Sleep Enhances Recognition Memory for Conspecifics as Bound into Spatial Context

. 2017 ; 11 () : 28. [epub] 20170221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28270755

Social memory refers to the fundamental ability of social species to recognize their conspecifics in quite different contexts. Sleep has been shown to benefit consolidation, especially of hippocampus-dependent episodic memory whereas effects of sleep on social memory are less well studied. Here, we examined the effect of sleep on memory for conspecifics in rats. To discriminate interactions between the consolidation of social memory and of spatial context during sleep, adult Long Evans rats performed on a social discrimination task in a radial arm maze. The Learning phase comprised three 10-min sampling sessions in which the rats explored a juvenile rat presented at a different arm of the maze in each session. Then the rats were allowed to sleep (n = 18) or stayed awake (n = 18) for 120 min. During the following 10-min Test phase, the familiar juvenile rat (of the Learning phase) was presented along with a novel juvenile rat, each rat at an opposite arm of the maze. Significant social recognition memory, as indicated by preferential exploration of the novel over the familiar conspecific, occurred only after post-learning sleep, but not after wakefulness. Sleep, compared with wakefulness, significantly enhanced social recognition during the first minute of the Test phase. However, memory expression depended on the spatial configuration: Significant social recognition memory emerged only after sleep when the rat encountered the novel conspecific at a place different from that of the familiar juvenile in the last sampling session before sleep. Though unspecific retrieval-related effects cannot entirely be excluded, our findings suggest that sleep, rather than independently enhancing social and spatial aspects of memory, consolidates social memory by acting on an episodic representation that binds the memory of the conspecific together with the spatial context in which it was recently encountered.

Zobrazit více v PubMed

Aggleton J. P., Hunt P. R., Rawlins J. N. (1986). The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav. Brain Res. 19, 133–146. 10.1016/0166-4328(86)90011-2 PubMed DOI

Alexander G. M., Farris S., Pirone J. R., Zheng C., Colgin L. L., Dudek S. M. (2016). Social and novel contexts modify hippocampal CA2 representations of space. Nat. Commun. 7:10300. 10.1038/ncomms10300 PubMed DOI PMC

Antunes M., Biala G. (2012). The novel object recognition memory: neurobiology, test procedure and its modifications. Cogn. Process. 13, 93–110. 10.1007/s10339-011-0430-z PubMed DOI PMC

Binder S., Baier P. C., Mölle M., Inostroza M., Born J., Marshall L. (2012). Sleep enhances memory consolidation in the hippocampus dependent object-place recognition task in rats. Neurobiol. Learn. Mem. 97, 213–219. 10.1016/j.nlm.2011.12.004 PubMed DOI

Borquez M., Born J., Navarro V., Betancourt R., Inostroza M. (2014). Sleep enhances inhibitory behavioral control in discrimination learning in rats. Exp. Brain Res. 232, 1469–1477. 10.1007/s00221-013-3797-5 PubMed DOI PMC

Chambon C., Wegener N., Gravius A., Danysz W. (2011). A new automated method to assess the rat recognition memory: validation of the method. Behav. Brain Res. 222, 151–157. 10.1016/j.bbr.2011.03.032 PubMed DOI

Cho S. Y., Lee J. H., Song M. J., Park P. J., Shin E. S., Sohn J. H., et al. . (2010). Effects of chitooligosaccharide lactate salt on sleep deprivation-induced fatigue in mice. Biol. Pharm. Bull. 33, 1128–1132. 10.1248/bpb.33.1128 PubMed DOI

Clemens Z., Fabó D., Halász P. (2005). Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 132, 529–535. 10.1016/j.neuroscience.2005.01.011 PubMed DOI

Colavito V., Fabene P. F., Grassi-Zucconi G., Pifferi F., Lamberty Y., Bentivoglio M., et al. . (2013). Experimental sleep deprivation as a tool to test memory deficits in rodents. Front. Syst. Neurosci. 7:106. 10.3389/fnsys.2013.00106 PubMed DOI PMC

Dellu F., Mayo W., Cherkaoui J., Le Moal M., Simon H. (1992). A two-trial memory task with automated recording: study in young and aged rats. Brain Res. 588, 132–139. 10.1016/0006-8993(92)91352-f PubMed DOI

Diekelmann S., Born J. (2010). The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126. 10.1038/nrn2762 PubMed DOI

Dix S. L., Aggleton J. P. (1999). Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behav. Brain Res. 99, 191–200. 10.1016/s0166-4328(98)00079-5 PubMed DOI

Dudas R. B., Clague F., Thompson S. A., Graham K. S., Hodges J. R. (2005). Episodic and semantic memory in mild cognitive impairment. Neuropsychologia 43, 1266–1276. 10.1016/j.neuropsychologia.2004.12.005 PubMed DOI

Dudchenko P. A. (2001). How do animals actually solve the T maze? Behav. Neurosci. 115, 850–860. 10.1037/0735-7044.115.4.850 PubMed DOI

Engelmann M., Hädicke J., Noack J. (2011). Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure. Nat. Protoc. 6, 1152–1162. 10.1038/nprot.2011.353 PubMed DOI

Engelmann M., Wotjak C. T., Landgraf R. (1995). Social discrimination procedure: an alternative method to investigate juvenile recognition abilities in rats. Physiol. Behav. 58, 315–321. 10.1016/0031-9384(95)00053-l PubMed DOI

Fellini L., Morellini F. (2013). Mice create what-where-when hippocampus-dependent memories of unique experiences. J. Neurosci. 16, 1038–1043. 10.1523/JNEUROSCI.2280-12.2013 PubMed DOI PMC

Haettig J., Stefanko D. P., Multani M. L., Figueroa D. X., McQuown S. C., Wood M. A. (2011). HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn. Mem. 18, 71–79. 10.1101/lm.1986911 PubMed DOI PMC

Hagewoud R., Havekes R., Novati A., Keijser J. N., Van der Zee E. A., Meerlo P. (2010a). Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation. J. Sleep Res. 19, 280–288. 10.1111/j.1365-2869.2009.00799.x PubMed DOI

Hagewoud R., Havekes R., Tiba P. A., Novati A., Hogenelst K., Weinreder P., et al. . (2010b). Coping with sleep deprivation: shifts in regional brain activity and learning strategy. Sleep 33, 1465–1473. PubMed PMC

Hirata I., Mohri I., Kato-Nishimura K., Tachibana M., Kuwada A., Kagitani-Shimono K., et al. . (2016). Sleep problems are more frequent and associated with problematic behaviors in preschoolers with autism spectrum disorder. Res. Dev. Disabil. 49–50, 86–99. 10.1016/j.ridd.2015.11.002 PubMed DOI

Hitti F. L., Siegelbaum S. A. (2014). The hippocampal CA2 region is essential for social memory. Nature 508, 88–92. 10.1038/nature13028 PubMed DOI PMC

Inostroza M., Binder S., Born J. (2013). Sleep-dependency of episodic-like memory consolidation in rats. Behav. Brain Res. 237, 15–22. 10.1016/j.bbr.2012.09.011 PubMed DOI

Ison M. J., Quian Quiroga R., Fried I. (2015). Rapid encoding of new memories by individual neurons in the human brain. Neuron 87, 220–230. 10.1016/j.neuron.2015.06.016 PubMed DOI PMC

Kart-Teke E., De Souza Silva M. A., Huston J. P., Dere E. (2006). Wistar rats show episodic-like memory for unique experiences. Neurobiol. Learn. Mem. 85, 173–182. 10.1016/j.nlm.2005.10.002 PubMed DOI

Kelemen E., Bahrendt M., Born J., Inostroza M. (2014). Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state. Hippocampus 24, 510–515. 10.1002/hipo.22266 PubMed DOI PMC

Kesner R. P., Hunsaker M. R. (2010). The temporal attributes of episodic memory. Behav. Brain Res. 31, 299–309. 10.1016/j.bbr.2009.12.029 PubMed DOI

Kopp C., Longordo F., Nicholson J. R., Lüthi A. (2006). Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J. Neurosci. 26, 12456–12465. 10.1523/JNEUROSCI.2702-06.2006 PubMed DOI PMC

Lukas M., Toth I., Veenema A. H., Neumann I. D. (2013). Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology 38, 916–926. 10.1016/j.psyneuen.2012.09.018 PubMed DOI

Maingret N., Girardeau G., Todorova R., Goutierre M., Zugaro M. (2016). Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat. Neurosci. 19, 959–964. 10.1038/nn.4304 PubMed DOI

Melo I., Ehrlich I. (2016). Sleep supports cued fear extinction memory consolidation independent of circadian phase. Neurobiol. Learn. Mem. 132, 9–17. 10.1016/j.nlm.2016.04.007 PubMed DOI

Moura P. J., Gimenes-Júnior J. A., Valentinuzzi V. S., Xavier G. F. (2009). Circadian phase and intertrial interval interfere with social recognition memory. Physiol. Behav. 96, 51–56. 10.1016/j.physbeh.2008.08.012 PubMed DOI

Mutluer T., Karakoc Demirkaya S., Abali O. (2016). Assessment of sleep problems and related risk factors observed in Turkish children with Autism spectrum disorders. Autism Res. 9, 536–542. 10.1002/aur.1542 PubMed DOI

Noack J., Richter K., Laube G., Haghgoo H. A., Veh R. W., Engelmann M. (2010). Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory. Neurobiol. Learn. Mem. 94, 568–575. 10.1016/j.nlm.2010.09.013 PubMed DOI

Oyanedel C. N., Binder S., Kelemen E., Petersen K., Born J., Inostroza M. (2014). Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats. Behav. Brain Res. 275, 126–130. 10.1016/j.bbr.2014.09.008 PubMed DOI

Pack A. I., Galante R. J., Maislin G., Cater J., Metaxas D., Lu S., et al. . (2007). Novel method for high-throughput phenotyping of sleep in mice. Physiol. Genomics 28, 232–238. 10.1152/physiolgenomics.00139.2006 PubMed DOI

Palchykova S., Winsky-Sommerer R., Meerlo P., Dürr R., Tobler I. (2006). Sleep deprivation impairs object recognition in mice. Neurobiol. Learn. Mem. 85, 263–271. 10.1016/j.nlm.2005.11.005 PubMed DOI

Palchykova S., Winsky-Sommerer R., Tobler I. (2009). Sleep deprivation in the dark period does not impair memory in OF1 mice. Chronobiol. Int. 26, 682–696. 10.1080/07420520902926025 PubMed DOI

Popik P., Vetulani J., Bisaga A., van Ree J. M. (1991). Recognition cue in the rat’s social memory paradigm. J. Basic Clin. Physiol. Pharmacol. 2, 315–327. 10.1515/jbcpp.1991.2.4.315 PubMed DOI

Rasch B., Born J. (2013). About sleep’s role in memory. Physiol. Rev. 93, 681–766. 10.1152/physrev.00032.2012 PubMed DOI PMC

Schwarb H., Watson P. D., Campbell K., Shander C. L., Monti J. M., Cooke G. E., et al. . (2015). Competition and cooperation among relational memory representations. PLoS One 10:11. 10.1371/journal.pone.0143832 PubMed DOI PMC

Sekiguchi R., Wolterink G., van Ree J. M. (1991). Short duration of retroactive facilitation of social recognition in rats. Physiol. Behav. 50, 1253–1256. 10.1016/0031-9384(91)90591-b PubMed DOI

Smith A. S., Williams Avram S. K., Cymerblit-Sabba A., Song J., Young W. S. (2016). Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol. Psychiatry 21, 1137–1144. 10.1038/mp.2015.189 PubMed DOI PMC

Squires A. S., Peddle R., Milway S. J., Harley C. W. (2006). Cytotoxic lesions of the hippocampus do not impair social recognition memory in socially housed rats. Neurobiol. Learn. Mem. 85, 95–101. 10.1016/j.nlm.2005.08.012 PubMed DOI

Thor D. H., Holloway W. R. (1982). Social memory of the male laboratory rat. J. Comp. Physiol. Psychol. 96, 1000–1006. 10.1037/0735-7036.96.6.1000 DOI

van der Kooij M. A., Sandi C. (2012). Social memories in rodents: methods, mechanisms and modulation by stress. Neurosci. Biobehav. Rev. 36, 1763–1772. 10.1016/j.neubiorev.2011.10.006 PubMed DOI

Van Twyver H., Webb W. B., Dube M., Zackheim M. (1973). Effects of environmental and strain differences on EEG and behavioral measurement of sleep. Behav. Biol. 9, 105–110. 10.1016/s0091-6773(73)80173-7 PubMed DOI

Vecsey C. G., Baillie G. S., Jaganath D., Havekes R., Daniels A., Wimmer M., et al. . (2009). Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461, 1122–1125. 10.1038/nature08488 PubMed DOI PMC

Viskontas I. V., Knowlton B. J., Fried I. (2016). Responses of neurons in the medial temporal lobe during encoding and recognition of face-scene pairs. Neuropsychologia 90, 200–209. 10.1016/j.neuropsychologia.2016.07.014 PubMed DOI PMC

Wagner U., Kashyap N., Diekelmann S., Born J. (2007). The impact of post-learning sleep vs. wakefulness on recognition memory for faces with different facial expressions. Neurobiol. Learn. Mem. 87, 679–687. 10.1016/j.nlm.2007.01.004 PubMed DOI

Wintzer M. E., Boehringer R., Polygalov D., McHugh T. J. (2014). The hippocampal ca2 ensemble is sensitive to contextual change. J. Neurosci. 34, 3056–3066. 10.1523/JNEUROSCI.2563-13.2014 PubMed DOI PMC

Wooden J. I., Pido J., Mathews H., Kieltyka R., Montemayor B. A., Ward C. P. (2014). Sleep deprivation impairs recall of social transmission of food preference in rats. Nat. Sci. Sleep 6, 129–135. 10.2147/NSS.s68611 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...