Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28222906
DOI
10.1016/j.dental.2017.01.008
PII: S0109-5641(16)30512-7
Knihovny.cz E-zdroje
- Klíčová slova
- Acid-base cements, Small angle neutron scattering, X-ray micro-computed tomography, X-ray powder diffraction, Zinc oxide, Zinc phosphate cements,
- MeSH
- difrakce rentgenového záření MeSH
- fosforečnany vápenaté MeSH
- kostní cementy MeSH
- maloúhlový rozptyl MeSH
- mikroskopie elektronová rastrovací MeSH
- pevnost v tlaku MeSH
- počítačová rentgenová tomografie * MeSH
- testování materiálů MeSH
- zinkfosfátový cement * MeSH
- zubní cementy * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosforečnany vápenaté MeSH
- kostní cementy MeSH
- zinkfosfátový cement * MeSH
- zubní cementy * MeSH
OBJECTIVE: To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. METHODS: X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. RESULTS: The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50μm, decreased compressive strength from 50±3MPa to 39±3MPa, and favored microstructural and compositional inhomogeneities. SIGNIFICANCE: Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake.
Citace poskytuje Crossref.org