Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering

. 2017 Apr 25 ; 131 (8) : 699-713. [epub] 20170216

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu hodnotící studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28209631

Human dental pulp stem cells (hDPSCs) are mesenchymal stem cells that have been successfully used in human bone tissue engineering. To establish whether these cells can lead to a bone tissue ready to be grafted, we checked DPSCs for their osteogenic and angiogenic differentiation capabilities with the specific aim of obtaining a new tool for bone transplantation. Therefore, hDPSCs were specifically selected from the stromal-vascular dental pulp fraction, using appropriate markers, and cultured. Growth curves, expression of bone-related markers, calcification and angiogenesis as well as an in vivo transplantation assay were performed. We found that hDPSCs proliferate, differentiate into osteoblasts and express high levels of angiogenic genes, such as vascular endothelial growth factor and platelet-derived growth factor A. Human DPSCs, after 40 days of culture, give rise to a 3D structure resembling a woven fibrous bone. These woven bone (WB) samples were analysed using classic histology and synchrotron-based, X-ray phase-contrast microtomography and holotomography. WB showed histological and attractive physical qualities of bone with few areas of mineralization and neovessels. Such WB, when transplanted into rats, was remodelled into vascularized bone tissue. Taken together, our data lead to the assumption that WB samples, fabricated by DPSCs, constitute a noteworthy tool and do not need the use of scaffolds, and therefore they are ready for customized regeneration.

Zobrazit více v PubMed

Caplan A.I. (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213, 341–34710.1002/jcp.21200 PubMed DOI

Ferro F., Spelat R., Beltrami A.P., Cesselli D. and Curcio F. (2012) Isolation and characterization of human dental pulp derived stem cells by using media containing low human serum percentage as clinical grade substitutes for bovine serum. PLoS One 7, e48945.10.1371/journal.pone.0048945 PubMed DOI PMC

Laino G., d'Aquino R., Graziano A., Lanza V., Carinci F., Naro F.. et al. (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J. Bone Miner. Res. 20, 1394–140210.1359/JBMR.050325 PubMed DOI

d'Aquino R., Graziano A., Sampaolesi M., Laino G., Pirozzi G., De Rosa A.. et al. (2007) Human postnatal dental pulp cells codifferentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14, 1162–117110.1038/sj.cdd.4402121 PubMed DOI

Lizier N.F., Kerkis A., Gomes C.M., Hebling J., Oliveira C.F., Caplan A.I.. et al. (2012) Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS ONE 7, e39885.10.1371/journal.pone.0039885 PubMed DOI PMC

Ponnaiyan D., Bhat K.M. and Bhat G.S. (2012) Comparison of immuno-phenotypes of stem cells from human dental pulp and periodontal ligament. Int. J. Immunopathol. Pharmacol. 25, 127–13410.1177/039463201202500115 PubMed DOI

Paino F., Ricci G., De Rosa A., d'Aquino R., Laino L., Pirozzi G.. et al. (2010) Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur. Cell Mater. 20, 295–30510.22203/eCM.v020a24 PubMed DOI

Zhang W., Walboomers X.F., Shi S., Fan M. and Jansen J.A. (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12, 2813–282310.1089/ten.2006.12.2813 PubMed DOI

Almushayt A., Narayanan K., Zaki A.E. and George A. (2006) Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Therapy 13, 611–62010.1038/sj.gt.3302687 PubMed DOI

Arthur A., Rychkov G., Shi S., Koblar S.A. and Gronthos S. (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26, 1787–179510.1634/stemcells.2007-0979 PubMed DOI

Lei M., Li K., Li B., Gao L.N., Chen F.M. and Jin Y. (2014) Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials 35, 6332–634310.1016/j.biomaterials.2014.04.071 PubMed DOI

Paino F., La Noce M., Tirino V., Naddeo P., Desiderio V., Pirozzi G.. et al. (2014) Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells 32, 279–28910.1002/stem.1544 PubMed DOI PMC

d'Aquino R., De Rosa A., Lanza V., Tirino V., Laino L., Graziano A.. et al. (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur. Cell Mater. 18, 75–8310.22203/eCM.v018a07 PubMed DOI

Giuliani A., Manescu A., Langer M., Rustichelli F., Desiderio V., Paino F.. et al. (2013) Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl. Med. 2, 316–32410.5966/sctm.2012-0136 PubMed DOI PMC

Tatullo M., Marrelli M., Shakesheff K.M. and White L.J. (2015) Dental pulp stem cells: function, isolation and applications in regenerative medicine. J. Tissue Eng. Regen. Med. 9, 1205–121610.1002/term.1899 PubMed DOI

Albertini G., Giuliani A., Komlev V., Moroncini F., Pugnaloni A., Pennesi G.. et al. (2009) Organization of extracellular matrix fibers within polyglycolic acid-polylactic acid scaffolds analyzed using X-ray synchrotron-radiation phase-contrast micro computed tomography. Tissue Eng. Part C Methods 15, 403–41110.1089/ten.tec.2008.0270 PubMed DOI

Giuliani A., Moroncini F., Mazzoni S., Belicchi M.L., Villa C., Erratico S.. et al. (2014) Polyglycolic acid-polylactic acid scaffold response to different progenitor cell in vitro cultures: a demonstrative and comparative X-ray synchrotron radiation phase-contrast microtomography study. Tissue Eng. Part C Methods 20, 308–31610.1089/ten.tec.2013.0213 PubMed DOI PMC

Sidell D.R., Aghaloo T., Tetradis S., Lee M., Bezouglaia O., DeConde A.. et al. (2012) Composite mandibulectomy: a novel animal model. Otolaryngol. Head Neck Surg. 146, 932–93710.1177/0194599811435633 PubMed DOI PMC

Fan J., Park H., Lee M.K., Bezouglaia O., Fartash A., Kim J.. et al. (2014) Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model. Tissue Eng. Part A 20, 2169–217910.1089/ten.tea.2013.0523 PubMed DOI PMC

Wu X. and Yan A. (2009) Phase retrieval from one single phase contrast x-ray image. Opt. Express 17, 11187–1119610.1364/OE.17.011187 PubMed DOI

Arfelli F., Assante M., Bonvicini V., Bravin A., Cantatore G., Castelli E.. et al. (1998) Low-dose phase contrast X-ray medical imaging. Phys. Med. Biol. 43, 2845–285210.1088/0031-9155/43/10/013 PubMed DOI

Hofmann R., Moosmann J. and Baumbach T. (2011) Criticality in single-distance phase retrieval. Opt. Express 19, 25881–2589010.1364/OE.19.025881 PubMed DOI

Langer M., Cloetens P. and Peyrin F. (2010) Regularization of phase retrieval with phase-attenuation duality prior for 3D holotomography. IEEE Trans. Image Process 19, 2428–243610.1109/TIP.2010.2048608 PubMed DOI

Neve A., Corrado A. and Cantatore F.P. (2013) Osteocalcin: skeletal and extra-skeletal effects. J. Cell Physiol. 228, 1149–115310.1002/jcp.24278 PubMed DOI

Zhou X., Zhang Z., Feng J.Q., Dusevich V.M., Sinha K., Zhang H.. et al. (2010) Multiple functions of Osterix are required for bonegrowth and homeostasis in postnatal mice. Proc. Natl. Acad. Sci. U.S.A. 107, 12919–1292410.1073/pnas.0912855107 PubMed DOI PMC

Bruderer M., Richards R.G., Alini M. and Stoddart M.J. (2014) Role and regulation of RUNX2 in osteogenesis. Eur. Cell Mater. 28, 269–28610.22203/eCM.v028a19 PubMed DOI

Pisciotta A., Riccio M., Carnevale G., Beretti F., Gibellini L., Maraldi T.. et al. (2012) Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo. PLoS One 7, e50542.10.1371/journal.pone.0050542 PubMed DOI PMC

Jiang L., Zhu Y.Q., Du R., Gu Y.X., Xia L., Qin F.. et al. (2008) The expression and role of stromal cell-derived factor-1alpha–CXCR4 axis in human dental pulp. J. Endod. 34, 939–94410.1016/j.joen.2008.05.015 PubMed DOI PMC

Kim D.S., Kim Y.S., Bae W.J., Lee H.J., Chang S.W., Kim W.S.. et al. (2013) The role of SDF-1 and CXCR4 on odontoblastic differentiation in human dental pulp cells. Int. Endod. J. 47, 534–54110.1111/iej.12182 PubMed DOI

Lamalice L., Le Boeuf F. and Huot J. (2007) Endothelial cell migration during angiogenesis. Circ. Res. 100, 782–79410.1161/01.RES.0000259593.07661.1e PubMed DOI

Ball S.G., Shuttleworth C.A. and Kielty C.M. (2007) Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J. Cell. Mol. Med. 11, 1012–103010.1111/j.1582-4934.2007.00120.x PubMed DOI PMC

Brudno Y., Ennett-Shepard A.B., Chen R.R., Aizenberg M. and Mooney D.J. (2013) Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials 34, 9201–920910.1016/j.biomaterials.2013.08.007 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...