Cardiac Glycosides as Autophagy Modulators
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34943848
PubMed Central
PMC8699753
DOI
10.3390/cells10123341
PII: cells10123341
Knihovny.cz E-zdroje
- Klíčová slova
- Beclin 1, LC3-II, Na+/K+-ATPase, autosis, bufalin, digoxin, mTOR, ouabain, peruvoside,
- MeSH
- apoptóza účinky léků MeSH
- autofagie * účinky léků MeSH
- biologické markery metabolismus MeSH
- biologické modely MeSH
- lidé MeSH
- sodíko-draslíková ATPasa metabolismus MeSH
- srdeční glykosidy farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
- sodíko-draslíková ATPasa MeSH
- srdeční glykosidy MeSH
Drug repositioning is one of the leading strategies in modern therapeutic research. Instead of searching for completely novel substances and demanding studies of their biological effects, much attention has been paid to the evaluation of commonly used drugs, which could be utilized for more distinct indications than they have been approved for. Since treatment approaches for cancer, one of the most extensively studied diseases, have still been very limited, great effort has been made to find or repurpose novel anticancer therapeutics. One of these are cardiac glycosides, substances commonly used to treat congestive heart failure or various arrhythmias. Recently, the antitumor properties of cardiac glycosides have been discovered and, therefore, these compounds are being considered for anticancer therapy. Their mechanism of antitumor action seems to be rather complex and not fully uncovered yet, however, autophagy has been confirmed to play a key role in this process. In this review article, we report on the up-to-date knowledge of the anticancer activity of cardiac glycosides with special attention paid to autophagy induction, the molecular mechanisms of this process, and the potential employment of this phenomenon in clinical practice.
Zobrazit více v PubMed
Rahib L., Wehner M.R., Matrisian L.M., Nead K.T. Estimated projection of US cancer incidence and death to 2040. JAMA Network Open. 2021;4:e214708. doi: 10.1001/jamanetworkopen.2021.4708. PubMed DOI PMC
Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2021. CA Cancer J. Clin. 2021;71:7–33. doi: 10.3322/caac.21654. PubMed DOI
Bakowski M.A., Beutler N., Wolff K.C., Kirkpatrick M.G., Chen E., Nguyen T.-T.H., Riva L., Shaabani N., Parren M., Ricketts J., et al. Drug repurposing screens identify chemical entities for the development of COVID-19 interventions. Nat. Commun. 2021;12:3309. doi: 10.1038/s41467-021-23328-0. PubMed DOI PMC
Armando R.G., Mengual Gómez D.L., Gomez D.E. New drugs are not enough-drug repositioning in oncology: An update. Int. J. Oncol. 2020;56:651–684. doi: 10.3892/ijo.2020.4966. PubMed DOI PMC
Bessen H.A. Therapeutic and toxic effects of digitalis: William Withering, 1785. J. Emerg. Med. 1986;4:243–248. doi: 10.1016/0736-4679(86)90048-X. PubMed DOI
Kelly R.A. Cardiac glycosides and congestive heart failure. Am. J. Cardiol. 1990;65:E10–E16. doi: 10.1016/0002-9149(90)90245-V. PubMed DOI
Shrestha T., Kopp B., Bisset N.G. The Moraceae-based dart poisons of South America. Cardiac glycosides of Maquira and Naucleopsis species. J. Ethnopharmacol. 1992;37:129–143. doi: 10.1016/0378-8741(92)90071-X. PubMed DOI
Fisch C. William Withering: An account of the foxglove and some of its medical uses 1785-1985. J. Am. Coll. Cardiol. 1985;5:1A–2A. doi: 10.1016/S0735-1097(85)80456-3. PubMed DOI
Shiratori O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: In vitro and in vivo studies. GANN Jpn. J. Cancer Res. 1967;58:521–528. PubMed
Schönfeld W., Weiland J., Lindig C., Masnyk M., Kabat M.M., Kurek A., Wicha J., Repke K.R. The lead structure in cardiac glycosides is 5 beta, 14 beta-androstane-3 beta 14-diol. Naunyn Schmiedebergs Arch. Pharmacol. 1985;329:414–426. doi: 10.1007/BF00496377. PubMed DOI
Melero C.P., Medarde M., San Feliciano A. A short review on cardiotonic steroids and their aminoguanidine analogues. Molecules. 2000;5:51–81. doi: 10.3390/50100051. DOI
Hollman A. Plants and cardiac glycosides. Br. Heart J. 1985;54:258–261. doi: 10.1136/hrt.54.3.258. PubMed DOI PMC
Yang Z., Luo H., Wang H., Hou H. Preparative isolation of bufalin and cinobufagin from Chinese traditional medicine ChanSu. J. Chromatogr. Sci. 2008;46:81–85. doi: 10.1093/chromsci/46.1.81. PubMed DOI
Skou J.C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta. 1957;23:394–401. doi: 10.1016/0006-3002(57)90343-8. PubMed DOI
Bejček J., Spiwok V., Kmoníčková E., Rimpelová S. Na+/K+-ATPase revisited: On its mechanism of action, role in cancer, and activity modulation. Molecules. 2021;26:1905. doi: 10.3390/molecules26071905. PubMed DOI PMC
Geering K. Functional roles of Na,K-ATPase subunits. Curr. Opin. Nephrol. Hypertens. 2008;17:526–532. doi: 10.1097/MNH.0b013e3283036cbf. PubMed DOI
de Souza W.F., Barbosa L.A., Liu L., de Araujo W.M., de-Freitas-Junior J.C.M., Fortunato-Miranda N., Fontes C.F.L., Morgado-Díaz J.A. Ouabain-induced alterations of the apical junctional complex involve α1 and β1 Na,K-ATPase downregulation and ERK1/2 activation independent of caveolae in colorectal cancer cells. J. Membr. Biol. 2014;247:23–33. doi: 10.1007/s00232-013-9607-y. PubMed DOI
Geering K. The functional role of beta subunits in oligomeric P-type ATPases. J. Bioenerg. Biomembr. 2001;33:425–438. doi: 10.1023/A:1010623724749. PubMed DOI
Clausen M.V., Hilbers F., Poulsen H. The structure and function of the Na,K-ATPase isoforms in health and disease. Front. Physiol. 2017;8:371. doi: 10.3389/fphys.2017.00371. PubMed DOI PMC
Béguin P., Wang X., Firsov D., Puoti A., Claeys D., Horisberger J.D., Geering K. The gamma subunit is a specific component of the Na,K-ATPase and modulates its transport function. EMBO J. 1997;16:4250–4260. doi: 10.1093/emboj/16.14.4250. PubMed DOI PMC
Sweadner K.J., Rael E. The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics. 2000;68:41–56. doi: 10.1006/geno.2000.6274. PubMed DOI
Erdmann E., Philipp G., Scholz H. Cardiac glycoside receptor, (Na+ + K+)-ATPase activity and force of contraction in rat heart. Biochem. Pharmacol. 1980;29:3219–3229. doi: 10.1016/0006-2952(80)90295-6. PubMed DOI
Grupp I., Im W.B., Lee C.O., Lee S.W., Pecker M.S., Schwartz A. Relation of sodium pump inhibition to positive inotropy at low concentrations of ouabain in rat heart muscle. J. Physiol. 1985;360:149–160. doi: 10.1113/jphysiol.1985.sp015609. PubMed DOI PMC
Johansson S., Lindholm P., Gullbo J., Larsson R., Bohlin L., Claeson P. Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells. Anti-cancer Drugs. 2001;12:475–483. doi: 10.1097/00001813-200106000-00009. PubMed DOI
Kaplan J.G. Membrane cation transport and the control of proliferation of mammalian cells. Annu. Rev. Physiol. 1978;40:19–41. doi: 10.1146/annurev.ph.40.030178.000315. PubMed DOI
Bortner C.D., Hughes F.M., Jr., Cidlowski J.A. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. 1997;272:32436–32442. doi: 10.1074/jbc.272.51.32436. PubMed DOI
Susin S.A., Lorenzo H.K., Zamzami N., Marzo I., Snow B.E., Brothers G.M., Mangion J., Jacotot E., Costantini P., Loeffler M., et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999;397:441–446. doi: 10.1038/17135. PubMed DOI
Wingrave J.M., Schaecher K.E., Sribnick E.A., Wilford G.G., Ray S.K., Hazen-Martin D.J., Hogan E.L., Banik N.L. Early induction of secondary injury factors causing activation of calpain and mitochondria-mediated neuronal apoptosis following spinal cord injury in rats. J. Neurosci. Res. 2003;73:95–104. doi: 10.1002/jnr.10607. PubMed DOI
Arisaka H., Ikeda U., Takayasu T., Takeda K., Natsume T., Hosoda S. Ouabain inhibits intracellular pH recovery from acidosis in cultured mouse heart cells. J. Mol. Cell. Cardiol. 1988;20:1–3. doi: 10.1016/S0022-2828(88)80173-1. PubMed DOI
Rich I.N., Worthington-White D., Garden O.A., Musk P. Apoptosis of leukemic cells accompanies reduction in intracellular pH after targeted inhibition of the Na+/H+ exchanger. Blood. 2000;95:1427–1434. doi: 10.1182/blood.V95.4.1427.004k48_1427_1434. PubMed DOI
Liang M., Tian J., Liu L., Pierre S., Liu J., Shapiro J., Xie Z.J. Identification of a pool of non-pumping Na/K-ATPase. J. Biol. Chem. 2007;282:10585–10593. doi: 10.1074/jbc.M609181200. PubMed DOI
Xie Z., Cai T. Na+-K+–ATPase-mediated signal transduction: From protein interaction to cellular function. Mol. Interv. 2003;3:157–168. doi: 10.1124/mi.3.3.157. PubMed DOI
Haas M., Askari A., Xie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chem. 2000;275:27832–27837. doi: 10.1074/jbc.M002951200. PubMed DOI
Haas M., Wang H., Tian J., Xie Z. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. 2002;277:18694–18702. doi: 10.1074/jbc.M111357200. PubMed DOI
Kometiani P., Liu L., Askari A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol. Pharmacol. 2005;67:929–936. doi: 10.1124/mol.104.007302. PubMed DOI
Liang M., Cai T., Tian J., Qu W., Xie Z.J. Functional characterization of Src-interacting Na/K-ATPase using RNA interference assay. J. Biol. Chem. 2006;281:19709–19719. doi: 10.1074/jbc.M512240200. PubMed DOI
Tian J., Liu J., Garlid K.D., Shapiro J.I., Xie Z. Involvement of mitogen-activated protein kinases and reactive oxygen species in the inotropic action of ouabain on cardiac myocytes. A potential role for mitochondrial K(ATP) channels. In: Kardami E., Hryshko L., Mesaeli N., editors. Cardiac Cell Biology. Developments in Molecular and Cellular Biochemistry. Volume 39. Springer; Boston, MA, USA: 2003. pp. 181–187. PubMed DOI
Xie Z., Kometiani P., Liu J., Li J., Shapiro J.I., Askari A. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J. Biol. Chem. 1999;274:19323–19328. doi: 10.1074/jbc.274.27.19323. PubMed DOI
Dolmetsch R.E., Xu K., Lewis R.S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998;392:933–936. doi: 10.1038/31960. PubMed DOI
Miyakawa-Naito A., Uhlén P., Lal M., Aizman O., Mikoshiba K., Brismar H., Zelenin S., Aperia A. Cell signaling microdomain with Na,K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations. J. Biol. Chem. 2003;278:50355–50361. doi: 10.1074/jbc.M305378200. PubMed DOI
Yuan Z., Cai T., Tian J., Ivanov A.V., Giovannucci D.R., Xie Z. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol. Biol. Cell. 2005;16:4034–4045. doi: 10.1091/mbc.e05-04-0295. PubMed DOI PMC
Barwe S.P., Anilkumar G., Moon S.Y., Zheng Y., Whitelegge J.P., Rajasekaran S.A., Rajasekaran A.K. Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell. 2005;16:1082–1094. doi: 10.1091/mbc.e04-05-0427. PubMed DOI PMC
Navé B.T., Ouwens M., Withers D.J., Alessi D.R., Shepherd P.R. Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 1999;344:427–431. doi: 10.1042/bj3440427. PubMed DOI PMC
Wick M.J., Dong L.Q., Riojas R.A., Ramos F.J., Liu F. Mechanism of phosphorylation of protein kinase B/Akt by a constitutively active 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem. 2000;275:40400–40406. doi: 10.1074/jbc.M003937200. PubMed DOI
Yudowski G.A., Efendiev R., Pedemonte C.H., Katz A.I., Berggren P.-O., Bertorello A.M. Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+,K+-ATPase α subunit and regulates its trafficking. Proc. Natl. Acad. Sci. USA. 2000;97:6556–6561. doi: 10.1073/pnas.100128297. PubMed DOI PMC
Graef M., Friedman J.R., Graham C., Babu M., Nunnari J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell. 2013;24:2918–2931. doi: 10.1091/mbc.e13-07-0381. PubMed DOI PMC
Dikic I., Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018;19:349–364. doi: 10.1038/s41580-018-0003-4. PubMed DOI
Wijshake T., Zou Z., Chen B., Zhong L., Xiao G., Xie Y., Doench J.G., Bennett L., Levine B. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc. Natl. Acad. Sci. USA. 2021;118:e2020478118. doi: 10.1073/pnas.2020478118. PubMed DOI PMC
Cho D.H., Jo Y.K., Kim S.C., Park I.J., Kim J.C. Down-regulated expression of ATG5 in colorectal cancer. Anticancer Res. 2012;32:4091. PubMed
Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gélinas C., Fan Y., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64. doi: 10.1016/j.ccr.2006.06.001. PubMed DOI PMC
Cayo A., Segovia R., Venturini W., Moore-Carrasco R., Valenzuela C., Brown N. mTOR activity and autophagy in senescent cells, a complex partnership. Int. J. Mol. Sci. 2021;22:8149. doi: 10.3390/ijms22158149. PubMed DOI PMC
Fan Q., Yang L., Zhang X., Ma Y., Li Y., Dong L., Zong Z., Hua X., Su D., Li H., et al. Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/β-catenin signaling pathway activation in hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. 2018;37:9. doi: 10.1186/s13046-018-0673-y. PubMed DOI PMC
Thomas M., Davis T., Loos B., Sishi B., Huisamen B., Strijdom H., Engelbrecht A.M. Autophagy is essential for the maintenance of amino acids and ATP levels during acute amino acid starvation in MDAMB231 cells. Cell Biochem. Funct. 2018;36:65–79. doi: 10.1002/cbf.3318. PubMed DOI
Goldsmith J., Levine B., Debnath J. Autophagy and cancer metabolism. Methods Enzymol. 2014;542:25–57. doi: 10.1016/B978-0-12-416618-9.00002-9. PubMed DOI PMC
Yan G., Elbadawi M., Efferth T. Multiple cell death modalities and their key features (Review) World Acad. Sci. J. 2020;2:39–48. doi: 10.3892/wasj.2020.40. DOI
Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L., Amelio I., Andrews D.W., et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. doi: 10.1038/s41418-017-0012-4. PubMed DOI PMC
Liu Y., Shoji-Kawata S., Sumpter R.M., Jr., Wei Y., Ginet V., Zhang L., Posner B., Tran K.A., Green D.R., Xavier R.J., et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl. Acad. Sci. USA. 2013;110:20364–20371. doi: 10.1073/pnas.1319661110. PubMed DOI PMC
Wu D., Zhang K., Hu P. The role of autophagy in acute myocardial infarction. Front. Pharmacol. 2019;10:551. doi: 10.3389/fphar.2019.00551. PubMed DOI PMC
Nah J., Zablocki D., Sadoshima J. Autosis: A new target to prevent cell death. JACC: Basic Transl. Sci. 2020;5:857–869. doi: 10.1016/j.jacbts.2020.04.014. PubMed DOI PMC
Miller S.C., Huang R., Sakamuru S., Shukla S.J., Attene-Ramos M.S., Shinn P., Van Leer D., Leister W., Austin C.P., Xia M. Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem. pharmacol. 2010;79:1272–1280. doi: 10.1016/j.bcp.2009.12.021. PubMed DOI PMC
Yang Q., Huang W., Jozwik C., Lin Y., Glasman M., Caohuy H., Srivastava M., Esposito D., Gillette W., Hartley J., et al. Cardiac glycosides inhibit TNF-α/NF-κB signaling by blocking recruitment of TNF receptor-associated death domain to the TNF receptor. Proc. Natl. Acad. Sci. USA. 2005;102:9631–9636. doi: 10.1073/pnas.0504097102. PubMed DOI PMC
Bereta J., Cohen M.C., Bereta M. Stimulatory effect of ouabain on VCAM-1 and iNOS expression in murine endothelial cells: Involvement of NF-kappa B. FEBS Lett. 1995;377:21–25. doi: 10.1016/0014-5793(95)01301-6. PubMed DOI
Farghaly H.S.M., Ashry I.E.-S.M., Hareedy M.S. High doses of digoxin increase the myocardial nuclear factor-kB and CaV1.2 channels in healthy mice. A possible mechanism of digitalis toxicity. Biomed. Pharmacother. 2018;105:533–539. doi: 10.1016/j.biopha.2018.05.137. PubMed DOI
Wang Y., Qiu Q., Shen J.J., Li D.D., Jiang X.J., Si S.Y., Shao R.G., Wang Z. Cardiac glycosides induce autophagy in human non-small cell lung cancer cells through regulation of dual signaling pathways. Int. J. Biochem. Cell Biol. 2012;44:1813–1824. doi: 10.1016/j.biocel.2012.06.028. PubMed DOI
Liu J., Kuang F., Kroemer G., Klionsky D.J., Kang R., Tang D. Autophagy-dependent ferroptosis: Machinery and regulation. Cell Chem. Biol. 2020;27:420–435. doi: 10.1016/j.chembiol.2020.02.005. PubMed DOI PMC
Goodall M.L., Cramer S.D., Thorburn A. Autophagy complexes cell death by necroptosis. Oncotarget. 2016;7:50818–50819. doi: 10.18632/oncotarget.10640. PubMed DOI PMC
Ahmed A., Tait S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020;14:2994–3006. doi: 10.1002/1878-0261.12851. PubMed DOI PMC
Michaud M., Martins I., Sukkurwala A.Q., Adjemian S., Ma Y., Pellegatti P., Shen S., Kepp O., Scoazec M., Mignot G., et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334:1573–1577. doi: 10.1126/science.1208347. PubMed DOI
Škubník J., Pavlíčková V., Rimpelová S. Cardiac glycosides as immune system modulators. Biomolecules. 2021;11:659. doi: 10.3390/biom11050659. PubMed DOI PMC
Lin S.-Y., Hsieh S.-Y., Fan Y.-T., Wei W.-C., Hsiao P.-W., Tsai D.-H., Wu T.-S., Yang N.-S. Necroptosis promotes autophagy-dependent upregulation of DAMP and results in immunosurveillance. Autophagy. 2018;14:778–795. doi: 10.1080/15548627.2017.1386359. PubMed DOI PMC
DeVorkin L., Choutka C., Gorski S.M. Chapter 24—The interplay between autophagy and apoptosis. In: Hayat M.A., editor. Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Academic Press; Amsterdam, The Neatherlands: 2014. pp. 369–383. DOI
Mariño G., Niso-Santano M., Baehrecke E.H., Kroemer G. Self-consumption: The interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2014;15:81–94. doi: 10.1038/nrm3735. PubMed DOI PMC
Sun X., Ng T.T.H., Sham K.W.Y., Zhang L., Chan M.T.V., Wu W.K.K., Cheng C.H.K. Bufalin, a traditional Chinese medicine compound, prevents tumor formation in two murine models of colorectal cancer. Cancer Prev. Res. (Phila.) 2019;12:653–666. doi: 10.1158/1940-6207.CAPR-19-0134. PubMed DOI
Meng Z., Yang P., Shen Y., Bei W., Zhang Y., Ge Y., Newman R.A., Cohen L., Liu L., Thornton B., et al. Pilot study of huachansu in patients with hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. Cancer. 2009;115:5309–5318. doi: 10.1002/cncr.24602. PubMed DOI PMC
Xie C.M., Chan W.Y., Yu S., Zhao J., Cheng C.H. Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic. Biol. Med. 2011;51:1365–1375. doi: 10.1016/j.freeradbiomed.2011.06.016. PubMed DOI
Li D.D., Wang L.L., Deng R., Tang J., Shen Y., Guo J.F., Wang Y., Xia L.P., Feng G.K., Liu Q.Q., et al. The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene. 2009;28:886–898. doi: 10.1038/onc.2008.441. PubMed DOI
Hsu C.M., Tsai Y., Wan L., Tsai F.J. Bufalin induces G2/M phase arrest and triggers autophagy via the TNF, JNK, BECN-1 and ATG8 pathway in human hepatoma cells. Int. J. Oncol. 2013;43:338–348. doi: 10.3892/ijo.2013.1942. PubMed DOI
Miao Q., Bi L.L., Li X., Miao S., Zhang J., Zhang S., Yang Q., Xie Y.H., Zhang J., Wang S.W. Anticancer effects of bufalin on human hepatocellular carcinoma HepG2 cells: Roles of apoptosis and autophagy. Int. J. Mol. Sci. 2013;14:1370–1382. doi: 10.3390/ijms14011370. PubMed DOI PMC
Shen S., Zhang Y., Wang Z., Zhang R., Gong X. Bufalin induces the interplay between apoptosis and autophagy in glioma cells through endoplasmic reticulum stress. Int. J. Biol. Sci. 2014;10:212–224. doi: 10.7150/ijbs.8056. PubMed DOI PMC
Zhao H., Li Q., Pang J., Jin H., Li H., Yang X. Blocking autophagy enhances the pro-apoptotic effect of bufalin on human gastric cancer cells through endoplasmic reticulum stress. Biol. Open. 2017;6:1416–1422. doi: 10.1242/bio.026344. PubMed DOI PMC
Sheng X., Zhu P., Qin J., Li Q. The biological role of autophagy in regulating and controlling the proliferation of liver cancer cells induced by bufalin. Oncol. Rep. 2018;39:2931–2941. doi: 10.3892/or.2018.6365. PubMed DOI
Hollman A. Drugs for atrial fibrillation. Digoxin comes from Digitalis lanata. BMJ. 1996;312:912. doi: 10.1136/bmj.312.7035.912. PubMed DOI PMC
Ehle M., Patel C., Giugliano R.P. Digoxin: Clinical highlights: A review of digoxin and its use in contemporary medicine. Crit. Pathw. Cardiol. 2011;10:93–98. doi: 10.1097/HPC.0b013e318221e7dd. PubMed DOI
Hundeshagen P., Hamacher-Brady A., Eils R., Brady N.R. Concurrent detection of autolysosome formation and lysosomal degradation by flow cytometry in a high-content screen for inducers of autophagy. BMC Biol. 2011;9:38. doi: 10.1186/1741-7007-9-38. PubMed DOI PMC
Sun F., Xu X., Wang X., Zhang B. Regulation of autophagy by Ca2+ Tumour Biol. 2016;37:15467–15476. doi: 10.1007/s13277-016-5353-y. PubMed DOI PMC
Rasheduzzaman M., Yin H., Park S.Y. Cardiac glycoside sensitized hepatocellular carcinoma cells to TRAIL via ROS generation, p38MAPK, mitochondrial transition, and autophagy mediation. Mol. Carcinog. 2019;58:2040–2051. doi: 10.1002/mc.23096. PubMed DOI
Crezee T., Tesselaar M.H., Nagarajah J., Corver W.E., Morreau J., Pritchard C., Kimura S., Kuiper J.G., van Engen-van Grunsven I., Smit J.W.A., et al. Digoxin treatment reactivates in vivo radioactive iodide uptake and correlates with favorable clinical outcome in non-medullary thyroid cancer. Cell. Oncol. (Dordr.) 2021;44:611–625. doi: 10.1007/s13402-021-00588-y. PubMed DOI PMC
Fernández Fernández Á., Liu Y., Ginet V., Shi M., Nah J., Zou Z., Zhou A., Posner B., Xiao G., Tanguy M., et al. Interaction between the autophagy protein Beclin 1 and Na+,K+-ATPase during starvation, exercise, and ischemia. JCI Insight. 2020;5:e133282. doi: 10.1172/jci.insight.133282. PubMed DOI PMC
Słabiak-Błaż N., Piecha G. Endogenous mammalian cardiotonic steroids—A new cardiovascular risk factor?—A mini-review. Life. 2021;11:727. doi: 10.3390/life11080727. PubMed DOI PMC
Hamlyn J.M., Blaustein M.P. Endogenous ouabain: Recent advances and controversies. Hypertension. 2016;68:526–532. doi: 10.1161/HYPERTENSIONAHA.116.06599. PubMed DOI PMC
Wang Y., Zhan Y., Xu R., Shao R., Jiang J., Wang Z. Src mediates extracellular signal-regulated kinase 1/2 activation and autophagic cell death induced by cardiac glycosides in human non-small cell lung cancer cell lines. Mol. Carcinog. 2015;54:E26–E34. doi: 10.1002/mc.22147. PubMed DOI
Shen J.-j., Zhan Y.-c., Li H.-y., Wang Z. Ouabain impairs cancer metabolism and activates AMPK-Src signaling pathway in human cancer cell lines. Acta Pharmacol. Sin. 2020;41:110–118. doi: 10.1038/s41401-019-0290-0. PubMed DOI PMC
Trenti A., Grumati P., Cusinato F., Orso G., Bonaldo P., Trevisi L. Cardiac glycoside ouabain induces autophagic cell death in non-small cell lung cancer cells via a JNK-dependent decrease of Bcl-2. Biochem. Pharmacol. 2014;89:197–209. doi: 10.1016/j.bcp.2014.02.021. PubMed DOI
Rupaimoole R., Yoon B., Zhang W.C., Adams B.D., Slack F.J. A high-throughput small molecule screen identifies ouabain as synergistic with miR-34a in killing lung cancer cells. iScience. 2020;23:100878. doi: 10.1016/j.isci.2020.100878. PubMed DOI PMC
Song H.L., Demirev A.V., Kim N.Y., Kim D.H., Yoon S.Y. Ouabain activates transcription factor EB and exerts neuroprotection in models of Alzheimer’s disease. Mol. Cell. Neurosci. 2019;95:13–24. doi: 10.1016/j.mcn.2018.12.007. PubMed DOI
Meng L., Wen Y., Zhou M., Li J., Wang T., Xu P., Ouyang J. Ouabain induces apoptosis and autophagy in Burkitt’s lymphoma Raji cells. Biomed. Pharmacother. 2016;84:1841–1848. doi: 10.1016/j.biopha.2016.10.114. PubMed DOI
Nah J., Zhai P., Huang C.-Y., Fernández Á.F., Mareedu S., Levine B., Sadoshima J. Upregulation of Rubicon promotes autosis during myocardial ischemia/reperfusion injury. J. Clin. Invest. 2020;130:2978–2991. doi: 10.1172/JCI132366. PubMed DOI PMC
L’Hote V., Courbeyrette R., Pinna G., Cintrat J.C., Le Pavec G., Delaunay-Moisan A., Mann C., Thuret J.Y. Ouabain and chloroquine trigger senolysis of BRAF-V600E-induced senescent cells by targeting autophagy. Aging Cell. 2021;20:e13447. doi: 10.1111/acel.13447. PubMed DOI PMC
Hsu I.L., Chou C.-Y., Wu Y.-Y., Wu J.-E., Liang C.-H., Tsai Y.-T., Ke J.-Y., Chen Y.-L., Hsu K.-F., Hong T.-M. Targeting FXYD2 by cardiac glycosides potently blocks tumor growth in ovarian clear cell carcinoma. Oncotarget. 2016;7:62925–62938. doi: 10.18632/oncotarget.7497. PubMed DOI PMC
Škubník J., Bejček J., Pavlíčková V.S., Rimpelová S. Repurposing cardiac glycosides: Drugs for heart failure surmounting viruses. Molecules. 2021;26:5627. doi: 10.3390/molecules26185627. PubMed DOI PMC
Mukhopadhyay R., Venkatadri R., Katsnelson J., Arav-Boger R. Digitoxin suppresses human cytomegalovirus replication via Na+, K+/ATPase α1 subunit-dependent AMP-activated protein kinase and autophagy activation. J. Virol. 2018;92:e01861-17. doi: 10.1128/JVI.01861-17. PubMed DOI PMC
Kang M.A., Kim M.-S., Kim W., Um J.-H., Shin Y.-J., Song J.-Y., Jeong J.-H. Lanatoside C suppressed colorectal cancer cell growth by inducing mitochondrial dysfunction and increased radiation sensitivity by impairing DNA damage repair. Oncotarget. 2016;7:6074–6087. doi: 10.18632/oncotarget.6832. PubMed DOI PMC
Reddy D., Kumavath R., Ghosh P., Barh D. Lanatoside C induces G2/M cell cycle arrest and suppresses cancer cell growth by attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR signaling pathways. Biomolecules. 2019;9:792. doi: 10.3390/biom9120792. PubMed DOI PMC
Reddy D., Ghosh P., Kumavath R. Strophanthidin attenuates MAPK, PI3K/AKT/mTOR, and Wnt/beta-Catenin signaling Pathways in human cancers. Front. Oncol. 2020;9:1469. doi: 10.3389/fonc.2019.01469. PubMed DOI PMC
Reddy D., Kumavath R., Tan T.Z., Ampasala D.R., Kumar A.P. Peruvoside targets apoptosis and autophagy through MAPK Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways in human cancers. Life Sci. 2020;241:117147. doi: 10.1016/j.lfs.2019.117147. PubMed DOI
Kaushik V., Yakisich J.S., Azad N., Kulkarni Y., Venkatadri R., Wright C., Rojanasakul Y., Iyer A.K.V. Anti-tumor effects of cardiac glycosides on human lung cancer cells and lung tumorspheres. J. Cell. Physiol. 2017;232:2497–2507. doi: 10.1002/jcp.25611. PubMed DOI
Yang S.Y., Kim N.H., Cho Y.S., Lee H., Kwon H.J. Convallatoxin, a dual inducer of autophagy and apoptosis, inhibits angiogenesis in vitro and in vivo. PLoS ONE. 2014;9:e91094. doi: 10.1371/journal.pone.0091094. PubMed DOI PMC
Newman R.A., Kondo Y., Yokoyama T., Dixon S., Cartwright C., Chan D., Johansen M., Yang P. Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr. Cancer Ther. 2007;6:354–364. doi: 10.1177/1534735407309623. PubMed DOI
Terzioglu-Usak S., Nalli A., Elibol B., Ozek E., Hatiboglu M.A. AnvirzelTMregulates cell death through inhibiting GSK-3 activity in human U87 glioma cells. Neurol. Res. 2020;42:68–75. doi: 10.1080/01616412.2019.1709744. PubMed DOI
Weng J.-R., Bai L.-Y., Chiu S.-J., Chiu C.-F., Lin W.-Y., Hu J.-L., Shieh T.-M. Divaricoside exerts antitumor effects, in part, by modulating Mcl-1 in human oral squamous cell carcinoma cells. Comput. Struct. Biotechnol. J. 2019;17:151–159. doi: 10.1016/j.csbj.2019.01.004. PubMed DOI PMC
Luo M.J., Liu Y.F., Liu N.N., Shao W.Q., Ming L.J., Liu J., Xie Y.H. Proscillaridin A inhibits hepatocellular carcinoma progression through inducing mitochondrial damage and autophagy. Acta Biochim. Biophys. Sin. 2021;53:19–28. doi: 10.1093/abbs/gmaa139. PubMed DOI
Saleem M.Z., Alshwmi M., Zhang H., Din S.R.U., Nisar M.A., Khan M., Alam S., Alam G., Jin L., Ma T. Inhibition of JNK-mediated autophagy promotes proscillaridin A-induced apoptosis via ROS generation, itracellular Ca+2 oscillation and inhibiting STAT3 signaling in breast cancer cells. Front. Pharmacol. 2020;11:01055. doi: 10.3389/fphar.2020.01055. PubMed DOI PMC
Schneider N.F.Z., Cerella C., Lee J.-Y., Mazumder A., Kim K.R., de Carvalho A., Munkert J., Pádua R.M., Kreis W., Kim K.-W., et al. Cardiac glycoside glucoevatromonoside induces cancer type-specific sell death. Front. Pharmacol. 2018;9:70. doi: 10.3389/fphar.2018.00070. PubMed DOI PMC
Keller C.W., Sina C., Kotur M.B., Ramelli G., Mundt S., Quast I., Ligeon L.A., Weber P., Becher B., Münz C., et al. ATG-dependent phagocytosis in dendritic cells drives myelin-specific CD4(+) T cell pathogenicity during CNS inflammation. Proc. Natl. Acad. Sci. USA. 2017;114:E11228–E11237. doi: 10.1073/pnas.1713664114. PubMed DOI PMC