Basal and Activated Calcium Sensitization Mediated by RhoA/Rho Kinase Pathway in Rats with Genetic and Salt Hypertension
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
28197417
PubMed Central
PMC5288518
DOI
10.1155/2017/8029728
Knihovny.cz E-resources
- MeSH
- Animals, Genetically Modified MeSH
- Hypertension etiology genetics metabolism pathology MeSH
- rho-Associated Kinases antagonists & inhibitors genetics MeSH
- Rats MeSH
- Humans MeSH
- Rats, Inbred Dahl MeSH
- Rats, Inbred SHR MeSH
- Signal Transduction drug effects MeSH
- Sympathetic Nervous System metabolism pathology MeSH
- Calcium administration & dosage metabolism MeSH
- Vasoconstriction genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- rho-Associated Kinases MeSH
- Calcium MeSH
Calcium sensitization mediated by RhoA/Rho kinase pathway can be evaluated either in the absence (basal calcium sensitization) or in the presence of endogenous vasoconstrictor systems (activated calcium sensitization). Our aim was to compare basal and activated calcium sensitization in three forms of experimental hypertension with increased sympathetic tone and enhanced calcium entry-spontaneously hypertensive rats (SHR), heterozygous Ren-2 transgenic rats (TGR), and salt hypertensive Dahl rats. Activated calcium sensitization was determined as blood pressure reduction induced by acute administration of Rho kinase inhibitor fasudil in conscious rats with intact sympathetic nervous system (SNS) and renin-angiotensin system (RAS). Basal calcium sensitization was studied as fasudil-dependent difference in blood pressure response to calcium channel opener BAY K8644 in rats subjected to RAS and SNS blockade. Calcium sensitization was also estimated from reduced development of isolated artery contraction by Rho kinase inhibitor Y-27632. Activated calcium sensitization was enhanced in all three hypertensive models (due to the hyperactivity of vasoconstrictor systems). In contrast, basal calcium sensitization was reduced in SHR and TGR relative to their controls, whereas it was augmented in salt-sensitive Dahl rats relative to their salt-resistant controls. Similar differences in calcium sensitization were seen in femoral arteries of SHR and Dahl rats.
See more in PubMed
Somlyo A. P., Somlyo A. V. Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. Journal of Physiology. 2000;522(2):177–185. doi: 10.1111/j.1469-7793.2000.t01-2-00177.x. PubMed DOI PMC
Wirth A. Rho kinase and hypertension. Biochimica et Biophysica Acta. 2010;1802(12):1276–1284. doi: 10.1016/j.bbadis.2010.05.002. PubMed DOI
Shi J., Wei L. Rho kinases in cardiovascular physiology and pathophysiology: the effect of fasudil. Journal of Cardiovascular Pharmacology. 2013;62(4):341–354. doi: 10.1097/fjc.0b013e3182a3718f. PubMed DOI PMC
Loirand G., Pacaud P. Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension. Small GTPases. 2014;5(4) doi: 10.4161/sgtp.28846.e983866 PubMed DOI PMC
Shimokawa H., Sunamura S., Satoh K. RhoA/Rho-Kinase in the cardiovascular system. Circulation Research. 2016;118(2):352–366. doi: 10.1161/circresaha.115.306532. PubMed DOI
Narita H., Nagao T., Yabana H., Yamaguchi I. Hypotensive and diuretic actions of diltiazem in spontaneously hypertensive and Wistar Kyoto Rats. Journal of Pharmacology and Experimental Therapeutics. 1983;227(2):472–477. PubMed
Takata Y., Hutchinson J. S. Exaggerated hypotensive responses to calcium antagonists in spontaneously hypertensive rats. Clinical and Experimental Hypertension, Part A: Theory and Practice. 1983;5(6):827–847. doi: 10.3109/10641968309081811. PubMed DOI
Sharma J. N., Fernandez P. G., Laher I., Triggle C. R. Differential sensitivity of Dahl salt-sensitive and Dahl salt-resistant rats the hypotensive action of acute nifedipine administration. Canadian Journal of Physiology and Pharmacology. 1984;62(2):241–243. doi: 10.1139/y84-036. PubMed DOI
Kuneš J., Hojná S., Kadlecová M., et al. Altered balance of vasoactive systems in experimental hypertension: the role of relative NO deficiency. Physiological Research. 2004;53, S1:S23–S34. PubMed
Uehata M., Ishizaki T., Satoh H., et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–994. doi: 10.1038/40187. PubMed DOI
Mukai Y., Shimokawa H., Matoba T., et al. Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. The FASEB Journal. 2001;15(6):1062–1064. PubMed
Löhn M., Steioff K., Bleich M., Busch A. E., Ivashchenko Y. Inhibition of Rho-kinase stimulates nitric oxide-independent vasorelaxation. European Journal of Pharmacology. 2005;507(1–3):179–186. doi: 10.1016/j.ejphar.2004.11.047. PubMed DOI
Behuliak M., Pintérová M., Bencze M., et al. Ca2+ sensitization and Ca2+ entry in the control of blood pressure and adrenergic vasoconstriction in conscious Wistar-Kyoto and spontaneously hypertensive rats. Journal of Hypertension. 2013;31(10):2025–2035. doi: 10.1097/hjh.0b013e328362adb3. PubMed DOI
Dhaliwal J. S., Casey D. B., Greco A. J., et al. Rho kinase and Ca2+ entry mediate increased pulmonary and systemic vascular resistance in L-NAME-treated rats. American Journal of Physiology—Lung Cellular and Molecular Physiology. 2007;293(5):L1306–L1313. doi: 10.1152/ajplung.00189.2007. PubMed DOI
Casey D. B., Badejo A. M., Dhaliwal J. S., et al. Analysis of responses to the Rho-kinase inhibitor Y-27632 in the pulmonary and systemic vascular bed of the rat. American Journal of Physiology—Heart and Circulatory Physiology. 2010;299(1):H184–H192. doi: 10.1152/ajpheart.00181.2009. PubMed DOI PMC
Shimokawa H., Satoh K. 2015 ATVB plenary lecture: translational research on Rho-kinase in cardiovascular medicine. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35(8):1756–1769. doi: 10.1161/atvbaha.115.305353. PubMed DOI
Masumoto A., Hirooka Y., Shimokawa H., Hironaga K., Setoguchi S., Takeshita A. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension. 2001;38(6):1307–1310. doi: 10.1161/hy1201.096541. PubMed DOI
Smith C. J., Santhanam L., Alexander L. M. Rho-Kinase activity and cutaneous vasoconstriction is upregulated in essential hypertensive humans. Microvascular Research. 2013;87:58–64. doi: 10.1016/j.mvr.2013.02.005. PubMed DOI PMC
Komers R., Oyama T. T., Beard D. R., et al. Rho kinase inhibition protects kidneys from diabetic nephropathy without reducing blood pressure. Kidney International. 2011;79(4):432–442. doi: 10.1038/ki.2010.428. PubMed DOI
Komers R. Rho kinase inhibition in diabetic kidney disease. British Journal of Clinical Pharmacology. 2013;76(4):551–559. doi: 10.1111/bcp.12196. PubMed DOI PMC
Nishikimi T., Matsuoka H. Molecular mechanisms and therapeutic strategies of chronic renal injury: renoprotective effect of Rho-kinase inhibitor in hypertensive glomerulosclerosis. Journal of Pharmacological Sciences. 2006;100(1):22–28. doi: 10.1254/jphs.fmj05003x5. PubMed DOI
Pecháňová O., Dobešová Z., Čejka J., Kuneš J., Zicha J. Vasoactive systems in L-NAME hypertension: the role of inducible nitric oxide synthase. Journal of Hypertension. 2004;22(1):167–173. doi: 10.1097/00004872-200401000-00026. PubMed DOI
Pintérová M., Karen P., Kuneš J., Zicha J. Role of nifedipine-sensitive sympathetic vasoconstriction in maintenance of high blood pressure in spontaneously hypertensive rats: effect of Gi-protein inactivation by pertussis toxin. Journal of Hypertension. 2010;28(5):969–978. doi: 10.1097/hjh.0b013e328335dd49. PubMed DOI
Behuliak M., Pintérová M., Kune J., Zicha J. Vasodilator efficiency of endogenous prostanoids, Ca2+-activated K+ channels and nitric oxide in rats with spontaneous, salt-dependent or NO-deficient hypertension. Hypertension Research. 2011;34(8):968–975. doi: 10.1038/hr.2011.82. PubMed DOI
Zicha J., Dobešová Z., Behuliak M., Kuneš J., Vaněčková I. Preventive dietary potassium supplementation in young salt-sensitive Dahl rats attenuates development of salt hypertension by decreasing sympathetic vasoconstriction. Acta Physiologica. 2011;202(1):29–38. doi: 10.1111/j.1748-1716.2010.02248.x. PubMed DOI
Vaněčková I., Dobešová Z., Kuneš J., Zicha J. The effects of repeated delivery of angiotensin II AT1 receptor antisense on distinct vasoactive systems in Ren-2 transgenic rats: young vs. adult animals. Hypertension Research. 2012;35(7):761–768. doi: 10.1038/hr.2012.29. PubMed DOI
Sauzeau V., Le Jeune H., Cario-Toumaniantz C., et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. Journal of Biological Chemistry. 2000;275(28):21722–91729. doi: 10.1074/jbc.m000753200. PubMed DOI
Zicha J., Behuliak M., Pintérová M., Bencze M., Kuneš J., Vaněčková I. The interaction of calcium entry and calcium sensitization in the control of vascular tone and blood pressure of normotensive and hypertensive rats. Physiological Research. 2014;63(supplement 1):S19–S27. PubMed
Alvarez S. M., Miner A. S., Browne B. M., Ratz P. H. Failure of Bay K 8644 to induce RhoA kinase-dependent calcium sensitization in rabbit blood vessels. British Journal of Pharmacology. 2010;160(6):1326–1337. doi: 10.1111/j.1476-5381.2010.00751.x. PubMed DOI PMC
Behuliak M., Vavřínová A., Bencze M., et al. Ontogenetic changes in contribution of calcium sensitization and calciumentry to blood pressure maintenance of Wistar-Kyoto and spontaneously hypertensive rats. Journal of Hypertension. 2015;33(12):2443–2454. doi: 10.1097/hjh.0000000000000746. PubMed DOI
Dobešová Z., Kuneš J., Zicha J. The altered balance between sympathetic nervous system and nitric oxide in salt hypertensive Dahl rats: Ontogenetic and F2 hybrid studies. Journal of Hypertension. 2002;20(5):945–955. doi: 10.1097/00004872-200205000-00030. PubMed DOI
Paulis L., Líšková S., Pintérová M., Dobešová Z., Kuneš J., Zicha J. Nifedipine-sensitive noradrenergic vasoconstriction is enhanced in spontaneously hypertensive rats: the influence of chronic captopril treatment. Acta Physiologica. 2007;191(4):255–266. doi: 10.1111/j.1748-1716.2007.01737.x. PubMed DOI
Nelson M. T., Standen N. B., Brayden J. E., Worley J. F., III Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature. 1988;336(6197):382–385. doi: 10.1038/336382a0. PubMed DOI
Tsai M.-H., Jiang M. J. Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflügers Archiv. 2006;453(2):223–232. doi: 10.1007/s00424-006-0133-y. PubMed DOI
Su D. F., Cerutti C., Barrès C., Vincent M., Sassard J. Blood pressure and baroreflex sensitivity in conscious hypertensive rats of Lyon strain. American Journal of Physiology—Heart and Circulatory Physiology. 1986;251(6):H1111–H1117. PubMed
Nedvidek J., Zicha J. Age-dependent changes of baroreflex efficiency in Dahl rats: effects of high salt intake. Physiological Research. 1993;42(3):209–212. PubMed
Borgonio A., Pummer S., Witte K., Lemmer B. Reduced baroreflex sensitivity and blunted endogenous nitric oxide synthesis precede the development of hypertension in TGR(mREN2)27 rats. Chronobiology International. 2001;18(2):215–226. doi: 10.1081/CBI-100103187. PubMed DOI
Paton J. F. R., Waki H., Abdala A. P. L., Dickinson J., Kasparov S. Vascular-brain signaling in hypertension: role of angiotensin II and nitric oxide. Current Hypertension Reports. 2007;9(3):242–247. doi: 10.1007/s11906-007-0043-1. PubMed DOI
Brunová A., Bencze M., Behuliak M., Zicha J. Acute and chronic role of nitric oxide, renin-angiotensin system and sympathetic nervous system in the modulation of calcium sensitization in wistar rats. Physiological Research. 2015;64(4):447–457. PubMed
Zicha J., Behuliak M., Vaneckova I. Decreased Rho-kinase-based calcium sensitization in hypertensive Ren-2 transgenic rats (TGR) Journal of Hypertension. 2016;34(1, article e58) doi: 10.1097/01.hjh.0000500003.18563.05. DOI
Wolfrum S., Dendorfer A., Rikitake Y., et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24(10):1842–1847. doi: 10.1161/01.ATV.0000142813.33538.82. PubMed DOI PMC
Sakurada S., Takuwa N., Sugimoto N., et al. Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circulation Research. 2003;93(6):548–556. doi: 10.1161/01.res.0000090998.08629.60. PubMed DOI
Fernández-Tenorio M., Porras-González C., Castellano A., Del Valle-Rodríguez A., López-Barneo J., Ureña J. Metabotropic regulation of RhoA/Rho-associated kinase by L-type Ca2+ channels: new mechanism for depolarization-evoked mammalian arterial contraction. Circulation Research. 2011;108(11):1348–1357. doi: 10.1161/circresaha.111.240127. PubMed DOI
Hata T., Soga J., Hidaka T., et al. Calcium channel blocker and Rho-associated kinase activity in patients with hypertension. Journal of Hypertension. 2011;29(2):373–379. doi: 10.1097/HJH.0b013e328340902d. PubMed DOI PMC
Kanda T., Wakino S., Hayashi K., Homma K., Ozawa Y., Saruta T. Effect of fasudil on Rho-kinase and nephropathy in subtotally nephrectomized spontaneously hypertensive rats. Kidney International. 2003;64(6):2009–2019. doi: 10.1046/j.1523-1755.2003.00300.x. PubMed DOI
Ishikawa Y., Nishikimi T., Akimoto K., Ishimura K., Ono H., Matsuoka H. Long-term administration of Rho-kinase inhibitor ameliorates renal damage in malignant hypertensive rats. Hypertension. 2006;47(6):1075–1083. doi: 10.1161/01.HYP.0000221605.94532.71. PubMed DOI
Nishikimi T., Koshikawa S., Ishikawa Y., et al. Inhibition of Rho-kinase attenuates nephrosclerosis and improves survival in salt-loaded spontaneously hypertensive stroke-prone rats. Journal of Hypertension. 2007;25(5):1053–1063. doi: 10.1097/HJH.0b013e3280825440. PubMed DOI
Koshikawa S., Nishikimi T., Inaba C., Akimoto K., Matsuoka H. Fasudil, a Rho-kinase inhibitor, reverses L-NAME exacerbated severe nephrosclerosis in spontaneously hypertensive rats. Journal of Hypertension. 2008;26(9):1837–1848. doi: 10.1097/HJH.0b013e328305086c. PubMed DOI
Kobayashi N., Horinaka S., Mita S.-I., et al. Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts. Cardiovascular Research. 2002;55(4):757–767. doi: 10.1016/S0008-6363(02)00457-1. PubMed DOI
Nishikimi T., Akimoto K., Wang X., et al. Fasudil, a Rho-kinase inhibitor, attenuates glomerulosclerosis in Dahl salt-sensitive rats. Journal of Hypertension. 2004;22(9):1787–1796. doi: 10.1097/00004872-200409000-00024. PubMed DOI
Mita S.-I., Kobayashi N., Yoshida K., Nakano S., Matsuoka H. Cardioprotective mechanisms of Rho-kinase inhibition associated with eNOS and oxidative stress-LOX-1 pathway in Dahl salt-sensitive hypertensive rats. Journal of Hypertension. 2005;23(1):87–96. doi: 10.1097/00004872-200501000-00017. PubMed DOI
Fukui S., Fukumoto Y., Suzuki J., et al. Long-term inhibition of Rho-kinase ameliorates diastolic heart failure in hypertensive rats. Journal of Cardiovascular Pharmacology. 2008;51(3):317–326. doi: 10.1097/FJC.0b013e31816533b7. PubMed DOI
Kazda S., Garthoff B., Dycka J., Iwai J. Prevention of malignant hypertension in salt loaded “S” Dahl rats with the calcium antagonist nifedipine. Clinical and Experimental Hypertension A. 1982;4(7):1231–1241. doi: 10.3109/10641968209060786. PubMed DOI
Kazda S., Garthoff B., Luckhaus G. Calcium and malignant hypertension in animal experiment: effects of experimental manipulation of calcium influx. American Journal of Nephrology. 1986;6(supplement 1):145–150. doi: 10.1159/000167239. PubMed DOI
McCaughran J. A., Jr., Juno C. J. Calcium channel blockade with verapamil. Effects on blood pressure, renal, and myocardial adrenergic, cholinergic, and calcium channel receptors in inbred Dahl hypertension-sensitive (S/JR) and hypertension-resitant (R/JR) rats. American Journal of Hypertension. 1988;1(3):255S–262S. PubMed
Porras-González C., González-Rodríguez P., Calderón-Sánchez E., López-Barneo J., Ureña J. Low-dose combination of Rho kinase and L-type Ca2+ channel antagonists for selective inhibition of depolarization-induced sustained arterial contraction. European Journal of Pharmacology. 2014;732(1):130–138. doi: 10.1016/j.ejphar.2014.02.046. PubMed DOI
Altered Balance between Vasoconstrictor and Vasodilator Systems in Experimental Hypertension