Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28166248
PubMed Central
PMC5293277
DOI
10.1371/journal.pone.0171417
PII: PONE-D-16-30193
Knihovny.cz E-zdroje
- MeSH
- buněčné sféroidy MeSH
- difuze MeSH
- extracelulární matrix MeSH
- fenotyp MeSH
- fixní kombinace léků MeSH
- hydrogely MeSH
- kolagen * chemie ultrastruktura MeSH
- konfokální mikroskopie MeSH
- laminin * chemie ultrastruktura MeSH
- lidé MeSH
- mechanické jevy MeSH
- metastázy nádorů MeSH
- mikrofluidika * metody MeSH
- nádorové buněčné linie MeSH
- nádorové buňky kultivované MeSH
- nádorové mikroprostředí MeSH
- pohyb buněk * MeSH
- proteoglykany * chemie ultrastruktura MeSH
- tkáňové podpůrné struktury * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fixní kombinace léků MeSH
- hydrogely MeSH
- kolagen * MeSH
- laminin * MeSH
- matrigel MeSH Prohlížeč
- proteoglykany * MeSH
Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.
Bioengineering and Aerospace Engineering Department Universidad Carlos 3 de Madrid Leganes Madrid
Biomedical Engineering Division Instituto de Investigación Sanitaria Gregorio Marañón Madrid Spain
Centre for Biomedical Image Analysis Faculty of Informatics Masaryk University Brno Czech Republic
Department of Immunology and Inmunotherapy CIMA Pamplona Navarra Spain
Zobrazit více v PubMed
Chaffer CL, Weinberg RA. Perspective on cancer cell metastasis. Science. 2011; 331:1559–1564. 10.1126/science.1203543 PubMed DOI
Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003; 3:453–458. 10.1038/nrc1098 PubMed DOI
Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007; 2(2):329–33. 10.1038/nprot.2007.30 PubMed DOI
Doyle A. D., Petrie R. J., Kutys M. L., Yamada K. M. Dimensions in Cell Migration. Curr Opin in Cell Biol. 2013; 25(5), 642–649. PubMed PMC
Shaw LM, Tumor cell invasion assays. Methods Mol Biol. 2005; 294:97–105 PubMed
Condeelis J and Segall JE. Intravital imaging of cell movement in tumors. Nat Rev Cancer. 2003; 3:921–930. 10.1038/nrc1231 PubMed DOI
Sung KE, Yang N, Pehlke C, Keely PJ, Eliceiri KW. Friedl A, et al. Transition to invasion in breast cancer: A microfluidic in vitro model enables examination of spatial and temporal effects. Integr Biol (Camb). 2011; 3:439–450. PubMed PMC
Mak M, Reinhart-King CA, Erickson D. Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. Lab Chip. 2013; 13:340–348. 10.1039/c2lc41117b PubMed DOI PMC
Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Three dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A. 2012; 109:13515–1352. 10.1073/pnas.1210182109 PubMed DOI PMC
Song JW, Cavnar SP, Walker AC, Luker KE, Gupta M, Tung YC, et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One. 2009; 4:e5756 10.1371/journal.pone.0005756 PubMed DOI PMC
Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. In vitro model of tumor cell extravasation. PLoS One. 2013; 8:e56910 (2013). PubMed PMC
Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Mechanotransduction of fluid stressed governs 3D cell migration. Pro Natl Acad Sci U S A. 2014; 111(7):2447–52. PubMed PMC
Wolf K, Lindert M, Krause M, Alexander S, Riet J, Wilis A, et al. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol. 2013;201(7):1069–1084. 10.1083/jcb.201210152 PubMed DOI PMC
Chung S, Sudo R, Marck PJ, Wan CR, Vickerman V, Kamm RD. Cell migration into scaffolds under co-culture condition in a microfluidic platform. Lab Chip. 2009;9:269–275. 10.1039/b807585a PubMed DOI
Lang NR, Skodzek K, Hurst S, Mainka A, Steinwachs J, Schneider J, et al. Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolumer networks. Acta Biomater. 2015;13:61–67. 10.1016/j.actbio.2014.11.003 PubMed DOI PMC
Lautscham LA, Kämmerer, Lange JR, Kolb T, Mark C, Schilling A, et al. Migration in confined 3D environments is determined by a combination of adhesiveness, nuclear volume, contractility and cell stiffness. Biophys J. 2015;109:900–913. 10.1016/j.bpj.2015.07.025 PubMed DOI PMC
Steinwachs J, Metzner C, Skodzek K, Lang N, Thievessen I, Mark C, et al. Three-dimensional force microscopy of cells in biopolymer networks. Nat Methods. 2016;13(2):171–176. 10.1038/nmeth.3685 PubMed DOI
Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003; 33:49–64. 10.1038/ng1060 PubMed DOI
Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler TE, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009; 139:891–906. 10.1016/j.cell.2009.10.027 PubMed DOI PMC
Petrie RJ, Gavara N, Chadwick RS, Yamada KM. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J Cell Biol. 2012;197:439–455. 10.1083/jcb.201201124 PubMed DOI PMC
Kleinman HK, Martin GR. Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol. 2005; 15:378–386. 10.1016/j.semcancer.2005.05.004 PubMed DOI
Zaman MH, Trapani LM, Siemiski AL, MacKellar D, Gong H, Kamm RD, et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A. 2006;103:10889–10894. 10.1073/pnas.0604460103 PubMed DOI PMC
Poincloux R, Collin O, Lizárraga F, Romao M, Debray M, Piel M, et al. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc Natl Acad Sci U S A. 2011;108:1943–1948 10.1073/pnas.1010396108 PubMed DOI PMC
Tsai KKC, Chuang EYY, Little JB, Yuan ZM. Cellular mechanisms for low-dose ionizing radiation-induced perturbation of breast tissue microenvironment. Cancer Res. 2005;65(15):6734–6744. 10.1158/0008-5472.CAN-05-0703 PubMed DOI
Petrie RJ, Yamada KM. At the leading edge of three-dimensional cell migration. J Cell Sci. 2012;125: 5917–5926. 10.1242/jcs.093732 PubMed DOI PMC
Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc. 2012; 7, 1247–1259. 10.1038/nprot.2012.051 PubMed DOI PMC
Rasband WS, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2016.
Hotaling NA, Bharti K, Kriel H, Simon CG Jr.. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomater. 2015;61:327–38. PubMed PMC
Nock R., Nielsen F. (2004), "Statistical Region Merging", IEEE Trans Pat Anal Mach Intell. 26 (11): 1452–1458 PubMed
Zhang TY, Suen CY. A Fast Parallel Algorithm for Thinning Digital Patterns. Commun ACM. 1984;27:236–9.
Okabe A. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. 2 edition Chichester; New York: Wiley; 2000.
Maška M, Ederra C, Fernández-Marqués J, Muñoz-Barrutia A, Kozubek M, Ortiz-de-Solorzano C. Quantification of the 3D collagen network geometry in confocal reflection microscopy. In 22nd IEEE International Conference on Image Processing, 2015, pp. 1791–1794. PubMed
Jacob M, Unser M. Design of steerable filters for feature detection using Canny-like criteria. IEEE Trans Pat Anal Mach Intell. 2004; 26(8):1007–1019. PubMed
Stein AM, Vader DA, Jawerth LM, Weitz DA, Sander LM. An algorithm for extracting the network geometry of three-dimensional collagen gells. J Microsc. 2008; 232(3):463–475. 10.1111/j.1365-2818.2008.02141.x PubMed DOI
Mickel W, Munster S, Jawerth LM, Vader DA, Weitz DA, Sheppard AP, et al. Robust pore size analysis of filamentous networks from three-dimensional confocal microscopy. Biophys J. 2008; 95(12):6072–6080. 10.1529/biophysj.108.135939 PubMed DOI PMC
Zuiderverld K. Contrast limited adaptive histogram equalization. Graphics Gems. 1994; 1(4):474–485.
Maška M, Daněk O, Garasa S, Rouzaut A, Muñoz-Barrutia A, Ortiz-de-Solorzano C. Segmentation and shape tracking of whole fluorescent cells based on the Chan-Vese model. IEEE Trans Med Imag. 2013; 32(6):995–1006. PubMed
Kiss A, Horvath P, Rothballer A, Kutay U, Csucs G. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components. PLoS ONE. 2014; 9(4):1–16. PubMed PMC
Wu PH, Giri A, Wirtz D. Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat Protoc. 2015; 10(3):517–527. 10.1038/nprot.2015.030 PubMed DOI PMC
Liu Y-J, Le Berre M, Lautenschlaeger F., Maiuri P, Callan-Jones A, Heuzé M, et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 2015;160:659–672. 10.1016/j.cell.2015.01.007 PubMed DOI
Friedl P-. Tumor-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003; 3, 362–374. 10.1038/nrc1075 PubMed DOI
Pathak A, Kumar S. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr Biol (Camb). 2011;3(4):267–278. PubMed
Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003; 160(2):267–77). 10.1083/jcb.200209006 PubMed DOI PMC
Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Söldner R, Hirsh K, et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 2008;453:51–57. 10.1038/nature06887 PubMed DOI
Wennenberg K, Lohikangas L, Gullberg D, Pfaff M, Johansson S, Fässler R. B1 integrin-dependent and—independent polymerization of fibronectin. Jl Cell Biol. 1996; 132:227–238. PubMed PMC