric cancer. Journal of Clinical Pathology 68, 795–801, doi: 10.1136/jclinpath-2015-202987 (2015). PubMed DOI

Benassi M. S. et al.. Tissue and serum IGFBP7 protein as biomarker in high-grade soft tissue sarcoma. American Journal of Cancer Research 5, 3446–3454 (2015). PubMed PMC

Jiang W., Xiang C. L., Cazacu S., Brodie C. & Mikkelsen T. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration. Neoplasia 10, 1335–1342, doi: 10.1593/Neo.08694 (2008). PubMed DOI PMC

Agis-Balboa R. C. et al.. A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories. Embo Journal 30, 4071–4083, doi: 10.1038/emboj.2011.293 (2011). PubMed DOI PMC

Agbemenyah H. Y., Agis-Balboa R. C., Burkhardt S., Delalle I. & Fischer A. Insulin growth factor binding protein 7 is a novel target to treat dementia. Neurobiology of Disease 62, 135–143, doi: 10.1016/j.nbd.2013.09.011 (2014). PubMed DOI

Goto K. et al.. Gene Cloning, Sequence, Expression and Insitu Localization of 80-Kda Diacylglycerol Kinase Specific to Oligodendrocyte of Rat-Brain. Molecular Brain Research 16, 75–87, doi: 10.1016/0169-328x(92)90196-I (1992). PubMed DOI

Redei E. E. et al.. Blood transcriptomic biomarkers in adult primary care patients with major depressive disorder undergoing cognitive behavioral therapy. Transl Psychiatry 4, e442, doi: 10.1038/tp.2014.66 (2014). PubMed DOI PMC

Yanagisawa K. et al.. Diacylglycerol kinase alpha suppresses tumor necrosis factor-alpha- -induced apoptosis of human melanoma cells through NF-kappa B activation. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 1771, 462–474, doi: 10.1016/j.bbalip.2006.12.008 ( 2007). PubMed DOI

Carter H., Samayoa J., Hruban R. H. & Karchin R. Prioritization of driver mutations in pancreatic cancer using cancer-specific high-throughput annotation of somatic mutations (CHASM). Cancer Biology & Therapy 10, 582–587, doi: 10.4161/cbt.10.6.12537 (2010). PubMed DOI PMC

Takeishi K. et al.. Diacylglycerol kinase alpha enhances hepatocellular carcinoma progression by activation of Ras-Raf-MEK-ERK pathway. Journal of Hepatology 57, 77–83, doi: 10.1016/j.jhep.2012.02.026 (2012). PubMed DOI

Kefas B. et al.. A miR-297/hypoxia/DGK- axis regulating glioblastoma survival. Neuro-Oncology 15, 1652–1663, doi: 10.1093/neuonc/not118 (2013). PubMed DOI PMC

Dominguez C. L. et al.. Diacylglycerol Kinase a Is a Critical Signaling Node and Novel Therapeutic Target in Glioblastoma and Other Cancers. Cancer Discovery 3, 782–797, doi: 10.1158/2159-8290.CD-12-0215 (2013). PubMed DOI PMC

Kishi M., Pan Y. A., Crump J. G. & Sanes J. R. Mammalian SAD kinases are required for neuronal polarization. Science 307, 929–932, doi: 10.1126/science.1107403 (2005). PubMed DOI

Alvarado-Kristensson M., Rodriguez M. J., Silio V., Valpuesta J. M. & Carrera A. C. SADB phosphorylation of gamma-tubulin regulates centrosome duplication. Nature Cell Biology 11, 1081–U1086, doi: 10.1038/Ncb1921 (2009). PubMed DOI

Im D. S. et al.. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. Journal of Biological Chemistry 275, 14281–14286, doi: 10.1074/jbc.275.19.14281 (2000). PubMed DOI

Ulfig N. & Briese M. Evidence for the presence of the sphingosine-1-phosphate receptor Edg-8 in human radial glial fibers. Acta Histochemica 106, 373–378, doi: 10.1016/j.acthis.2004.08.002 (2004). PubMed DOI

Jaillard C. et al.. Edg8/S1P5: An oligodendroglial receptor with dual function on process retraction and cell survival. Journal of Neuroscience 25, 1459–1469, doi: 10.1523/Jneurosci.4645-04.2005 (2005). PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bioluminescent Zebrafish Transplantation Model for Drug Discovery

. 2022 ; 13 () : 893655. [epub] 20220427

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...