Na+/K+-ATPase Revisited: On Its Mechanism of Action, Role in Cancer, and Activity Modulation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33800655
PubMed Central
PMC8061769
DOI
10.3390/molecules26071905
PII: molecules26071905
Knihovny.cz E-zdroje
- Klíčová slova
- Na+/K+-ATPase activity modulation, anticancer activity, cardiac glycosides, combination therapy, digitoxigenin, digitoxin, digoxin, natural compounds, ouabain, sodium-potassium pump inhibitors,
- MeSH
- antitumorózní látky chemie terapeutické užití MeSH
- digitoxin chemie terapeutické užití MeSH
- digoxin chemie terapeutické užití MeSH
- glioblastom farmakoterapie enzymologie patologie MeSH
- inhibitory enzymů chemie terapeutické užití MeSH
- izoenzymy antagonisté a inhibitory chemie metabolismus MeSH
- klinické zkoušky jako téma MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- nádory mozku farmakoterapie enzymologie patologie MeSH
- nádory plic farmakoterapie enzymologie patologie MeSH
- ouabain chemie terapeutické užití MeSH
- přehodnocení terapeutických indikací léčivého přípravku MeSH
- sodíko-draslíková ATPasa antagonisté a inhibitory chemie metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- digitoxin MeSH
- digoxin MeSH
- inhibitory enzymů MeSH
- izoenzymy MeSH
- ouabain MeSH
- sodíko-draslíková ATPasa MeSH
Maintenance of Na+ and K+ gradients across the cell plasma membrane is an essential process for mammalian cell survival. An enzyme responsible for this process, sodium-potassium ATPase (NKA), has been currently extensively studied as a potential anticancer target, especially in lung cancer and glioblastoma. To date, many NKA inhibitors, mainly of natural origin from the family of cardiac steroids (CSs), have been reported and extensively studied. Interestingly, upon CS binding to NKA at nontoxic doses, the role of NKA as a receptor is activated and intracellular signaling is triggered, upon which cancer cell death occurs, which lies in the expression of different NKA isoforms than in healthy cells. Two major CSs, digoxin and digitoxin, originally used for the treatment of cardiac arrhythmias, are also being tested for another indication-cancer. Such drug repositioning has a big advantage in smoother approval processes. Besides this, novel CS derivatives with improved performance are being developed and evaluated in combination therapy. This article deals with the NKA structure, mechanism of action, activity modulation, and its most important inhibitors, some of which could serve not only as a powerful tool to combat cancer, but also help to decipher the so-far poorly understood NKA regulation.
Zobrazit více v PubMed
Castagnetti F., Gugliotta G., Breccia M., Stagno F., Iurlo A., Albano F., Abruzzese E., Martino B., Levato L., Intermesoli T., et al. Long-term outcome of chronic myeloid leukemia patients treated frontline with imatinib. Leukemia. 2015;29:1823–1831. doi: 10.1038/leu.2015.152. PubMed DOI
Zhang H., Berel D., Wang Y., Li P., Bhowmick N.A., Figlin R.A., Kim H.L. A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models. PLoS ONE. 2013;8:e54918. doi: 10.1371/journal.pone.0054918. PubMed DOI PMC
FDA. [(accessed on 13 October 2020)]; Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-pi3k-inhibitor-breast-cancer.
McCarthy M.J., Pagba C.V., Prakash P., Naji A.K., van der Hoeven D., Liang H., Gupta A.K., Zhou Y., Cho K.J., Hancock J.F. Discovery of high-affinity noncovalent allosteric KRAS inhibitors that disrupt effector binding. ACS Omega. 2019;4:2921–2930. doi: 10.1021/acsomega.8b03308. PubMed DOI PMC
Guimarães I.S., Daltoé R.D., Herlinger A.L., Madeira K.P., Ladislau T., Valadão J.C., Lyra P.C.M., Jr., Teixeira S.F., Amorim G.M., dos Santos D.Z., et al. Conventional cancer treatment. In: Rangel L., editor. Cancer Treatment—Conventional and Innovative Approaches. IntechOpen; London, UK: 2013. pp. 3–35. DOI
Pucci C., Martinelli C., Ciofani G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience. 2019;13:961. doi: 10.3332/ecancer.2019.961. PubMed DOI PMC
Castillo J.P., De Giorgis D., Basilio D., Gadsby D.C., Rosenthal J.J.C., Latorre R., Holmgren M., Bezanilla F. Energy landscape of the reactions governing the Na+ deeply occluded state of the Na+/K+-ATPase in the giant axon of the humboldt squid. Proc. Natl. Acad. Sci. USA. 2011;108:20556–20561. doi: 10.1073/pnas.1116439108. PubMed DOI PMC
Blom H., Bernhem K., Brismara H. Sodium pump organization in dendritic spines. Neurophotonics. 2016;3:041803. doi: 10.1117/1.NPh.3.4.041803. PubMed DOI PMC
Ferrer-Martinez A., Casado F.J., Felipe A., Pastor-Anglada M. Regulation of Na+,K(+)-ATPase and the Na+/K+/Cl- co-transporter in the renal epithelial cell line NBL-1 ender osmotic stress. Biochem. J. 1996;319:337–342. doi: 10.1042/bj3190337. PubMed DOI PMC
Tang C.H., Wu W.Y., Tsai S.C., Yoshinaga T., Lee T.H. Elevated Na+/K+-ATPase responses and its potential role in triggering ion reabsorption in kidneys for homeostasis of marine euryhaline milkfish (Chanos chanos) when acclimated to hypotonic fresh water. J. Comp. Physiol. B. 2010;180:813–824. doi: 10.1007/s00360-010-0458-x. PubMed DOI
Wong M.K.S., Pipil S., Ozaki H., Suzuki Y., Iwasaki W., Takei Y. Flexible selection of diversified Na+/K+-ATPase α-subunit isoforms for osmoregulation in teleosts. Zool. Lett. 2016;2:15. doi: 10.1186/s40851-016-0050-7. PubMed DOI PMC
Tian J., Cai T., Yuan Z., Wang H., Liu L., Haas M., Maksimova E., Huang X.Y., Xie Z.J. Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol. Biol. Cell. 2006;17:317–326. doi: 10.1091/mbc.e05-08-0735. PubMed DOI PMC
Aydemir-Koksoy A., Abramowitz J., Allen J.C. Ouabain-induced signaling and vascular smooth muscle cell proliferation. J. Biol. Chem. 2021;276:46605–46611. doi: 10.1074/jbc.M106178200. PubMed DOI
Chen L., Jiang P., Li J., Xie Z., Xu Y., Qu W., Feng F., Liu W. Periplocin promotes wound healing through the activation of Src/ERK and PI3K/Akt pathways mediated by Na/K-ATPase. Phytomedicine. 2019;57:72–83. doi: 10.1016/j.phymed.2018.12.015. PubMed DOI
Prassas I., Karagiannis G.S., Batruch I., Dimitromanolakis A., Datti A., Diamandis E.P. Digitoxin-induced cytotoxicity in cancer cells is mediated through distinct kinase and interferon signaling networks. Mol. Cancer Ther. 2011;10:2083–2093. doi: 10.1158/1535-7163.MCT-11-0421. PubMed DOI
Khajah M.A., Mathew P.M., Luqmani Y.A. Na+/K+ ATPase activity promotes invasion of endocrine resistant breast cancer cells. PLoS ONE. 2018;13:e0193779. doi: 10.1371/journal.pone.0193779. PubMed DOI PMC
Edwards I.A., Bruce G., Lawrenson C., Howe L., Clapcote S.J., Deuchars S.A., Deuchars J. Na+/K+ ATPase α1 and α3 isoforms are differentially expressed in α- and γ-motoneurons. J. Neurosci. 2013;33:9913–9919. doi: 10.1523/JNEUROSCI.5584-12.2013. PubMed DOI PMC
Radzyukevich T.L., Neumann J.C., Rindler T.N., Oshiro N., Goldhamer D.J., Lingrel J.B., Heiny J.A. Tissue-specific role of the Na,K-ATPase α2 isozyme in skeletal muscle. J. Biol. Chem. 2013;288:1226–1237. doi: 10.1074/jbc.M112.424663. PubMed DOI PMC
Sanchez G., Nguyen A.N.T., Timmerberg B., Tash J.S., Blanco G. The Na,K-ATPase alpha4 isoform from humans has distinct enzymatic properties and is important for sperm motility. Mol. Hum. Reprod. 2006;12:565–576. doi: 10.1093/molehr/gal062. PubMed DOI
Hundal H.S., Marette A., Ramlal T., Liu Z., Klip A. Expression of beta subunit isoforms of the Na+,K(+)-ATPase is muscle type-specific. FEBS Lett. 1993;328:253–258. doi: 10.1016/0014-5793(93)80938-Q. PubMed DOI
Arystarkhova E., Sweadner K.J. Tissue-specific expression of the Na,K-ATPase beta3 subunit. The presence of beta3 in lung and liver addresses the problem of the missing subunit. J. Biol. Chem. 1997;272:22405–22408. doi: 10.1074/jbc.272.36.22405. PubMed DOI
PDB. [(accessed on 2 February 2021)]; Available online: https://www.rcsb.org/structure/3A3Y.
Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI
Morth J.P., Pedersen B.P., Toustrup-Jensen M.S., Sørensen T.L., Petersen J., Andersen J.P., Vilsen B., Nissen P. Crystal structure of the sodium-potassium pump. Nature. 2007;450:1043–1049. doi: 10.1038/nature06419. PubMed DOI
Hilbers F., Kopec W., Isaksen T.J., Holm T.H., Lykke-Hartmann K., Nissen P., Khandelia H., Poulsen H. Tuning of the Na,K-ATPase by the beta subunit. Sci. Rep. 2016;6:20442. doi: 10.1038/srep20442. PubMed DOI PMC
Rajasekaran S.A., Gopal J., Willis D., Espineda C., Twiss J.L., Rajasekaran A.K. Na,K-ATPase β1-subunit increases the translation efficiency of the α1-Subunit in MSV-MDCK cells. Mol. Biol. Cell. 2004;15:3005–3508. doi: 10.1091/mbc.e04-03-0222. PubMed DOI PMC
Miller R.P., Farley R.A. All three potential N-glycosylation sites of the dog kidney (Na+ + K+)-ATPase beta-subunit contain oligosaccharide. Biochim. Biophys. Acta. 1988;954:50–57. doi: 10.1016/0167-4838(88)90054-4. PubMed DOI
Beggah A.T., Jaunin P., Geering K. Role of glycosylation and disulfide bond formation in the beta subunit in the folding and functional expression of Na,K-ATPase. J. Biol. Chem. 1997;272:10318–10326. doi: 10.1074/jbc.272.15.10318. PubMed DOI
Kanagawa M., Matsumoto K., Iwasaki N., Hayashi Y., Yamaguchi Y. Structural analysis of N-glycans attached to pig kidney Na+/K+-ATPase. J. Glyc. Lip. 2013;S5:005. doi: 10.4172/2153-0637.S5-005. DOI
Tokhtaeva E., Munson K., Sachs G., Vagin O. N-Glycan-dependent quality control of the Na,K-ATPase β2 subunit. Biochemistry. 2010;49:3116–3128. doi: 10.1021/bi100115a. PubMed DOI PMC
Béguin P., Hasler U., Staub O., Geering K. Endoplasmic reticulum quality control of oligomeric membrane proteins: Topogenic determinants involved in the degradation of the unassembled Na,K-ATPase alpha subunit and in its stabilization by beta subunit assembly. Mol. Biol. Cell. 2000;11:1657–1672. doi: 10.1091/mbc.11.5.1657. PubMed DOI PMC
Tokhtaeva E., Sachs G., Vagin O. Assembly with the Na,K-ATPase α1 subunit is required for export of β1 and β2 subunits from the endoplasmic reticulum. Biochemistry. 2009;48:11421–11431. doi: 10.1021/bi901438z. PubMed DOI PMC
Lian W.N., Wu T.W., Dao R.L., Chen Y.J., Lin C.H. Deglycosylation of Na+/K+-ATPase causes the basolateral protein to undergo apical targeting in polarized hepatic cells. J. Cell Sci. 2006;119:11–22. doi: 10.1242/jcs.02706. PubMed DOI
Vagin O., Tokhtaeva E., Sachs G. The role of the β1 subunit of the Na,K-ATPase and its glycosylation in cell-cell adhesion. J. Cell. Biol. 2006;281:39573–39587. doi: 10.1074/jbc.M606507200. PubMed DOI
Wang P.J., Lin C.H., Hwang H.H., Lee T.H. Branchial FXYD protein expression in response to salinity change and its interaction with Na+/K+-ATPase of the euryhaline teleost Tetraodon nigroviridis. J. Exp. Biol. 2008;211:3750–3758. doi: 10.1242/jeb.018440. PubMed DOI
Wang L.J., Li Q.J., Le Y., Ouyang H.Y., He M.K., Yu Z.S., Zhang Y.F., Shi M. Prognostic significance of sodium-potassium ATPase regulator, FXYD3, in human hepatocellular. Carcinoma Oncol. Lett. 2018;15:3024–3030. doi: 10.3892/ol.2017.7688. PubMed DOI PMC
Widegren E., Önnesjö S., Arbman G., Kayed H., Zentgraf H., Kleeff J., Zhang H., Sun X.-F. Expression of FXYD3 protein in relation to biological and clinicopathological variables in colorectal cancers. Chemotherapy. 2009;55:407–413. doi: 10.1159/000263227. PubMed DOI
Zhang Z., Pang S.T., Kasper K.A., Luan C., Wondergem B., Lin F., Chuang C.K., Teh B.T., Yang X.J. FXYD3: A promising biomarker for urothelial carcinoma. Biomark Insights. 2011;6:17–26. doi: 10.4137/BMI.S6487. PubMed DOI PMC
Herrmann P., Aronica S.M. Estrogen and tamoxifen up-regulate FXYD3 on breast cancer cells: Assessing the differential roles of ER α and ZEB1. Springerplus. 2015;4:245. doi: 10.1186/s40064-015-1022-7. PubMed DOI PMC
Kayed H., Kleeff J., Kolb A., Ketterer K., Keleg S., Felix K., Giese T., Penzel R., Zentgraf H., Büchler M.W., et al. FXYD3 is overexpressed in pancreatic ductal adenocarcinoma and influences pancreatic cancer cell growth. Int. J. Cancer. 2006;118:43–54. doi: 10.1002/ijc.21257. PubMed DOI
Uniprot. [(accessed on 10 October 2020)]; Available online: https://www.uniprot.org/uniprot/O00168.
Uniprot. [(accessed on 10 October 2020)]; Available online: https://www.uniprot.org/uniprot/P54710.
Uniprot. [(accessed on 10 October 2020)]; Available online: https://www.uniprot.org/uniprot/Q14802-5.
Uniprot. [(accessed on 10 October 2020)]; Available online: https://www.uniprot.org/uniprot/P59646.
Uniprot. [(accessed on 10 October 2020)]; Available online: https://www.uniprot.org/uniprot/Q96DB9.
Uniprot. [(accessed on 10 October 2020)]; Available online: https://www.uniprot.org/uniprot/Q9H0Q3.
Uniprot. [(accessed on 10 October 2020)]; Available online: https://www.uniprot.org/uniprot/P58549.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#human/proteinDetails/P05023/expression.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#protein/proteinDetails/56274/expression.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#protein/proteinDetails/52946/expression.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#protein/proteinDetails/59668/expression.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#protein/proteinDetails/51770/expression.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#protein/proteinDetails/53052/expression.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#protein/proteinDetails/56697/expression.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#protein/proteinDetails/47759/expression.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#protein/proteinDetails/56698/expression.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#protein/proteinDetails/60188/expression.
Proteomics DB. [(accessed on 6 October 2020)]; Available online: https://www.proteomicsdb.org/proteomicsdb/#protein/proteinDetails/80311/expression.
Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473:337–342. doi: 10.1038/nature10098. PubMed DOI
Mishra N.K., Peleg Y., Cirri E., Belogus T., Lifshitz Y., Voelker D.R., Apell H.J., Garty H., Karlish S.J.D. FXYD proteins stabilize Na,K-ATPase: Amplification of specific phosphatidylserine-protein interactions. J. Biol. Chem. 2011;286:9699–9712. doi: 10.1074/jbc.M110.184234. PubMed DOI PMC
Tokhtaeva E., Sun H., Deiss-Yehiely N., Wen Y., Soni P.N., Gabrielli N.M., Marcus E.A., Ridge K.M., Sachs G., Vazquez-Levin M., et al. The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits. J. Cell Sci. 2016;129:2394–2406. doi: 10.1242/jcs.186148. PubMed DOI PMC
Cirri E., Katz A., Mishra N.K., Belogus T., Lifshitz Y., Garty H., Karlish S.J.D., Apell H.J. Phospholemman (FXYD1) raises the affinity of the human α1β1 isoform of Na,K-ATPase for Na ions. Biochemistry. 2011;50:3736–3748. doi: 10.1021/bi2001714. PubMed DOI
Despa S., Bossuyt J., Han F., Ginsburg K.S., Jia L.G., Kutchai H., Tucker A.L., Bers D.M. Phospholemman-phosphorylation mediates the β-adrenergic effects on Na/K pump function in cardiac myocytes. Circ. Res. 2005;97:252–259. doi: 10.1161/01.RES.0000176532.97731.e5. PubMed DOI
Silva E.C.C., Masui D.C., Furriel R.P., McNamara J.C., Barrabina H., Scofano H.M., Perales J., Teixeira-Ferreira A., Leone F.A., Fontesa C.F.L. Identification of a crab gill FXYD2 protein and regulation of crab microsomal Na,K-ATPase activity by mammalian FXYD2 peptide. Biochim. Biophys. Acta-Biomembr. 2012;1818:2588–2597. doi: 10.1016/j.bbamem.2012.05.009. PubMed DOI
Bibert S., Aebischer D., Desgranges F., Roy S., Schaer D., Kharoubi-Hess S., Horisberger J.D., Geering K. A link between FXYD3 (Mat-8)-mediated Na,K-ATPase regulation and differentiation of Caco-2 intestinal epithelial cells. Mol. Biol. Cell. 2009;20:1132–1140. doi: 10.1091/mbc.e08-10-0999. PubMed DOI PMC
Béguin P., Crambert G., Guennoun S., Garty H., Horisberger J.D. CHIF, a member of the FXYD protein family, is a regulator of Na,K-ATPase distinct from the gamma-subunit. EMBO J. 2001;20:3993–4002. doi: 10.1093/emboj/20.15.3993. PubMed DOI PMC
Miller T.J., Davis P.B. FXYD5 modulates Na+ absorption and is increased in cystic fibrosis airway epithelia. Am. J. Physiol. Lung Cell Mol. Physiol. 2008;294:L654–L664. doi: 10.1152/ajplung.00430.2007. PubMed DOI
Delprat B., Schaer D., Roy S., Wang J., Puel J.L., Geering K. FXYD6 is a novel regulator of Na,K-ATPase expressed in the inner ear. J. Biol. Chem. 2007;282:7450–7456. doi: 10.1074/jbc.M609872200. PubMed DOI
Béguin P., Crambert G., Monnet-Tschudi F., Uldry M., Horisberger J.D., Garty H., Geering K. FXYD7 is a brain-specific regulator of Na,K-ATPase alpha 1-beta isozymes. EMBO J. 2002;21:3264–3273. doi: 10.1093/emboj/cdf330. PubMed DOI PMC
Gregersen J.L., Mattle D., Fedosova N.U., Nissena P., Reinhard L. Isolation, crystallization and crystal structure determination of bovine kidney Na+,K+-ATPase. Acta Crystallogr. F Struct. Biol. Commun. 2016;72:282–287. doi: 10.1107/S2053230X1600279X. PubMed DOI PMC
Sørensen L.M.T., Møller J.V., Nissen P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science. 2004;304:1672–1675. doi: 10.1126/science.1099366. PubMed DOI
Schneeberger A., Apell H.J. Ion selectivity of the cytoplasmic binding sites of the Na,K-ATPase: I. sodium binding is associated with a conformational rearrangement. J. Membr. Biol. 1999;168:221–228. doi: 10.1007/s002329900511. PubMed DOI
Stolz M., Lewitzki E., Bergbauer R., Mäntele W., Grell E., Barth A. Structural changes in the catalytic cycle of the Na+,K+-ATPase studied by infrared spectroscopy. Biophys. J. 2009;96:3433–3442. doi: 10.1016/j.bpj.2009.01.010. PubMed DOI PMC
Castillo J.P., Rui H., Basilio D., Das A., Roux B., Latorre R., Bezanilla F., Holmgren M. Mechanism of potassium ion uptake by the Na+/K+-ATPase. Nat. Commun. 2015;6:7622. doi: 10.1038/ncomms8622. PubMed DOI PMC
Leone F.A., Furriel R.P.M., McNamara J.C., Horisberger J.D., Borin I.A. Cation transport coupled to ATP hydrolysis by the (Na, K)-ATPase: An integrated, animated model. Biochem. Mol. Biol. Educ. 2010;38:276–279. doi: 10.1002/bmb.20404. PubMed DOI
Rui H., Artigas P., Roux B. The selectivity of the Na+/K+-pump is controlled by binding site protonation and self-correcting occlusion. eLife. 2016;5:e16616. doi: 10.7554/eLife.16616. PubMed DOI PMC
Grycova L., Sklenovsky P., Lansky Z., Janovska M., Otyepka M., Amlerd E., Teisinger J., Kubalac M. ATP and magnesium drive conformational changes of the Na+/K+-ATPase cytoplasmic headpiece. Biochim. Biophys. Acta-Biomembr. 2009;1788:1081–1091. doi: 10.1016/j.bbamem.2009.02.004. PubMed DOI
Tejral G., Sopko B., Necas A., Schoner W., Amler E. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump. PeerJ. 2017;5:e3087. doi: 10.7717/peerj.3087. PubMed DOI PMC
Razavi A.M., Delemotte L., Berlin J.R., Carnevale V., Voelz V.A. Molecular simulations and free-energy calculations suggest conformation-dependent anion binding to a cytoplasmic site as a mechanism for Na+/K+-ATPase ion selectivity. J. Biol. Chem. 2017;292:12412–12423. doi: 10.1074/jbc.M117.779090. PubMed DOI PMC
Apell H.J., Benz G., Sauerbrunn D. Proton diet for the sodium pump. Biochemistry. 2011;50:409–418. doi: 10.1021/bi101576s. PubMed DOI
el-Masri M.A., Clark B.J., Qazzaz H.M., Valdes R. Human adrenal cells in culture produce both ouabain-like and dihydroouabain-like factors. Jr. Clin. Chem. 2002;48:1720–1730. doi: 10.1093/clinchem/48.10.1720. PubMed DOI
Gao J., Wymore R.S., Wang Y., Gaudette G.R., Krukenkamp I.B., Cohen I.S., Mathias R.T. Isoform-specific stimulation of cardiac Na/K pumps by nanomolar concentrations of glycosides. J. Gen. Physiol. 2002;119:297–312. doi: 10.1085/jgp.20028501. PubMed DOI PMC
Khundmiri S.J., Amin V., Henson J., Lewis J., Ameen M., Rane M.J., Delamere N.A. Ouabain stimulates protein kinase B (Akt) phosphorylation in opossum kidney proximal tubule cells through an ERK-dependent pathway. Am. J. Physiol. Cell Physiol. 2007;293:C1171–C1180. doi: 10.1152/ajpcell.00535.2006. PubMed DOI PMC
Khundmiri S.J., Metzler M.A., Ameen M., Amin V., Rane M.J., Delamere N.A. Ouabain induces cell proliferation through calcium-dependent phosphorylation of Akt (protein kinase B) in opossum kidney proximal tubule cells. Am. J. Physiol. Cell Physiol. 2006;291:C1247–C1257. doi: 10.1152/ajpcell.00593.2005. PubMed DOI
Manunta P., Messaggio E., Ballabeni C., Sciarrone M.T., Lanzani C., Ferrandi M., Hamlyn J.M., Cusi D., Galletti F., Bianchi G. Salt sensitivity study group of the Italian society of hypertension. Plasma ouabain-like factor during acute and chronic changes in sodium balance in essential hypertension. Hypertension. 2001;38:198–203. doi: 10.1161/01.HYP.38.2.198. PubMed DOI
Manunta P., Stella P., Rivera R., Ciurlino D., Cusi D., Ferrandi M., Hamlyn J.M., Bianchi G. Left ventricular mass, stroke volume, and ouabain-like factor in essential hypertension. Hypertension. 1999;34:450–456. doi: 10.1161/01.HYP.34.3.450. PubMed DOI
Pierdomenico S.D., Bucci A., Manunta P., Rivera R., Ferrandi M., Hamlyn J.M., Lapenna D., Cuccurullo F., Mezzetti A. Endogenous ouabain and hemodynamic and left ventricular geometric patterns in essential hypertension. Am. J. Hyper. 2001;14:44–50. doi: 10.1016/S0895-7061(00)01225-5. PubMed DOI
Wang H., Haas M., Liang M., Cai T., Tian J., Li S., Xie Z. Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J. Biol. Chem. 2004;279:17250–17259. doi: 10.1074/jbc.M313239200. PubMed DOI
Liang M., Tian J., Liu L., Pierre S., Liu J., Shapiro J., Xie Z.J. Identification of a pool of non-pumping Na/K-ATPase. J. Biol. Chem. 2007;282:10585–10593. doi: 10.1074/jbc.M609181200. PubMed DOI
Haas M., Askari A., Xie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chem. 2000;275:27832–27837. doi: 10.1074/jbc.M002951200. PubMed DOI
Haas M., Wang H., Tian J., Xie Z. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. 2002;277:18694–18702. doi: 10.1074/jbc.M111357200. PubMed DOI
Nguyen A.N.T., Jansson K., Sánchez G., Sharma M., Reif G.A., Blanco G. Ouabain activates the Na-K-ATPase signalosome to induce autosomal dominant polycystic kidney disease cell proliferation. Am. J. Physiol. Renal. Physiol. 2011;301:F897–F906. doi: 10.1152/ajprenal.00095.2011. PubMed DOI PMC
Tverskoi A.M., Sidorenko S.V., Klimanova E.A., Akimova O.A., Smolyaninova L.V., Lopina O.D., Orlov S.N. Effects of ouabain on proliferation of human endothelial cells correlate with Na,K-ATPase activity and intracellular ratio of Na and K. Biochemistry. 2016;81:876–883. doi: 10.1134/S0006297916080083. PubMed DOI
Banerjee G.M., Cui X., Li Z., Yu H., Cai L., Jia X., He D., Wang C., Gao T., Xie Z. Na/K-ATPase Y260 phosphorylation–mediated Src regulation in control of aerobic glycolysis and tumor. Sci. Rep. 2018;8:12322. doi: 10.1038/s41598-018-29995-2. PubMed DOI PMC
Li Z., Zhang Z., Xie J.X., Li X., Tian J., Cai T., Cui H., Ding H., Shapiro J.I., Xie Z. Na/K-ATPase mimetic pNaKtide peptide inhibits the growth of human cancer cells. J. Biol. Chem. 2011;286:32394–32403. doi: 10.1074/jbc.M110.207597. PubMed DOI PMC
Sodhi K., Nichols A., Mallick A., Klug R.L., Liu J., Wang X., Srikanthan K., Goguet-Rubio P., Nawab A., Pratt R., et al. The Na/K-ATPase oxidant amplifcation loop regulates aging. Sci. Rep. 2018;8:9721. doi: 10.1038/s41598-018-26768-9. PubMed DOI PMC
Sodhi K., Maxwell K., Yan Y., Liu J., Chaudhry M.A., Getty M., Xie Z., Abraham N.G., Shapiro J.I. pNaKtide inhibits Na/K-ATPase reactive oxygen species amplification and attenuates adipogenesis. Sci. Adv. 2015;1:e1500781. doi: 10.1126/sciadv.1500781. PubMed DOI PMC
Sodhi K., Srikanthan K., Goguet-Rubio P., Nichols A., Mallick A., Nawab A., Martin R., Shah P.T., Chaudhry M., Sigdel S., et al. pNaKtide attenuates steatohepatitis and atherosclerosis by blocking Na/K-ATPase/ROS amplification in C57Bl6 and ApoE knockout mice fed a western diet. Sci. Rep. 2017;7:193. doi: 10.1038/s41598-017-00306-5. PubMed DOI PMC
Wang Y., Ye Q., Liu C., Xie J.X., Yan Y., Lai F., Duan Q., Li X., Tian J., Xie Z. Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells. Free Radic. Biol. Med. 2014;71:415–426. doi: 10.1016/j.freeradbiomed.2014.03.036. PubMed DOI PMC
Yan Y., Shapiro A.P., Mopidevi B.R., Chaudhry M.A., Maxwell K., Haller S.T., Drummond C.A., Kennedy D.J., Tian J., Malhotra D., et al. Protein carbonylation of an amino acid residue of the Na/K-ATPase α1 subunit determines Na/K-ATPase signaling and sodium transport in renal proximal tubular cells. J. Am. Heart Assoc. 2016;5:e003675. doi: 10.1161/JAHA.116.003675. PubMed DOI PMC
Yan Y., Shapiro A.P., Haller S., Katragadda V., Liu L., Tian J., Basrur V., Malhotra D., Xie Z., Abraham N.G., et al. Involvement of reactive oxygen species in a feed-forward mechanism of Na/K-ATPase-mediated signaling transduction. J. Biol. Chem. 2013;288:34249–34258. doi: 10.1074/jbc.M113.461020. PubMed DOI PMC
Yu H., Cui X., Zhang J., Xie J.X., Banerjee M., Pierre S.V., Xie Z. Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: Role of Src interaction. Am. J. Physiol. Cell Physiol. 2018;314:C202–C210. doi: 10.1152/ajpcell.00124.2017. PubMed DOI PMC
Miyakawa-Naito A., Uhlén P., Lal M., Aizman O., Mikoshiba K., Brismar H., Zelenin S., Aperia A. Cell signaling microdomain with Na,K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations. J. Biol. Chem. 2003;278:50355–50361. doi: 10.1074/jbc.M305378200. PubMed DOI
Yuan Z., Cai T., Tian J., Ivanov A.V., Giovannucci D.R., Xie Z. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol. Biol. Cell. 2005;16:4034–4045. doi: 10.1091/mbc.e05-04-0295. PubMed DOI PMC
Burlaka I., Liu X.L., Rebetz J., Arvidsson I., Yang L., Brismar H., Karpman D., Aperia A. Ouabain protects against shiga toxin–triggered apoptosis by reversing the imbalance between Bax and Bcl-xL. J. Am. Soc. Nephrol. 2013;24:1413–1423. doi: 10.1681/ASN.2012101044. PubMed DOI PMC
Panizza E., Zhang L., Fontana J.M., Hamada K., Svensson D., Akkuratov E.E., Scott L., Mikoshiba K., Brismar H., Lehtiö J., et al. Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na+, K+-ATPase control of cell adhesion, proliferation, and survival. FASEB J. 2019;33:10193–10206. doi: 10.1096/fj.201900445R. PubMed DOI PMC
Barwe S.P., Anilkumar G., Moon S.Y., Zheng Y., Whitelegge J.P., Rajasekaran S.A., Rajasekaran A.K. Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell. 2005;16:1082–1094. doi: 10.1091/mbc.e04-05-0427. PubMed DOI PMC
Vilchis-Nestor C.A., Roldán M.L., Leonardi A., Navea J.G., Padilla-Benavides T., Shoshani L. Ouabain enhances cell-cell adhesion mediated by β 1 subunits of the Na+,K+-ATPase in CHO fibroblasts. Int. J. Mol. Sci. 2019;20:2111. doi: 10.3390/ijms20092111. PubMed DOI PMC
del Toro A.O., Jimenez L., Hinojosa L., Martínez-Rendón J., Castillo A., Cereijido M., Ponce A. Influence of endogenous cardiac glycosides, digoxin, and marinobufagenin in the physiology of epithelial cells. Cardiol. Res. Pract. 2019;2019:8646787. doi: 10.1155/2019/8646787. PubMed DOI PMC
Verdejo-Torres O., Flores-Maldonado C., Padilla-Benavides T., Campos-Blázquez J.P., Larré I., Lara-Lemus R., Perez Salazar E., Cereijido M., Contreras R.G. Ouabain accelerates collective cell migration through a cSrc and ERK1/2 sensitive metalloproteinase activity. J. Membr. Biol. 2019;252:549–559. doi: 10.1007/s00232-019-00066-5. PubMed DOI
Reuter H., Henderson S.A., Han T., Ross R.S., Goldhaber J.I., Philipson K.D. The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ. Res. 2002;90:305–308. doi: 10.1161/hh0302.104562. PubMed DOI
Winnicka K., Bielawski K., Bielawska A., Miltyk W. Dual effects of ouabain, digoxin and proscillaridin A on the regulation of apoptosis in human fibroblasts. Nat. Prod. Res. 2010;24:274–285. doi: 10.1080/14786410902991878. PubMed DOI
Pan L., Zhang Y., Zhao W., Zhou X., Wang C., Deng F. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway. Cancer Chemother. Pharmacol. 2017;80:91–100. doi: 10.1007/s00280-017-3337-2. PubMed DOI
Kometiani P., Liu L., Askari A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol. Pharmacol. 2005;67:929–936. doi: 10.1124/mol.104.007302. PubMed DOI
Lin S.Y., Chang H.H., Lai Y.H., Lin C.H., Chen M.H., Chang G.C., Tsai M.F., Chen J.J.W. Digoxin suppresses tumor malignancy through inhibiting multiple Src-related signaling pathways in non-small cell lung cancer. PLoS ONE. 2015;10:e0123305. doi: 10.1371/journal.pone.0123305. PubMed DOI PMC
Shin H.K., Ryu B.J., Choi S.W., Kim S.H., Le K. Inactivation of Src-to-ezrin pathway: A possible mechanism in the ouabain-mediated inhibition of A549 cell migration. Biomed. Res. Int. 2015;2015:537136. doi: 10.1155/2015/537136. PubMed DOI PMC
Pongrakhananon V., Chunhacha P., Chanvorachote P. Ouabain suppresses the migratory behavior of lung cancer cells. PLoS ONE. 2013;8:e68623. doi: 10.1371/journal.pone.0068623. PubMed DOI PMC
Kornberg L.J., Shaw L.C., Spoerri P.E., Caballero S., Grant M.B. Focal adhesion kinase overexpression induces enhanced pathological retinal angiogenesis. Inv. Ophthalmol. Vis. Sci. 2004;45:4463–4469. doi: 10.1167/iovs.03-1201. PubMed DOI
Cabrita M.A., Jones L.M., Quizi J.L., Sabourin L.A., McKay B.C., Addison C.L. Focal adhesion kinase inhibitors are potent anti-angiogenic agents. Mol. Oncol. 2011;5:517–526. doi: 10.1016/j.molonc.2011.10.004. PubMed DOI PMC
Pedrosa A.R., Bodrug N., Gomez-Escudero J., Carter E.P., Reynolds L.E., Georgiou P.N., Fernandez I., Lees D.M., Kostourou V., Alexopoulou A.N., et al. Tumor angiogenesis is differentially regulated by phosphorylation of endothelial cell focal adhesion kinase tyrosines-397 and -861. Cancer Res. 2019;79:4371–4386. doi: 10.1158/0008-5472.CAN-18-3934. PubMed DOI
Trenti A., Zulato E., Pasqualini L., Indraccolo S., Bolego C., Trevisi L. Therapeutic concentrations of digitoxin inhibit endothelial focal adhesion kinase and angiogenesis induced by different growth factors. Br. J. Pharmacol. 2017;174:3094–3106. doi: 10.1111/bph.13944. PubMed DOI PMC
Pouysségur J., Dayan F., Mazure N.M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441:437–443. doi: 10.1038/nature04871. PubMed DOI
Yamakawa M., Liu L.X., Date T., Belanger A.J., Vincent K.A., Akita G.Y., Kuriyama T., Cheng S.H., Gregory R.J., Jiang C. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ. Res. 2003;93:664–667. doi: 10.1161/01.RES.0000093984.48643.D7. PubMed DOI
Zhang H., Qian D.Z., Tan Y.S., Lee K.A., Gao P., Ren Y.R., Rey S., Hammers H., Chang D., Pili R., et al. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA. 2008;105:19579–19586. doi: 10.1073/pnas.0809763105. PubMed DOI PMC
Lee D.H., Oh S.C., Giles A.J., Jung J., Gilbert M.R., Park D.M. Cardiac glycosides suppress the maintenance of stemness and malignancy via inhibiting HIF-1α in human glioma stem cells. Oncotarget. 2017;8:40233–40245. doi: 10.18632/oncotarget.16714. PubMed DOI PMC
Yang X.S., Xu Z.W., Yi T.L., Xu R.C., Li J., Zhang W.B., Zhang S., Sun H.T., Yu Z.Q., Xu H.X., et al. Ouabain suppresses the growth and migration abilities of glioma U-87MG cells through inhibiting the Akt/mTOR signaling pathway and downregulating the expression of HIF-1α. Mol. Med. Rep. 2018;17:5595–5600. doi: 10.3892/mmr.2018.8587. PubMed DOI PMC
Fujii T., Shimizu T., Yamamoto S., Funayama K., Fujita K., Tabuchi Y., Ikari A., Takeshima H., Sakai H. Crosstalk between Na+,K+-ATPase and a volume-regulated anion channel in membrane microdomains of human cancer cells. Biochim. Biophys. Acta-Mol. Basis Dis. 2018;1864:3792–3804. doi: 10.1016/j.bbadis.2018.09.014. PubMed DOI
STRING. [(accessed on 14 August 2020)]; Available online: http://string.embl.de/
Laursen M., Gregersen J.L., Yatime L., Nissen P., Fedosova N.U. Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex. Proc. Natl. Acad. Sci. USA. 2015;112:1755–1760. doi: 10.1073/pnas.1422997112. PubMed DOI PMC
Laursen M., Yatime L., Nissen P., Fedosova N.U. Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proc. Natl. Acad. Sci. USA. 2013;110:10958–10963. doi: 10.1073/pnas.1222308110. PubMed DOI PMC
Canfield V., Emanuel J.R., Spickofsky N., Levenson R., Margolskee R. Ouabain-resistant mutants of the rat Na,K-ATPase x2 isoform identified by using an episomal expression vector. Mol. Cell. Biol. 1990;10:1367–1372. doi: 10.1128/MCB.10.4.1367. PubMed DOI PMC
O’Brien W.J., Wallick E.T., Lingrel J.B. Amino acid residues of the Na,K-ATPase involved in ouabain sensitivity do not bind the sugar moiety of cardiac glycosides. J. Biol. Chem. 1993;268:7707–7712. doi: 10.1016/S0021-9258(18)53014-3. PubMed DOI
Croyle M.L., Woo A.L., Lingrel J.B. Extensive random mutagenesis analysis of the Na+/K+-ATPase alpha subunit identifies known and previously unidentified amino acid residues that alter ouabain sensitivity—Implications for ouabain binding. Eur. J. Biochem. 1997;248:488–495. doi: 10.1111/j.1432-1033.1997.00488.x. PubMed DOI
Dalla S., Swarts H.G.P., Koenderink J.B., Dobler S. Amino acid substitutions of Na,K-ATPase conferring decreased sensitivity to cardenolides in insects compared to mammals insect. Biochem. Mol. Biol. 2013;43:1109–1115. doi: 10.1016/j.ibmb.2013.09.006. PubMed DOI
STITCH. [(accessed on 18 August 2020)]; Available online: https://stitch-db.org/
Cornelius F., Kanai R., Toyoshima C. A structural view on the functional importance of the sugar moiety and steroid hydroxyls of cardiotonic steroids in binding to Na,K-ATPase. J. Biol. Chem. 2013;288:6602–6616. doi: 10.1074/jbc.M112.442137. PubMed DOI PMC
Magpusao A.N., Omolloh G., Johnson J., Gascón J., Peczuh M.W., Fenteany G. Cardiac glycoside activities link Na+/K+ ATPase ion-transport to breast cancer cell migration via correlative SAR. ACS Chem. Biol. 2015;10:561–569. doi: 10.1021/cb500665r. PubMed DOI PMC
Manunta P., Hamilton B.P., Hamlyn J.M. Structure-activity relationships for the hypertensinogenic activity of ouabain: Role of the sugar and lactone ring. Hypertension. 2001;37:472–477. doi: 10.1161/01.HYP.37.2.472. PubMed DOI
Ren Y., Ribas H.T., Heath K., Wu S., Ren J., Shriwas P., Chen X., Johnson M.E., Cheng X., Burdette J.E., et al. Na+/K+-ATPase-targeted cytotoxicity of (+)-digoxin and several semisynthetic derivatives. J. Nat. Prod. 2020;83:638–648. doi: 10.1021/acs.jnatprod.9b01060. PubMed DOI PMC
Rocha S.C., Pessoa M.T.C., Neves L.D.R., Alves S.L.G., Silva L.M., Santos H.L., Oliveira S.M.F., Taranto A.G., Comar M., Gomes I.V., et al. 21-Benzylidene digoxin: A proapoptotic cardenolide of cancer cells that up-regulates Na,K-ATPase and epithelial tight junctions. PLoS ONE. 2014;9:e108776. doi: 10.1371/journal.pone.0108776. PubMed DOI PMC
Alves S.L.G., Paixão N., Ferreira L.G.R., Santos F.R.S., Neves L.D.R., Oliveira G.C., Cortes V.F., Salomé K.S., Barison A., Santos F.V., et al. 9γ-Benzylidene digoxin derivatives synthesis and molecular modeling: Evaluation of anticancer and the Na,K-ATPase activity effect. Bioorg. Med. Chem. 2015;23:4397–4404. doi: 10.1016/j.bmc.2015.06.028. PubMed DOI
Pessôa M.T.C., Alves S.L.G., Taranto A.G., Villar J.A.F.P., Blanco G., Barbosa L.A. Selectivity analyses of γ-benzylidene digoxin derivatives to different Na,K-ATPase α isoforms: A molecular docking approach. J. Enzyme Inhib. Med. Chem. 2018;33:85–97. doi: 10.1080/14756366.2017.1380637. PubMed DOI PMC
Syeda S.S., Sánchez G., Hong K.H., Hawkinson J.E., Georg G.I., Blanco G. Design, synthesis, and in vitro and in vivo evaluation of ouabain analogues as potent and selective Na,K-ATPase α4 isoform inhibitors for male contraception. J. Med. Chem. 2018;61:1800–1820. doi: 10.1021/acs.jmedchem.7b00925. PubMed DOI PMC
Iyer A.K.V., Zhou M., Azad N., Elbaz H., Wang L., Rogalsky D.K., Rojanasakul Y., O’Doherty G.A., Langenhan J.M. A direct comparison of the anticancer activities of digitoxin MeON-neoglycosides and O-glycosides. ACS Med. Chem. Lett. 2010;1:326–330. doi: 10.1021/ml1000933. PubMed DOI PMC
Elbaz H.A., Stueckle T.A., Wang H.Y.L., O’Doherty G.A., Lowry D.T., Sargent L.M., Wang L., Dinu C.Z., Rojanasakula Y. Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells. Toxicol. Appl. Pharmacol. 2012;258:51–60. doi: 10.1016/j.taap.2011.10.007. PubMed DOI PMC
Katz A., Lifshitz Y., Bab-Dinitz E., Kapri-Pardes E., Goldshleger R., Tal D.M., Karlish S.J.D. Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J. Biol. Chem. 2010;285:19582–19592. doi: 10.1074/jbc.M110.119248. PubMed DOI PMC
Reddy D., Kumavath R., Barh D., Azevedo V., Ghosh P. Anticancer and antiviral properties of cardiac glycosides: A review to explore the mechanism of actions. Molecules. 2020;25:3596. doi: 10.3390/molecules25163596. PubMed DOI PMC
Clinical Trials. [(accessed on 15 March 2021)]; Available online: https://www.clinicaltrials.gov/
Clinical Trials. [(accessed on 15 March 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04141995.
Clinical Trials. [(accessed on 15 March 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01765569.
Clinical Trials. [(accessed on 15 March 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?recrs=&cond=cancer&term=digoxin&cntry=&state=&city=&dist=
Liang G., Chung T., Guo J., Zhang R., Xü W., Tzen J.T.C., Jiang R. Novel cinobufagin oxime ether derivatives as potential Na+/K+-ATPase inhibitors: Synthesis, biological screening and molecular docking. Chem. Res. Chin. Univ. 2017;33:378–383. doi: 10.1007/s40242-017-6487-1. DOI
Morita Y., Matsumura E., Tsujibo H., Yasuda M., Sakagami Y., Okabe T., Ishida N., Inamori Y. Biological activity of alpha-thujaplicin, the minor component of Thujopsis dolabrata SIEB. et ZUCC. var. hondai MAKINO. Biol. Pharm. Bull. 2001;24:607–611. doi: 10.1248/bpb.24.607. PubMed DOI
Oh I., Yang W.Y., Park J., Lee S., Mar W., Oh K.B., Shin J. In vitro Na+/K+-ATPase inhibitory activity and antimicrobial activity of sesquiterpenes isolated from Thujopsis dolabrata. Arch. Pharm. Res. 2011;34:2141–2147. doi: 10.1007/s12272-011-1218-5. PubMed DOI
Wu Q., Chen P., Tu G., Li M., Pan B., Guo Y., Zhai J., Fu H. Synthesis and evaluation of panaxatriol derivatives as Na+, K+-ATPase inhibitors. Bioorg. Med. Chem. Lett. 2018;28:2885–2889. doi: 10.1016/j.bmcl.2018.07.027. PubMed DOI
De Munari S., Cerri A., Gobbini M., Almirante N., Banfi L., Carzana G., Ferrari P., Marazzi G., Micheletti R., Schiavone A., et al. Structure-based design and synthesis of novel potent Na+,K+-ATPase inhibitors derived from a 5α,14α-androstane scaffold as positive inotropic compounds. J. Med. Chem. 2003;46:3644–3654. doi: 10.1021/jm030830y. PubMed DOI
Alevizopoulos K., Dimas K., Papadopoulou N., Schmidt E.M., Tsapara A., Alkahtani S., Honisch S., Prousis K.C., Alarifi S., Calogeropoulou T., et al. Functional characterization and anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase inhibitor istaroxime: In vitro and in vivo properties and cross talk with the membrane androgen receptor. Oncotarget. 2016;7:24415–24428. doi: 10.18632/oncotarget.8329. PubMed DOI PMC
Gobbini M., Armaroli S., Banfi L., Benicchio A., Carzana G., Ferrari P., Giacalone G., Marazzi G., Moro B., Micheletti R., et al. Novel analogues of Istaroxime, a potent inhibitor of Na(+),K(+)-ATPase: Synthesis, structure-activity relationship and 3D-quantitative structure-activity relationship of derivatives at position 6 on the androstane scaffold. Bioorg. Med. Chem. 2010;18:4275–4299. doi: 10.1016/j.bmc.2010.04.095. PubMed DOI
Zhang Z., Li Z., Tian J., Jiang W., Wang Y., Zhang X., Li Z., You Q., Shapiro J.I., Si S., et al. Identification of hydroxyxanthones as Na/K-ATPase ligands. Mol. Pharmacol. 2010;77:961–967. doi: 10.1124/mol.110.063974. PubMed DOI PMC
Lin C.N., Liou S.J., Lee T.H., Chuang Y.C., Won S.J. Xanthone derivatives as potential anti-cancer drugs. J. Pharm. Pharm. 1996;48:539–544. doi: 10.1111/j.2042-7158.1996.tb05970.x. PubMed DOI
Ramos-Alvarez I., Lee L., Jensen R.T. Cyclic AMP-dependent protein kinase A and EPAC mediate VIP and secretin stimulation of PAK4 and activation of Na+,K+-ATPase in pancreatic acinar cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2019;316:G263–G277. doi: 10.1152/ajpgi.00275.2018. PubMed DOI PMC
Moussawi L.E., Mohamed C., Kreydiyyeh S.I. Epinephrine modulates Na+/K+ ATPase activity in Caco-2 cells via Src, p38MAPK, ERK and PGE2. PLoS ONE. 2018;13:e0193139. doi: 10.1371/journal.pone.0193139. PubMed DOI PMC
Moussawi L.E., Mohamed C., Kreydiyyeh S. The epinephrine-induced PGE2 reduces Na+/K+ ATPase activity in Caco-2 cells via PKC, NF-κB and NO. PLoS ONE. 2019;14:e0220987. doi: 10.1371/journal.pone.0220987. PubMed DOI PMC
Shahidullah M., Mandal A., Delamere N.A. Src family kinase links insulin signaling to short term regulation of Na,K-ATPase in nonpigmented ciliary epithelium. J. Cell. Physiol. 2017;232:1489–1500. doi: 10.1002/jcp.25654. PubMed DOI PMC
Alharbi Y., Kapur A., Felder M., Barroilhet L., Stein T., Pattnaik B.R., Patankar M.S. Plumbagin-induced oxidative stress leads to inhibition of Na+/K+-ATPase (NKA) in canine cancer cells. Sci. Rep. 2019;9:11471. doi: 10.1038/s41598-019-47261-x. PubMed DOI PMC
Petrushanko I.Y., Yakushev S., Mitkevich V.A., Kamanina Y.V., Ziganshin R.H., Meng X., Anashkina A.A., Makhro A., Lopina O.D., Gassmann M., et al. S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity. J. Biol. Chem. 2012;287:32195–32205. doi: 10.1074/jbc.M112.391094. PubMed DOI PMC
Juel C. Oxidative stress (glutathionylation) and Na,K-ATPase activity in rat skeletal muscle. PLoS ONE. 2014;13:e110514. doi: 10.1371/journal.pone.0110514. PubMed DOI PMC
Bibert S., Liu C.C., Figtree G.A., Garcia A., Hamilton E.J., Marassi F.M., Sweadner K.J., Cornelius F., Geering K., Rasmussen H.H. FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit. J. Biol. Chem. 2011;286:18562–18572. doi: 10.1074/jbc.M110.184101. PubMed DOI PMC
Dada L.A., Chandel N.S., Ridge K.M., Pedemonte C., Bertorello A.M., Sznajder J.I. Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-zeta. J. Clin. Investig. 2003;111:1057–1064. doi: 10.1172/JCI16826. PubMed DOI PMC
Comellas A.P., Dada L.A., Lecuona E., Pesce L.M., Chandel N.S., Quesada N., Budinger G.R.S., Strous G.J., Ciechanover A., Sznajder J.I. Hypoxia-mediated degradation of Na,K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system. Circ. Res. 2006;98:1314–1322. doi: 10.1161/01.RES.0000222418.99976.1d. PubMed DOI
Chen Z., Krmar R.T., Dada L., Efendiev R., Leibiger I.B., Pedemonte C.H., Katz A.I., Sznajder J.I., Bertorello A.M. Phosphorylation of adaptor protein-2 mu2 is essential for Na+,K+-ATPase endocytosis in response to either G protein-coupled receptor or reactive oxygen species. Am. J. Respir. Cell Mol. Biol. 2006;35:127–132. doi: 10.1165/rcmb.2006-0044OC. PubMed DOI PMC
Cardiac Glycosides as Autophagy Modulators
Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses