Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
28275945
PubMed Central
PMC5579069
DOI
10.1007/s12223-017-0508-9
PII: 10.1007/s12223-017-0508-9
Knihovny.cz E-resources
- MeSH
- Bacteriological Techniques MeSH
- Chromatography, Gas MeSH
- DNA, Bacterial chemistry genetics MeSH
- Endophytes classification growth & development isolation & purification metabolism MeSH
- In Situ Hybridization, Fluorescence MeSH
- Culture Media chemistry MeSH
- Methane metabolism MeSH
- Methylomonas classification growth & development isolation & purification metabolism MeSH
- Methylosinus classification growth & development isolation & purification metabolism MeSH
- DNA, Ribosomal chemistry genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Cyperaceae microbiology MeSH
- Sequence Analysis, DNA MeSH
- Vaccinium microbiology MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Poland MeSH
- Names of Substances
- DNA, Bacterial MeSH
- Culture Media MeSH
- Methane MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 16S MeSH
Aerobic methane-oxidizing bacteria (MOB) are an environmentally significant group of microorganisms due to their role in the global carbon cycle. Research conducted over the past few decades has increased the interest in discovering novel genera of methane-degrading bacteria, which efficiently utilize methane and decrease the global warming effect. Moreover, methanotrophs have more promising applications in environmental bioengineering, biotechnology, and pharmacy. The investigations were undertaken to recognize the variety of endophytic methanotrophic bacteria associated with Carex nigra, Vaccinium oxycoccus, and Eriophorum vaginatum originating from Moszne peatland (East Poland). Methanotrophic bacteria were isolated from plants by adding sterile fragments of different parts of plants (roots and stems) to agar mineral medium (nitrate mineral salts (NMS)) and incubated at different methane values (1-20% CH4). Single colonies were streaked on new NMS agar media and, after incubation, transferred to liquid NMS medium. Bacterial growth dynamics in the culture solution was studied by optical density-OD600 and methane consumption. Changes in the methane concentration during incubation were controlled by the gas chromatography technique. Characterization of methanotrophs was made by fluorescence in situ hybridization (FISH) with Mg705 and Mg84 for type I methanotrophs and Ma450 for type II methanotrophs. Identification of endophytes was performed after 16S ribosomal RNA (rRNA) and mmoX gene amplification. Our study confirmed the presence of both types of methanotrophic bacteria (types I and II) with the predominance of type I methanotrophs. Among cultivable methanotrophs, there were different strains of the genus Methylomonas and Methylosinus. Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged from 0.463 ± 0.067 to 5.928 ± 0.169 μmol/L CH4/mL/day.
See more in PubMed
Agasild H, Zingel P, Tuvikene L, Tuvikene A, Timm H, Feldmann T, et al. Biogenic methane contributes to the food web of a large, shallow lake. Freshwat Biol. 2014;59:272–285. doi: 10.1111/fwb.12263. DOI
Baesman SM, Miller LG, Wei JH, Cho Y, Matys ED, Summons RE, Welander PV, Oremland RS. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment. Microorganisms. 2015;3:290–309. doi: 10.3390/microorganisms3020290. PubMed DOI PMC
Berg A, Danielsson Å, Svensson BH (2013) Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss. Plant Soil 362(1–2):271–278
Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, Klotz MG, Mikhailova N. Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol. 2011;193(24):7001–7002. doi: 10.1128/JB.06267-11. PubMed DOI PMC
Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PL, Trotsenko YA, Dedysh SN. Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol. 2013;63(6):2282–2289. doi: 10.1099/ijs.0.045658-0. PubMed DOI
Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, et al. Methylocella palustris gen. Nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bags, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol. 2000;50:955–969. doi: 10.1099/00207713-50-3-955. PubMed DOI
Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol. 2002;52:251–261. doi: 10.1099/00207713-52-1-251. PubMed DOI
DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci U S A. 1992;89:5685–5689. doi: 10.1073/pnas.89.12.5685. PubMed DOI PMC
Dunfield PF, Dedysh SN. Methylocella: a gourmand among methanotrophs. Trends Microbiol. 2014;22(7):368–369. doi: 10.1016/j.tim.2014.05.004. PubMed DOI
Dunfield PF, Liesack W, Henckel T, Knowels R, Conrad R. High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol. 1999;65:1009–1014. PubMed PMC
Eller G, Stubner S, Frenzel P. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol Lett. 2001;198(2):91–97. doi: 10.1111/j.1574-6968.2001.tb10624.x. PubMed DOI
Esson KC, Lin X, Kumaresan D, Chanton JP, Murrell JC, Kostka JE. Alpha-and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl Environ Microbiol. 2016;82(8):2363–2371. doi: 10.1128/AEM.03640-15. PubMed DOI PMC
Galbally IE, Kirstine W. The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem. 2002;43(3):195–229. doi: 10.1023/A:1020684815474. DOI
Gayazov RR, Chetina EV, Mshenskii YN, Trotsenko YA. Physiological and cytobiochemical characteristics of Methylomonas methanica grown on methane in the presence of methanol. Prikl Biokhim Mikrobiol. 1990;26(3):394–398.
Hanson RS, Hanson TE. Methanotrophic bacteria. Microbiol Rev. 1996;60:439–471. PubMed PMC
Ho A, Bodelier PL. Diazotrophic methanotrophs in peatlands: the missing link? Plant Soil. 2015;389(1–2):419–423. doi: 10.1007/s11104-015-2393-9. DOI
Ho A, Vlaeminck SE, Ettwig KF, Schneider B, Frenzel P, Boon N. Revisiting methanotrophic communities in sewage treatment plants. Appl Environ Microbiol. 2013;79(8):2841–2846. doi: 10.1128/AEM.03426-12. PubMed DOI PMC
Ho A, De Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Boon N. The more, the merrier: heterotroph richness stimulates methanotrophic activity. The ISME journal. 2014;8(9):1945–1948. doi: 10.1038/ismej.2014.74. PubMed DOI PMC
Hoefman S, Boon N, de Vos P, Heylen K. Protecting the fragile: preservation of methanotrophic bacteria. Cryobiology. 2010;61:362–408. doi: 10.1016/j.cryobiol.2010.10.023. DOI
Hutchens E, Radajewski S, Dumont MG, McDonald I, Murrell C. Analysis of methanotrophic bacteria in Movile cave by stable isotope probing. Environ Microbiol. 2004;6:111–120. doi: 10.1046/j.1462-2920.2003.00543.x. PubMed DOI
Iguchi H, Yurimoto H, Sakai Y. Stimulation of methanotrophic growth in cocultures by cobalamin excreted by Rhizobia. Appl Environ Microbiol. 2011;77:8509–8515. doi: 10.1128/AEM.05834-11. PubMed DOI PMC
Iguchi H, Sato I, Sakakibara M, Yurimoto H, Sakai Y. Distribution of methanotrophs in the phyllosphere. Bioscience biotechnology and biochemistry. 2012;76(8):1580–1583. doi: 10.1271/bbb.120281. PubMed DOI
Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing XH. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J. 2010;49:277–288. doi: 10.1016/j.bej.2010.01.003. DOI
Kiene RP (1991) Production and consumption of methane in aquatic systems. In Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes, pp. 11 1–146. Edited by J. E. Rogers & W. B. Whitman. Washington, DC: American Society for Microbiology
Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart GJ, Smolders AJ, den Camp HJO. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci. 2010;3(9):617–621. doi: 10.1038/ngeo939. DOI
Kox MA, Lüke C, Fritz C, van den Elzen E, van Alen T, den Camp HJO, Lamers LPM, Jetten MSM, Ettwig KF (2016) Effects of nitrogen fertilization on diazotrophic activity of microorganisms associated with Sphagnum magellanicum. Plant Soil 406(1–2):83–100
Kutschera U. Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav. 2007;2(2):74–78. doi: 10.4161/psb.2.2.4073. PubMed DOI PMC
Larmola T, Leppänen SM, Tuittila ES, Aarva M, Merilä P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci 111(2):734–739 PubMed PMC
Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol. 2001;37:25–50. doi: 10.1016/S1164-5563(01)01067-6. DOI
Lee SJ. Hydroxylation of methane through component interactions in soluble methane monooxygenases. J Microbiol. 2016;54(4):277–282. doi: 10.1007/s12275-016-5642-6. PubMed DOI
Liebner S, Zeyer J, Wagner D, Schubert C, Pfeiffer EM, Knoblauch C. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J Ecol. 2011;99(4):914–922. doi: 10.1111/j.1365-2745.2011.01823.x. DOI
Miguez CB, Bourque D, Sealy JA, Greer CW, Groleau D. Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR) Microb Ecol. 1997;33(1):21–31. doi: 10.1007/s002489900004. PubMed DOI
Minamisawa K, Imaizumi-Anraku H, Bao Z, Shinoda R, Okubo T, Ikeda S. are symbiotic methanotrophs key microbes for N acquisition in paddy rice root? Microbes Environ. 2016;31(1):4. doi: 10.1264/jsme2.ME15180. PubMed DOI PMC
Naeem S, Li S. Consumer species richness and autotrophic biomass. Ecol. 1997;79:2603–2615. doi: 10.1890/0012-9658(1998)079[2603:CSRAAB]2.0.CO;2. DOI
Naeem S, Hahn DR, Schuurman G. Producer-decomposer co-dependency influences biodiversity effects. Nature. 2000;403:762–764. doi: 10.1038/35001568. PubMed DOI
Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol. 2005;71(11):6885–6899. doi: 10.1128/AEM.71.11.6885-6899.2005. PubMed DOI PMC
Ogiso T, Ueno C, Dianou D, Van Huy T, Katayama A, Kimura M, Asakawa S. Methylomonas koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. Int J Syst Evol Microbiol. 2012;62(8):1832–1837. doi: 10.1099/ijs.0.035261-0. PubMed DOI
Pandey VC, Singh JS, Singh DP, Singh RP. Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol. 2014;11(1):241–250. doi: 10.1007/s13762-013-0387-9. DOI
Putkinen A, Larmola T, Tuomivirta T, Siljanen HM, Bodrossy L, Tuittila ES, Fritze H. Peatland succession induces a shift in the community composition of sphagnum-associated active methanotrophs. FEMS Microbiol Ecol. 2014;88(3):596–611. doi: 10.1111/1574-6941.12327. PubMed DOI
Raghoebarsing AA, Smolders AJ, Schmid MC, Rijpstra WI, Wolters-Arts M, Derksen J, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature. 2005;436:1153–1156. doi: 10.1038/nature03802. PubMed DOI
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York: Cold Spring Harbor; 1989.
Santl-Temkiv T, Finster K, Hansen BM, Pasic L, Karlson UG. Viable methanotrophic bacteria enriched from air and rain can oxidize methane at cloud-like conditions. Aerobiologia. 2013;29:373–384. doi: 10.1007/s10453-013-9287-1. DOI
Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev. 2010;34(4):496–531. doi: 10.1111/j.1574-6976.2010.00212.x. PubMed DOI
Shigematsu T, Hanada S, Eguch M, Kamagata Y, Kanagawa T, Kurane R. Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. Strains and Detection of Methanotrophs during In Situ Bioremediation Appl Environ Microbiol. 1999;65:5198–5206. PubMed PMC
Söhngen NL. Über Bakterien, welche Methan als Kohlenstoffnahrung and Energiequelle gebrauchen. Zentralbl Bakteriol Parasitik. Abt I. 1906;15:513–517.
Steenbergh AK, Meima MM, Kamst M, Bodelier LEP. Biphasic kinetics of a methanotrophic community is a combination of growth and increased activity per cell. FEMS Microbiol Ecol. 2010;71:12–22. doi: 10.1111/j.1574-6941.2009.00782.x. PubMed DOI
Stępniewska Z, Kuźniar A. Cultivation and detection of endophytic aerobic methanotrophs isolated from sphagnum species as a perspective for environmental biotechnology. AMB Express. 2014;4:58. doi: 10.1186/s13568-014-0058-3. PubMed DOI PMC
Stępniewska Z, Szmagara A, Niewiarowska M (2006) The environmental requirements of methanotrophic bacteria inhabiting coal mine dump rock. International Workshop “Pathways of pollutant from landfills to air and water-soil systems and mitigation strategies of their impact on the ecosystems”. The Conference Proceedings Kazimierz Dolny, 17–20
Stępniewska Z, Kuźniar A, Pytlak A, Szymczycha J. Detection of methanotrophic endosymbionts in Sphagnum sp. originating from Moszne peat bog (East Poland) African Journal Microbiology Research. 2013;7:1319–1325. doi: 10.5897/AJMR12.915. DOI
Sullivan JP, Dickinson D, Chase HA. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Crit Rev Microbiol. 1998;24(4):335–373. doi: 10.1080/10408419891294217. PubMed DOI
Szafranek-Nakonieczna A, Stepniewska Z, Woloszyn A, Ciepielski J (2012) Methanotrophs responsible for methane oxidation in natural peats from Polesie Lubelskie region. Acta Agrophysica 19(1)
Van Duinen GA, Vermonden K, Bodelier PLE, Hendriks AJ, Leuven RSEW, Middelburg JJ, et al. Methane as a carbon source for the food web in raised bog pools. Freshwat Sci. 2013;32:1260–1272. doi: 10.1899/12-121.1. DOI
Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol. 2010;61:2456–2463. doi: 10.1099/ijs.0.028118-0. PubMed DOI
Whittenbury R, Phillips KC, Wilkinson JF. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970;61:205–218. doi: 10.1099/00221287-61-2-205. PubMed DOI
Wolińska A, Pytlak A, Stępniewska Z, Kuźniar A, Piasecki C (2013) Identification of methanotrophic bacteria community in the Jastrzebie-Moszczenica coal mine by fluorescence in situ hybridization and PCR techniques TC 7: 0–001.
Xin JY, Zhang YX, Dong J, Zhou QQ, Wang Y, Zhang XD, Xia CG. Epoxypropane biosynthesis by whole cell suspension of methanol-growth Methylosinus trichosporium IMV 3011. World J Microbiol Biotechnol. 2010;26(4):701–708. doi: 10.1007/s11274-009-0225-x. DOI