Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

. 2017 ; 5 () : e3087. [epub] 20170314

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28316890

Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP's terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4-M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the "open conformation" may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between "open conformation" <==> "semi-open conformation <==> "closed conformation" in the absence of 2Mg2+•ATP. The cytoplasmic loop's conformational change to the "semi-open conformation"-characterized by a hydrogen bond between Arg543 and Asp611-triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the "closed conformation" the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.

Zobrazit více v PubMed

Akin BL, Hurley TD, Chen Z, Jones LR. The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum. Journal of Biological Chemistry. 2013;288:30181–30191. doi: 10.1074/jbc.M113.501585. PubMed DOI PMC

Alberty RA. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. Journal of Biological Chemistry. 1969;244:3290–3302. PubMed

Amler E, Abbott A, Ball WJ. Structural dynamics and oligomeric interactions of Na+, K(+)-ATPase as monitored using fluorescence energy transfer. Biophysical Journal. 1992;61:553–568. doi: 10.1016/S0006-3495(92)81859-3. PubMed DOI PMC

Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI

Berendsen HJC, Van der Spoel D, Van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Communications. 1995;91:43–56. doi: 10.1016/0010-4655(95)00042-E. DOI

Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253:164–170. doi: 10.1126/science.1853201. PubMed DOI

Bublitz M, Musgaard M, Poulsen H, Thogersen L, Olesen C, Schiott B, Morth JP, Moller JV, Nissen P. Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase. Journal of Biological Chemistry. 2013;288:10759–10765. doi: 10.1074/jbc.R112.436550. PubMed DOI PMC

Bublitz M, Nass K, Drachmann ND, Markvardsen AJ, Gutmann MJ, Barends TRM, Mattle D, Shoeman RL, Doak RB, Boutet S, Messerschmidt M, Seibert MM, Williams GJ, Foucar L, Reinhard L, Sitsel O, Gregersen JL, Clausen JD, Boesen T, Gotfryd K, Wang K-T, Olesen C, Møller JV, Nissen P, Schlichting I. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser. IUCrJ. 2015;2:409–420. doi: 10.1107/S2052252515008969. PubMed DOI PMC

Bueno-Orovio A, Sanchez C, Pueyo E, Rodriguez B. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach. Pflugers Archiv. 2014;466:183–193. doi: 10.1007/s00424-013-1293-1. PubMed DOI

Castillo JP, De Giorgis D, Basilio D, Gadsby DC, Rosenthal JJ, Latorre R, Holmgren M, Bezanilla F. Energy landscape of the reactions governing the Na+ deeply occluded state of the Na+/K+-ATPase in the giant axon of the Humboldt squid. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:20556–20561. doi: 10.1073/pnas.1116439108. PubMed DOI PMC

Castillo JP, Rui H, Basilio D, Das A, Roux B, Latorre R, Bezanilla F, Holmgren M. Mechanism of potassium ion uptake by the Na(+)/K(+)-ATPase. Nature Communications. 2015;6:7622. doi: 10.1038/ncomms8622. PubMed DOI PMC

Clausen JD, Bublitz M, Arnou B, Montigny C, Jaxel C, Møller JV, Nissen P, Andersen JP, Le Maire M. SERCA mutant E309Q binds two Ca2+ ions but adopts a catalytically incompetent conformation: structure and function of SERCA mutant E309Q. The EMBO Journal. 2013;32:3231–3243. doi: 10.1038/emboj.2013.250. PubMed DOI PMC

Collins JH, Leszyk J. “. gamma. subunit” of sodium-potassium-ATPase, a small, amphiphilic protein with a unique amino acid sequence. Biochemistry. 1987;26:8665–8668. doi: 10.1021/bi00400a026. PubMed DOI

Darden T, York D, Pedersen L. Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems. The Journal of Chemical Physics. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Drachmann ND, Olesen C, Møller JV, Guo Z, Nissen P, Bublitz M. Comparing crystal structures of Ca2+-ATPase in the presence of different lipids. FEBS Journal. 2014;281:4249–4262. doi: 10.1111/febs.12957. PubMed DOI

Dudev T, Cowan JA, Lim C. competitive binding in magnesium coordination chemistry: water versus ligands of biological interest. Journal of the American Chemical Society. 1999;121:7665–7673. doi: 10.1021/ja984470t. DOI

Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A. Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics. 2006;Chapter 5(Unit 5):5.6.1–5.6.30. doi: 10.1002/0471250953.bi0506s15. PubMed DOI PMC

Fahn S, Koval GJ, Albers RW. Sodium-potassium-activated adenosine triphosphatase of electrophorus electric organ I. An Associated sodium-activated transphosphorylation. Journal of Biological Chemistry. 1966;241:1882–1889. PubMed

Forbush III B, Kaplan JH, Hoffman JF. Characterization of a new photoaffinity derivative of ouabain: labeling of the large polypeptide and of a proteolipid component of the (sodium-potassium ion)-dependent ATPase. Biochemistry. 1978;17:3667–3676. doi: 10.1021/bi00610a037. PubMed DOI

Fuller W, Tulloch LB, Shattock MJ, Calaghan SC, Howie J, Wypijewski KJ. Regulation of the cardiac sodium pump. Cellular and Molecular Life Science. 2013;70:1357–1380. doi: 10.1007/s00018-012-1134-y. PubMed DOI PMC

Håkansson O. The crystallographic structure of Na, K-ATPase N-domain at 2.6 Å resolution. Journal of Molecular Biology. 2003;332:1175–1182. doi: 10.1016/j.jmb.2003.07.012. PubMed DOI

Hara Y, Urayama O, Kawakami K, Nojima H, Nagamune H, Kojima T, Ohta T, Nagano K, Nakao M. Primary structures of two types of alpha-subunit of rat brain Na+, K+-ATPase deduced from cDNA sequences. The Journal of Biochemistry. 1987;102:43–58. doi: 10.1093/oxfordjournals.jbchem.a122039. PubMed DOI

Hegyvary C, Post RL. Binding of adenosine triphosphate to sodium and potassium ion-stimulated adenosine triphosphatase. Journal of Biological Chemistry. 1971;246:5234–5240. PubMed

Hess B, Kutzner C, Van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI

Howland JL. Electrogenic ion pumps by Peter Läuger . Abstract 243Biochemical Education. 1991;20 doi: 10.1016/0307-4412(92)90213-6. DOI

Jacobsen MD, Pedersen PA, Jorgensen PL. Importance of Na, K-ATPase residue alpha 1-Arg544 in the segment Arg544–Asp567 for high-affinity binding of ATP, ADP, or MgATP. Biochemistry. 2002;41:1451–1456. doi: 10.1021/bi015891h. PubMed DOI

Jensen A-ML, Sørensen TL-M, Olesen C, Møller JV, Nissen P. Modulatory and catalytic modes of ATP binding by the calcium pump. The EMBO Journal. 2006;25:2305–2314. doi: 10.1038/sj.emboj.7601135. PubMed DOI PMC

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Jorgensen PL, Hakansson KO, Karlish SJ. Structure and mechanism of Na, K-ATPase: functional sites and their interactions. Annual Review of Physiology. 2003;65:817–849. doi: 10.1146/annurev.physiol.65.092101.142558. PubMed DOI

Jorgensen PL, Jorgensen JR, Pedersen PA. Role of conserved TGDGVND-loop in Mg2+ binding, phosphorylation, and energy transfer in Na, K-ATPase. Journal of Bioenergetics and Biomembranes. 2001;33:367–377. doi: 10.1023/A:1010611322024. PubMed DOI

Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI

Jorgensen PL, Pedersen PA. Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na, K-ATPase. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2001;1505:57–74. doi: 10.1016/S0005-2728(00)00277-2. PubMed DOI

Jorgensen WL, Tirado-Rives J. The OPLS (optimized potentials for liquid simulations) potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society. 1988;110:1657–1666. doi: 10.1021/ja00214a001. PubMed DOI

Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides†. The Journal of Physical Chemistry B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI

Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C. Crystal structure of a Na+-bound Na+, K+-ATPase preceding the E1P state. Nature. 2013;502:201–206. doi: 10.1038/nature12578. PubMed DOI

Kaplan JH. Biochemistry of Na, K-ATPase. Annual Review of Biochemistry. 2002;71:511–535. doi: 10.1146/annurev.biochem.71.102201.141218. PubMed DOI

Kawakami K, Noguchi S, Noda M, Takahashi H, Ohta T, Kawamura M, Nojima H, Nagano K, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S. Primary structure of the alpha-subunit of Torpedo californica (Na++ K+) ATPase deduced from cDNA sequence. Nature. 1985;316:733–736. doi: 10.1038/316733a0. PubMed DOI

Kubala M, Teisinger J, Ettrich R, Hofbauerova K, Kopecky V, Baumruk Jr V, Krumscheid R, Plasek J, Schoner W, Amler E. Eight amino acids form the ATP recognition site of Na(+)/K(+)-ATPase. Biochemistry. 2003;42:6446–6452. doi: 10.1021/bi034162u. PubMed DOI

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography. 1993;26:283–291. doi: 10.1107/S0021889892009944. DOI

Laursen M, Bublitz M, Moncoq K, Olesen C, Møller JV, Young HS, Nissen P, Morth JP. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. Journal of Biological Chemistry. 2009;284:13513–13518. doi: 10.1074/jbc.C900031200. PubMed DOI PMC

Laursen M, Gregersen JL, Yatime L, Nissen P, Fedosova NU. Structures and characterization of digoxin- and bufalin-bound Na+, K+-ATPase compared with the ouabain-bound complex. Proceedings of the National Academy of Sciences of the United States of America. 2015;112:1755–1760. doi: 10.1073/pnas.1422997112. PubMed DOI PMC

Laursen M, Yatime L, Nissen P, Fedosova NU. Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:10958–10963. doi: 10.1073/pnas.1222308110. PubMed DOI PMC

Lindahl E, Hess B, Van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling. 2001;7:306–317. doi: 10.1007/s008940100045. DOI

Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–85. PubMed

MacLennan DH, Green NM. Structural biology: pumping ions. Nature. 2000;405:633–634. doi: 10.1038/35015206. PubMed DOI

Mark Hilge GS, Vuister GW, Güntert P, Gloor SM, Abrahams JP. ATP-induced conformational changes of the nucleotide-binding domain of Na, K-ATPase. Nature Structural Biology. 2003;10:468–474. doi: 10.1038/nsb924. PubMed DOI

Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure. 2000;29:291–325. doi: 10.1146/annurev.biophys.29.1.291. PubMed DOI

Meagher KL, Redman LT, Carlson HA. Development of polyphosphate parameters for use with the AMBER force field. Journal of Computational Chemistry. 2003;24:1016–1025. doi: 10.1002/jcc.10262. PubMed DOI

Moczydlowski EG, Fortes PA. Inhibition of sodium and potassium adenosine triphosphatase by 2′, 3′-O-(2,4,6-trinitrocyclohexadienylidene) adenine nucleotides. Implications for the structure and mechanism of the Na:K pump. Journal of Biological Chemistry. 1981;256:2357–2366. PubMed

Moncoq K, Trieber CA, Young HS. The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump. Journal of Biological Chemistry. 2007;282:9748–9757. doi: 10.1074/jbc.M611653200. PubMed DOI

Morris AL, MacArthur MW, Hutchinson EG, Thornton JM. Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Bioinformatics. 1992;12:345–364. doi: 10.1002/prot.340120407. PubMed DOI

Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P. A structural overview of the plasma membrane Na+, K+-ATPase and H+-ATPase ion pumps. Nature Reviews Molecular Cell Biology. 2011;12:60–70. doi: 10.1038/nrm3031. PubMed DOI

Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P. Crystal structure of the sodium-potassium pump. Nature. 2007;450:1043–1049. doi: 10.1038/nature06419. PubMed DOI

Nyblom M, Poulsen H, Gourdon P, Reinhard L, Andersson M, Lindahl E, Fedosova N, Nissen P. Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state. Science. 2013;342:123–127. doi: 10.1126/science.1243352. PubMed DOI

Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, Inesi G, Toyoshima C. Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+ Proceedings of the National Academy of Sciences of the United States of America. 2005;102:14489–14496. doi: 10.1073/pnas.0506222102. PubMed DOI PMC

Ogawa H, Cornelius F, Hirata A, Toyoshima C. Sequential substitution of K(+) bound to Na(+), K(+)-ATPase visualized by X-ray crystallography. Nature Communications. 2015;6:8004. doi: 10.1038/ncomms9004. PubMed DOI PMC

Ogawa H, Shinoda T, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump (Na+, K+-ATPase) with bound potassium and ouabain. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:13742–13747. doi: 10.1073/pnas.0907054106. PubMed DOI PMC

Olesen C, Picard M, Winther A-ML, Gyrup C, Morth JP, Oxvig C, Nissen JV, Møller P. The structural basis of calcium transport by the calcium pump. Nature. 2007;450:1036–1042. doi: 10.1038/nature06418. PubMed DOI

Olesen C, Sørensen TL-M, Nielsen RC, Møller JV, Nissen P. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science. 2004;306:2251–2255. doi: 10.1126/science.1106289. PubMed DOI

Ovchinnikov YA, Modyanov NN, Broude NE, Petrukhin KE, Grishin AV, Arzamazova NM, Aldanova NA, Monastyrskaya GS, Sverdlov ED. Pig kidney Na+, K+-ATPase: primary structure and spatial organization. FEBS Letters. 1986;201:237–245. doi: 10.1016/0014-5793(86)80616-0. PubMed DOI

Paulsen ES, Villadsen J, Tenori E, Liu H, Bonde DF, Lie MA, Bublitz M, Olesen C, Autzen HE, Dach I, Sehgal P, Nissen P, Møller JV, Schiøtt B, Christensen SB. Water-mediated interactions influence the binding of thapsigargin to sarco/endoplasmic reticulum calcium adenosinetriphosphatase. Journal of Medicinal Chemistry. 2013;56:3609–3619. doi: 10.1021/jm4001083. PubMed DOI

Pedersen PA, Jorgensen JR, Jorgensen PL. Importance of conserved alpha-subunit segment 709GDGVND for Mg2+ binding, phosphorylation, and energy transduction in Na, K-ATPase. Journal of Biological Chemistry. 2000;275:37588–37595. doi: 10.1074/jbc.M005610200. PubMed DOI

Pranata J, Wierschke SG, Jorgensen WL. OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. Journal of the American Chemical Society. 1991;113:2810–2819. doi: 10.1021/ja00008a002. DOI

Sacchetto R, Bertipaglia I, Giannetti S, Cendron L, Mascarello F, Damiani E, Carafoli E, Zanotti G. Crystal structure of sarcoplasmic reticulum Ca2+-ATPase (SERCA) from bovine muscle. Journal of Structural Biology. 2012;178:38–44. doi: 10.1016/j.jsb.2012.02.008. PubMed DOI

Šali A. Comparative protein modeling by satisfaction of spatial restraints. Molecular Medicine Today. 1995;1:270–277. doi: 10.1016/S1357-4310(95)91170-7. PubMed DOI

Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI

Schoner W, Beusch R, Kramer R. On the mechanism of Na plus and K plus-stimulated hydrolysis of adenosine triphosphate. 2. Comparison of nucleotide specificities of Na plus and K plus-activated ATPase and Na plus-dependent phosphorylation of cell membranes. European Journal of Biochemistry. 1968;7:102–110. doi: 10.1111/j.1432-1033.1968.tb19580.x. PubMed DOI

Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature. 2009;459:446–450. doi: 10.1038/nature07939. PubMed DOI

Shull MM, Pugh DG, Lingrel JB. Characterization of the human Na, K-ATPase alpha 2 gene and identification of intragenic restriction fragment length polymorphisms. Journal of Biological Chemistry. 1989;264:17532–17543. PubMed

Shull GE, Schwartz A, Lingrel JB. Amino-acid sequence of the catalytic subunit of the (Na++ K+) ATPase deduced from a complementary DNA. Nature. 1985;316:691–695. doi: 10.1038/316691a0. PubMed DOI

Sohoel H, Jensen AM, Moller JV, Nissen P, Denmeade SR, Isaacs JT, Olsen CE, Christensen SB. Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells. Bioorganic and Medicinal Chemistry. 2006;14:2810–2815. doi: 10.1016/j.bmc.2005.12.001. PubMed DOI

Sonntag Y, Musgaard M, Olesen C, Schiøtt B, Møller JV, Nissen P, Thøgersen L. Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes. Nature Communications. 2011;2:304. doi: 10.1038/ncomms1307. PubMed DOI

Sorensen TL, Moller JV, Nissen P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science. 2004;304:1672–1675. doi: 10.1126/science.1099366. PubMed DOI

Takahashi M, Kondou Y, Toyoshima C. Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:5800–5805. doi: 10.1073/pnas.0700979104. PubMed DOI PMC

Tejral G, Kolácná L, Kotyk A, Amler E. Comparative modeling of the H4–H5-loop of the α2-isoform of Na+/K+-ATPase α-subunit in the E1 conformation. Physiological Research/Academia Scientiarum Bohemoslovaca. 2007;56(Suppl 1):S143–S151. PubMed

Tejral G, Kolácná L, Schoner W, Amler E. The π-helix formation between Asp369 and Thr375 as a key factor in E1–E2 conformational change of Na+/K+-ATPase. Physiological Research/Academia Scientiarum Bohemoslovaca. 2009;58:583–589. PubMed

Toyoshima C. Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Archives of Biochemistry and Biophysics. 2008;476:3–11. doi: 10.1016/j.abb.2008.04.017. PubMed DOI

Toyoshima C, Iwasawa S, Ogawa H, Hirata A, Tsueda J, Inesi G. Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. Nature. 2013;495:260–264. doi: 10.1038/nature11899. PubMed DOI

Toyoshima C, Mizutani T. Crystal structure of the calcium pump with a bound ATP analogue. Nature. 2004;430:529–535. doi: 10.1038/nature02680. PubMed DOI

Toyoshima C, Nakasako M, Nomura H, Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature. 2000;405:647–655. doi: 10.1038/35015017. PubMed DOI

Toyoshima C, Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature. 2002;418:605–611. doi: 10.1038/nature00944. PubMed DOI

Tran CM, Farley RA. Catalytic activity of an isolated domain of Na, K-ATPase expressed in Escherichia coli. Biophysical Journal. 1999;77:258–266. doi: 10.1016/S0006-3495(99)76887-6. PubMed DOI PMC

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. Journal of Computational Chemistry. 2005;26:1701–1718. doi: 10.1002/jcc.20291. PubMed DOI

Van der Spoel D, Lindahl E, Hess B, Van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, Van Drunen R, Berendsen HJC. Gromacs user manual version 4.5.6. 2010. ftp://ftp.gromacs.org/pub/manual/manual-4.5.6.pdf ftp://ftp.gromacs.org/pub/manual/manual-4.5.6.pdf

Winther AM, Bublitz M, Karlsen JL, Moller JV, Hansen JB, Nissen P, Buch-Pedersen MJ. The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature. 2013;495:265–269. doi: 10.1038/nature11900. PubMed DOI

Winther A-ML, Liu H, Sonntag Y, Olesen C, Maire Ml, Soehoel H, Olsen C-E, Christensen SB, Nissen P, Møller JV. Critical roles of hydrophobicity and orientation of side chains for inactivation of sarcoplasmic reticulum Ca2+-ATPase with thapsigargin and thapsigargin analogs. Journal of Biological Chemistry. 2010;285:28883–28892. doi: 10.1074/jbc.M110.136242. PubMed DOI PMC

Yatime L, Laursen M, Morth JP, Esmann M, Nissen P, Fedosova NU. Structural insights into the high affinity binding of cardiotonic steroids to the Na+, K+-ATPase. Journal of Structural Biology. 2011;174:296–306. doi: 10.1016/j.jsb.2010.12.004. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Na+/K+-ATPase Revisited: On Its Mechanism of Action, Role in Cancer, and Activity Modulation

. 2021 Mar 28 ; 26 (7) : . [epub] 20210328

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...