• This record comes from PubMed

Tissue perfusion modelling in optical coherence tomography

. 2017 Feb 08 ; 16 (1) : 27. [epub] 20170208

Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 28178998
PubMed Central PMC5299764
DOI 10.1186/s12938-017-0320-4
PII: 10.1186/s12938-017-0320-4
Knihovny.cz E-resources

BACKGROUND: Optical coherence tomography (OCT) is a well established imaging technique with different applications in preclinical research and clinical practice. The main potential for its application lies in the possibility of noninvasively performing "optical biopsy". Nevertheless, functional OCT imaging is also developing, in which perfusion imaging is an important approach in tissue function study. In spite of its great potential in preclinical research, advanced perfusion imaging using OCT has not been studied. Perfusion analysis is based on administration of a contrast agent (nanoparticles in the case of OCT) into the bloodstream, where during time it specifically changes the image contrast. Through analysing the concentration-intensity curves we are then able to find out further information about the examined tissue. METHODS: We have designed and manufactured a tissue mimicking phantom that provides the possibility of measuring dilution curves in OCT sequence with flow rates 200, 500, 1000 and 2000 μL/min. The methodology comprised of using bolus of 50 μL of gold nanorods as a contrast agent (with flow rate 5000 μL/min) and continuous imaging by an OCT system. After data acquisition, dilution curves were extracted from OCT intensity images and were subjected to a deconvolution method using an input-output system description. The aim of this was to obtain impulse response characteristics for our model phantom within the tissue mimicking environment. Four mathematical tissue models were used and compared: exponential, gamma, lagged and LDRW. RESULTS: We have shown that every model has a linearly dependent parameter on flow ([Formula: see text] values from 0.4914 to 0.9996). We have also shown that using different models can lead to a better understanding of the examined model or tissue. The lagged model surpassed other models in terms of the minimisation criterion and [Formula: see text] value. CONCLUSIONS: We used a tissue mimicking phantom in our study and showed that OCT can be used for advanced perfusion analysis using mathematical model and deconvolution approach. The lagged model with three parameters is the most appropriate model. Nevertheless, further research have to be performed, particularly with real tissue.

See more in PubMed

Fieselmann A, Kowarschik M, Ganguly A, Hornegger J, Fahrig R. Deconvolution-based CT and MR brain perfusion measurement: theoretical model revisited and practical implementation details. Int J Biomed Imag. 2011;2011:467563. doi: 10.1155/2011/467563. PubMed DOI PMC

Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13. doi: 10.1016/j.nbd.2003.12.016. PubMed DOI

Lee T-Y. Functional CT: physiological models. Trends Biotechnol. 2002;20(8):3–10. doi: 10.1016/S0167-7799(02)02035-8. PubMed DOI

Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Jain RK, Torchilin VP. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55(17):3752–3756. PubMed

Park K. Extravascular transport of nanoparticles in solid tumors. J Control Release. 2012;161(3):967. doi: 10.1016/j.jconrel.2012.07.016. PubMed DOI

Aktas Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quinoá E, Riguera R, Sargon MF, Celik HH, Demir AS, Hincal A, Dalkara T, Capan Y, Couvreur P. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjugate Chem. 2005;16(6):1503. doi: 10.1021/bc050217o. PubMed DOI

Koffie RM, Farrar CT, Saidi L-J, William CM, Hyman BT, Spires-Jones TL. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci USA. 2011;108(46):18837–18842. doi: 10.1073/pnas.1111405108. PubMed DOI PMC

Lin Y, Pan Y, Shi Y, Huang X, Jia N, Jiang JY. Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain. Nanotechnology. 2012;23:165101. doi: 10.1088/0957-4484/23/16/165101. PubMed DOI

Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu X-HN. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano. 2007;1(2):133–143. doi: 10.1021/nn700048y. PubMed DOI PMC

Alsberg E, Feinstein E, Joy MP, Prentiss M, Ingber DE. Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. Tissue Eng. 2006;12(11):3247–3256. doi: 10.1089/ten.2006.12.3247. PubMed DOI

Pogue BW, Patterson MS. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt. 2006;11(4):041102. doi: 10.1117/1.2335429. PubMed DOI

Bykov AV, Popov AP, Priezzhev AV, Myllyla R. Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging. Proc SPIE. 2011;8091:80911–809116. doi: 10.1117/12.889923. DOI

Podlipna P, Kolar R. Single fiber perfusion phantom for optical coherence tomography. In: SPIE proceedings. Munich: Optical Society of America; 2013.

Stohanzlova P, Kolar R. Flow rate estimation by optical coherence tomography using contrast dilution approach. In: SPIE proceedings. Munich: Optical Society of America; 2015.

Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007;7(7):1929–1934. doi: 10.1021/nl070610y. PubMed DOI

Zhou F, Wei H, Ye X, Hu K, Wu G, Yang H, He Y, Xie S, Guo Z. Influence of nanoparticles accumulation on optical properties of human normal and cancerous liver tissue in vitro estimated by OCT. Phys Med Biol. 2015;60(3):1385–1397. doi: 10.1088/0031-9155/60/3/1385. PubMed DOI

Koh TS, Bisdas S, Koh DM, Thng CH. Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI. J Magn Reson Imag. 2011;34(6):1262–1276. doi: 10.1002/jmri.22795. PubMed DOI

Strouthos C, Lampaskis M, Sboros V, Mcneilly A, Averkiou M. Indicator dilution models for the quantification of microvascular blood flow with bolus administration of ultrasound contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(6):1296–1310. doi: 10.1109/TUFFC.2010.1550. PubMed DOI

Thompson HK, Starmer CF, Whalen RE, Mcintosh HD. Indicator transit time considered as a gamma variate. Circ Res. 1964;14(June):502–515. doi: 10.1161/01.RES.14.6.502. PubMed DOI

Forbes C, Evans M, Hastings N, Peacock B. Gamma distribution. In: Statistical distributions. Wiley: New Jersey; 2010. p. 109–113. doi: 10.1002/9780470627242.ch22.

Brands J, Vink H, Van Teeffelen JWGE. Comparison of four mathematical models to analyze indicator-dilution curves in the coronary circulation. Med Biol Eng Comput. 2011;49(12):1471–1479. doi: 10.1007/s11517-011-0845-9. PubMed DOI PMC

Perezjuste J, Pastorizasantos I, Lizmarzan L, Mulvaney P. Gold nanorods: synthesis, characterization and applications. Coord Chem Rev. 2005;249(17–18):1870–1901. doi: 10.1016/j.ccr.2005.01.030. DOI

Murphy CJ, Thompson LB, Alkilany AM, Sisco PN, Boulos SP, Sivapalan ST, Yang JA, Chernak DJ, Huang J. The many faces of gold nanorods. J Phys Chem Lett. 2010;1(19):2867–2875. doi: 10.1021/jz100992x. DOI

Huang X, Neretina S, El-Sayed M. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21(48):4880–4910. doi: 10.1002/adma.200802789. PubMed DOI

Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Exp. 2003;11(18):2183–2189. doi: 10.1364/OE.11.002183. PubMed DOI

Schmitt JM, Xiang SH, Yung KM. Speckle in optical coherence tomography. J Biomed Opt. 1999;4(1):95. doi: 10.1117/1.429925. PubMed DOI

Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J Optim. 1998;9(1):112–147. doi: 10.1137/S1052623496303470. DOI

Smith GT, Dwork N, O’Conner D, Sikora U, Lurie KL, Pauly JM, Ellerbee AK. Automated, depth resolved estimation of attenuation coefficient from optical coherence tomography data. IEEE Trans Med Imag. 2015;34(12):2592–2602. doi: 10.1109/TMI.2015.2450197. PubMed DOI PMC

Chang S, Flueraru C, Mao Y, Sherif S. Attenuation compensation for optical coherence tomography imaging. Opt Commun. 2009;282(23):4503–4507. doi: 10.1016/j.optcom.2009.08.030. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...