Cytotoxic conjugates of betulinic acid and substituted triazoles prepared by Huisgen Cycloaddition from 30-azidoderivatives
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
28158265
PubMed Central
PMC5291411
DOI
10.1371/journal.pone.0171621
PII: PONE-D-16-46368
Knihovny.cz E-resources
- MeSH
- Benzaldehydes chemistry MeSH
- Cell Cycle drug effects MeSH
- Cycloaddition Reaction MeSH
- Betulinic Acid MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Pentacyclic Triterpenes MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Triazoles chemistry MeSH
- Triterpenes chemistry MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- benzaldehyde MeSH Browser
- Benzaldehydes MeSH
- Betulinic Acid MeSH
- Pentacyclic Triterpenes MeSH
- Antineoplastic Agents MeSH
- Triazoles MeSH
- Triterpenes MeSH
In this work, we describe synthesis of conjugates of betulinic acid with substituted triazoles prepared via Huisgen 1,3-cycloaddition. All compounds contain free 28-COOH group. Allylic bromination of protected betulinic acid by NBS gave corresponding 30-bromoderivatives, their substitution with sodium azides produced 30-azidoderivatives and these azides were subjected to CuI catalysed Huisgen 1,3-cycloaddition to give the final conjugates. Reactions had moderate to high yields. All new compounds were tested for their in vitro cytotoxic activities on eight cancer and two non-cancer cell lines. The most active compounds were conjugates of 3β-O-acetylbetulinic acid and among them, conjugate with triazole substituted by benzaldehyde 9b was the best with IC50 of 3.3 μM and therapeutic index of 9.1. Five compounds in this study had IC50 below 10 μM and inhibited DNA and RNA synthesis and caused block in G0/G1 cell cycle phase which is highly similar to actinomycin D. It is unusual that here prepared 3β-O-acetates were more active than compounds with the free 3-OH group and this suggests that this set may have common mechanism of action that is different from the mechanism of action of previously known 3β-O-acetoxybetulinic acid derivatives. Benzaldehyde type conjugate 9b is the best candidate for further drug development.
See more in PubMed
Hill RA, Connolly JD. Triterpenoids. Nat Prod Rep. 2015; 32(2): 273–327. 10.1039/c4np00101j PubMed DOI
Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, et al. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 2006; 23(3): 394–411. 10.1039/b515312n PubMed DOI
Sarek J, Kvasnica M, Vlk M, Biedermann D. Semisynthetic lupane triterpenes with cytotoxic activity In: Salvador Jorge A.R., editor. Pentacyclic triterpenes as promising agents in cancer. Hauppauge, N.Y.: Nova Science Publishers; 2010. p. 159–89.
Dang Z, Ho P, Zhu L, Qian K, Lee KH, Huang L, et al. New Betulinic Acid Derivatives for Bevirimat-Resistant Human Immunodeficiency Virus Type-1. J Med Chem. 2013. March 14; 56(5): 2029–37. 10.1021/jm3016969 PubMed DOI PMC
Zuo WJ, Dai HF, Chen J, Chen HQ, Zhao YX, Mei WL, et al. Triterpenes and Triterpenoid Saponins from the Leaves of Ilex kudincha. Planta Med. 2011; 77(16): 1835–40. 10.1055/s-0030-1271164 PubMed DOI
Innocente A, Casanova BB, Klein F, Lana AD, Pereira D, Muniz MN, et al. Synthesis of isosteric triterpenoid derivatives and antifungal activity. Chem Biol Drug Des. 2014. March; 83(3): 344–9. 10.1111/cbdd.12251 PubMed DOI
Chianese G, Yerbanga SR, Lucantoni L, Habluetzel A, Basilico N, Taramelli D, et al. Antiplasmodial Triterpenoids from the Fruits of Neem, Azadirachta indica. J Nat Prod. 2010. August 27; 73(8): 1448–52. 10.1021/np100325q PubMed DOI
Fu Y, Zhou E, Wei Z, Liang D, Wang W, Wang T, et al. Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. FEBS J. 2014. June; 281(11): 2543–57. 10.1111/febs.12801 PubMed DOI
Yano S, Harada M, Watanabe K, Nakamaru K, Hatakeyama Y, Shibata S, et al. Antiulcer Activities of Glycyrrhetinic Acid Derivatives in Experimenta Glastric Lesion Models. Chem Pharm Bull. 1989; 37(9): 2500–4. PubMed
Morikawa T, Ninomiya K, Imura K, Yamaguchi T, Akagi Y, Yoshikawa M, et al. Hepatoprotective triterpenes from traditional Tibetan medicine Potentilla anserina. Phytochemistry. 2014. June; 102: 169–81. 10.1016/j.phytochem.2014.03.002 PubMed DOI
Sanchez-Quesada C, Lopez-Biedma A, Warleta F, Campos M, Beltran G, Gaforio JJ. Bioactive Properties of the Main Triterpenes Found in Olives, Virgin Olive Oil, and Leaves of Olea europaea. J Agric Food Chem. 2013. December 18; 61(50): 12173–82. 10.1021/jf403154e PubMed DOI
Urban M, Sarek J, Kvasnica M, Tislerova I, Hajduch M. Triterpenoid Pyrazines and Benzopyrazines with Cytotoxic Activity. J Nat Prod. 2007. April 1; 70(4): 526–32. 10.1021/np060436d PubMed DOI
Urban M, Vlk M, Dzubak P, Hajduch M, Sarek J. Cytotoxic heterocyclic triterpenoids derived from betulin and betulinic acid. Bioorg Med Chem. 2012. June 1; 20(11): 3666–74. 10.1016/j.bmc.2012.03.066 PubMed DOI
Vlk M, Micolova P, Urban M, Kvasnica M, Saman D, Sarek J. 15N-labelled pyrazines of triterpenic acids. J Radioanal Nucl Chem. 2016; 308(2): 733–9.
Urban M, Klinot J, Tislerova I, Biedermann D, Hajduch M, Cisarova I, et al. Reactions of Activated Lupane Oxo-Compounds with Diazomethane: An Approach to New Derivatives of Cytotoxic Triterpenes. Synthesis. 2006; 2006(23): 3979–86.
Kvasnica M, Urban M, Dickinson NJ, Sarek J. Pentacyclic triterpenoids with nitrogen- and sulfur-containing heterocycles: synthesis and medicinal significance. Nat Prod Rep. 2015; 32(9): 1303–30. 10.1039/c5np00015g PubMed DOI
Xu J, Li Z, Luo J, Yang F, Liu T, Liu M, et al. Synthesis and Biological Evaluation of Heterocyclic Ring-Fused Betulinic Acid Derivatives as Novel Inhibitors of Osteoclast Differentiation and Bone Resorption. J Med Chem. 2012. April 12; 55(7): 3122–34. 10.1021/jm201540h PubMed DOI
Csuk R, Stark S, Nitsche C, Barthel A, Siewert B. Alkylidene branched lupane derivatives: Synthesis and antitumor activity. Eur J Med Chem. 2012. July; 53: 337–45. 10.1016/j.ejmech.2012.04.023 PubMed DOI
Dinh Ngoc T, Moons N, Kim Y, De Borggraeve W, Mashentseva A, Andrei G, et al. Synthesis of triterpenoid triazine derivatives from allobetulone and betulonic acid with biological activities. Bioorg Med Chem. 2014. July 1; 22(13): 3292–300. 10.1016/j.bmc.2014.04.061 PubMed DOI
Ghosh P, Rasul MdG, Chakraborty M, Mandal A, Saha A. Microwave assisted one-pot synthesis of pyrazine derivatives of pentacyclic triterpenoids and their biological activity. Indian J Chem. Sect B-Org Chem Incl Med Chem. 2011; 50B(10): 1519–23.
Urban M, Kvasnica M, Dickinson NJ, Sarek J. Biologically Active Triterpenoids Usable As Prodrugs In: Bates AR, editor. Terpenoids and Squalene: Biosynthesis, Function and Health Implications. Hauppauge, N.Y.: Nova Science Publishers; 2015. p. 25–50.
Kommera H, Kaluderovic GN, Kalbitz J, Drager B, Paschke R. Small structural changes of pentacyclic lupane type triterpenoid derivatives lead to significant differences in their anticancer properties. Eur J Med Chem. 2010. August; 45(8): 3346–53. 10.1016/j.ejmech.2010.04.018 PubMed DOI
Willmann M, Wacheck V, Buckley J, Nagy K, Thalhammer J, Paschke R, et al. Characterization of NVX-207, a novel betulinic acid-derived anti-cancer compound. Eur J Clin Invest. 2009. May; 39(5): 384–94. 10.1111/j.1365-2362.2009.02105.x PubMed DOI
Gauthier C, Legault J, Lavoie S, Rondeau S, Tremblay S, Pichette A. Synthesis and Cytotoxicity of Bidesmosidic Betulin and Betulinic Acid Saponins. J Nat Prod. 2009. January 23; 72(1): 72–81. 10.1021/np800579x PubMed DOI
Gao J, Li X, Gu G, Liu S, Cui M, Lou HX. Facile synthesis of triterpenoid saponins bearing β-Glu/Gal-(1→3)-β-GluA methyl ester and their cytotoxic activities. Bioorg Med Chem Lett. 2012. April 1; 22(7): 2396–400. 10.1016/j.bmcl.2012.02.032 PubMed DOI
Borkova L, Jasikova L, Rehulka J, Frisonsova K, Urban M, Frydrych I, et al. Synthesis of cytotoxic 2,2-difluoroderivatives of dihydrobetulinic acid and allobetulin and study of their impact on cancer cells. Eur J Med Chem. 2015. May 26; 96: 482–90. 10.1016/j.ejmech.2015.03.068 PubMed DOI
Flekhter OB, Karachurina LT, Poroikov VV, Nigmatullina LP, Baltina LA, Zarudii FS, et al. The synthesis and hepatoprotective activity of esters of the lupane group triterpenoids. Russ J Bioorg Chem. 2000; 26(3): 192–200. PubMed
Leunis JC, Couche E, inventors; Betulonic and Betulinic Acid Derivatives. 8586569. 2013.
Borkova L, Gurska S, Dzubak P, Burianova R, Hajduch M, Sarek J, et al. Lupane and 18α-oleanane derivatives substituted in the position 2, their cytotoxicity and influence on cancer cells. Eur J Med Chem. 2016. October 4; 121: 120–31. 10.1016/j.ejmech.2016.05.029 PubMed DOI
Zhang L, Jia X, Dong J, Chen D, Liu J, Zhang L, et al. Synthesis and evaluation of novel oleanolic acid derivatives as potential antidiabetic agents. Chem Biol Drug Des. 2014. March; 83(3): 297–305. 10.1111/cbdd.12241 PubMed DOI
Pertino WM, Lopez C, Theoduloz C, Schmeda-Hirschmann G. 1,2,3-Triazole-Substituted Oleanolic Acid Derivatives: Synthesis and Antiproliferative Activity. Molecules. 2013. July 1; 18(7): 7661–7674. 10.3390/molecules18077661 PubMed DOI PMC
Chakraborty B, Dutta D, Mukherjee S, Das S, Maiti NC, Das P, et al. Synthesis and biological evaluation of a novel betulinic acid derivative as an inducer of apoptosis in human colon carcinoma cells (HT-29). Eur J Med Chem. 2015. September 18; 102: 93–105. 10.1016/j.ejmech.2015.07.035 PubMed DOI
Majeed R, Sangwan PL, Chinthakindi PK, Khan I, Dangroo NA, Thota N, et al. Synthesis of 3-O-propargylated betulinic acid and its 1,2,3-triazoles as potential apoptotic agents. Eur J Med Chem. 2013. May; 63: 782–92. 10.1016/j.ejmech.2013.03.028 PubMed DOI
Govdi AI, Sokolova NV, Sorokina IV, Baev DS, Tolstikova TG, Mamatyuk VI, et al. Synthesis of new betulinic acid-peptide conjugates and in vivo and in silico studies of the influence of peptide moieties on the triterpenoid core activity. Med Chem Commun. 2015; 6(1): 230–8.
Khan I, Guru SK, Rath SK, Chinthakindi PK, Singh B, Koul S, et al. A novel triazole derivative of betulinic acid induces extrinsic and intrinsic apoptosis in human leukemia HL-60 cells. Eur J Med Chem. 2016. January 27; 108: 104–16. 10.1016/j.ejmech.2015.11.018 PubMed DOI
Csuk R, Barthel A, Sczepek R, Siewert B, Schwarz S. Synthesis, Encapsulation and Antitumor Activity of New Betulin Derivatives. Arch Pharm Chem Life Sci. 2011. January 1; 344(1): 37–49. PubMed
Csuk R, Barthel A, Kluge R, Ströhl D. Synthesis, cytotoxicity and liposome preparation of 28-acetylenic betulin derivatives. Bioorg Med Chem. 2010. October 15; 18(20): 7252–9. 10.1016/j.bmc.2010.08.023 PubMed DOI
Vasilevsky SF, Govdi AI, Sorokina IV, Tolstikova TG, Baev DS, Tolstikov GA, et al. Rapid access to new bioconjugates of betulonic acid via click chemistry. Bioorg Med Chem Lett. 2011. January 1; 21(1): 62–5. 10.1016/j.bmcl.2010.11.072 PubMed DOI
Govdi AI, Vasilevsky SF, Nenajdenko VG, Sokolova NV, Tolstikov GA. 1,3-Cycloaddition synthesis of 1,2,3-triazole conjugates of betulonic acid with peptides. Russ Chem Bull. 2011; 60(11): 2401–5.
Dang Thi TA, Kim Tuyet NT, Pham The C, Thanh Nguyen H, Ba Thi C, Doan Duy T, et al. Synthesis and cytotoxic evaluation of novel ester-triazole-linked triterpenoid-AZT conjugates. Bioorg Med Chem Lett. 2014. November 15; 24(22): 5190–4. 10.1016/j.bmcl.2014.09.079 PubMed DOI
Rodríguez-Hernández D, Demuner AJ, Barbosa LC, Heller L, Csuk R. Novel hederagenin-triazolyl derivatives as potential anti-cancer agents. Eur J Med Chem. 2016. June 10; 115: 257–67. 10.1016/j.ejmech.2016.03.018 PubMed DOI
Rashid S, Dar BA, Majeed R, Hamid A, Bhat BA. Synthesis and biological evaluation of ursolic acid-triazolyl derivatives as potential anti-cancer agents. Eur J Med Chem. 2013. August; 66: 238–45. 10.1016/j.ejmech.2013.05.029 PubMed DOI
Rodríguez-Hernández D, Barbosa LC, Demuner AJ, de Almeida RM, Fujiwara RT, Ferreira SR. Highly potent anti-leishmanial derivatives of hederagenin, a triperpenoid from Sapindus saponaria L. Eur J Med Chem. 2016. November 29; 124: 153–159. 10.1016/j.ejmech.2016.08.030 PubMed DOI
Gruza M, Jatczak K, Komor K, Świerk P, Szeja W, Grynkiewicz G. Synthesis of protoescigenin glycoconjugates with O-28 triazole linker. Acta Pol Pharm. 2014. Nov-Dec; 71(6): 959–65. PubMed
Wei G, Luan W, Wang S, Cui S, Li F, Liu Y, Liu Y, Cheng M. A library of 1,2,3-triazole-substituted oleanolic acid derivatives as anticancer agents: design, synthesis, and biological evaluation. Org Biomol Chem. 2015. February 7;13(5):1507–14. 10.1039/c4ob01605j PubMed DOI
Antimonova A, Petrenko N, Shakirov M, Rybalova T, Frolova T, Shul'ts E, et al. Synthesis and study of mutagenic properties of lupane triterpenoids containing 1,2,3-triazole fragments in the C-30 position. Chem Nat Compd. 2013. September; 49(4): 657–64.
Shi W, Tang N, Yan WD. Synthesis and cytotoxicity of triterpenoids derived from betulin and betulinic acid via click chemistry. J Asian Nat Prod Res. 2015; 17(2): 159–69. 10.1080/10286020.2014.979164 PubMed DOI
Spivak AY, Gubaidullin RR, Galimshina ZR, Nedopekina DA, Odinokov VN. Effective synthesis of novel C(2)-propargyl derivatives of betulinic and ursolic acids and their conjugation with β-d-glucopyranoside azides via click chemistry. Tetrahedron. 2016. March 3; 72(9): 1249–56.
Parida PK, Sau A, Ghosh T, Jana K, Biswas K, Raha S, Misra AK. Synthesis and evaluation of triazole linked glycosylated 18β-glycyrrhetinic acid derivatives as anticancer agents. Bioorg Med Chem Lett. 2014. August 15; 24(16): 3865–8. 10.1016/j.bmcl.2014.06.054 PubMed DOI
Waring MJ. Lipophilicity in drug discovery. Expert Opin Drug Discov. 2010. March; 5(3): 235–48. 10.1517/17460441003605098 PubMed DOI
Dalvie DK, Kalgutkar AS, Khojasteh-Bakht SC, Obach RS, O'Donnell JP. Biotransformation reactions of five-membered aromatic heterocyclic rings. Chem Res Toxicol. 2002. March; 15(3): 269–99. PubMed
Urban M, Sarek J, Tislerova I, Dzubak P, Hajduch M. Influence of esterification and modification of A-ring in a group of lupane acids on their cytotoxicity. Bioorg Med Chem. 2005. October 1; 13(19): 5527–35. 10.1016/j.bmc.2005.07.011 PubMed DOI
Kim DSHL, Pezzuto JM, Pisha E. Synthesis of betulinic acid derivatives with activity against human melanoma. Bioorg Med Chem Lett. 1998. July 7; 8(13): 1707–12. PubMed
Qian K, Kim SY, Hung HY, Huang L, Chen CH, Lee KH. New betulinic acid derivatives as potent proteasome inhibitors. Bioorg Med Chem Lett. 2011. October 1; 21(19): 5944–7. 10.1016/j.bmcl.2011.07.072 PubMed DOI PMC
Uzenkova NV, Petrenko NI, Shakirov MM, Shul'ts EE, Tolstikov GA. Synthesis of 30-Amino Derivatives of Lupane Triterpenoids. Chem Nat Compd. 2005; 41(6): 692–700.
Srinivasan T, Srivastava GK, Pathak A, Batra S, Raj K, Singh K, et al. Solid-phase synthesis and bioevaluation of Lupeol-based libraries as antimalarial agents. Bioorg Med Chem Lett. 2002. October 21; 12(20): 2803–6. PubMed
Soural M, Hodon J, Dickinson NJ, Sidova V, Gurska S, Dzubak P, et al. Preparation of Conjugates of Cytotoxic Lupane Triterpenes with Biotin. Bioconjugate Chem. 2015. December 16; 26(12): 2563–70. PubMed
Noskova V, Dzubak P, Kuzmina G, Ludkova A, Stehlik D, Trojanec R, et al. In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma. 2002; 49(6): 418–25. PubMed
Kim HK, Kong MY, Jeong MJ, Han DC, Choi JD, Kim HY, et al. Investigation of cell cycle arrest effects of actinomycin D at G1 phase using proteomic methods in B104-1-1 cells. Int J Biochem Cell Biol. 2005. September; 37(9): 1921–9. 10.1016/j.biocel.2005.04.015 PubMed DOI
Patro JN, Urban M, Kuchta RD. Interaction of Human DNA Polymerase alpha and DNA Polymerase I from Bacillus stearothermophilus with Hypoxanthine and 8-Oxoguanine Nucleotides Biochemistry 2009. September 1; 48(34): 8271–8. 10.1021/bi900777s PubMed DOI PMC
Bourderioux A, Nauš P, Perlíková P, Pohl R, Pichová I, Votruba I, et al. Synthesis and Significant Cytostatic Activity of 7-Hetaryl-7-deazaadenosines. J Med Chem. 2011. August 11; 54(15): 5498–507. 10.1021/jm2005173 PubMed DOI