Quo vadis Cardiac Glycoside Research?

. 2021 May 11 ; 13 (5) : . [epub] 20210511

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34064873

Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG's toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG's toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG's chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain.

Zobrazit více v PubMed

Lichman B.R. The scaffold-forming steps of plant alkaloid biosynthesis. Nat. Prod. Rep. 2021;38:103–129. doi: 10.1039/D0NP00031K. PubMed DOI

Žuvela P., David J., Yang X., Huang D., Wong M.W. Non-linear quantitative structure⁻activity relationships modelling, mechanistic study and in-silico design of flavonoids as potent antioxidants. Int. J. Mol. Sci. 2019;20:2328. doi: 10.3390/ijms20092328. PubMed DOI PMC

Son N., Thuy P.T., Trang N.V. Antioxidative capacities of stilbenoid suaveolensone A and flavonoid suaveolensone B: A detailed analysis of structural-electronic properties and mechanisms. J. Mol. Struct. 2021;1224:129025. doi: 10.1016/j.molstruc.2020.129025. DOI

Cui S., Jiang H., Chen L., Xu J., Sun W., Sun H., Xie Z., Xu Y., Yang F., Liu W., et al. Design, synthesis and evaluation of wound healing activity for β-sitosterols derivatives as potent Na+/K+-ATPase inhibitors. Bioorg. Chem. 2020;98:103150. doi: 10.1016/j.bioorg.2019.103150. PubMed DOI

The Top 200 Drugs of 2018. [(accessed on 26 April 2021)]; Available online: https://clincalc.com/DrugStats/

Zalucki M.P., Brower L.P., Alonso M.A. Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias Humistrata. Ecol. Entomol. 2001;26:212–224. doi: 10.1046/j.1365-2311.2001.00313.x. DOI

Dobler S., Petschenka G., Wagschal V., Flacht L. Convergent adaptive evolution–how insects master the challenge of cardiac glycoside-containing host plants. Entomol. Exp. Appl. 2015;157:30–39. doi: 10.1111/eea.12340. DOI

Goldberger Z.D., Goldberger A.L. Therapeutic ranges of serum digoxin concentrations in patients with heart failure. Am. J. Cardiol. 2012;109:1818–1821. doi: 10.1016/j.amjcard.2012.02.028. PubMed DOI PMC

Withering W. An Account of the Foxglove, and Some of Its Medical Uses: With Practical Remarks on Dropsy, and Other Diseases. Cambridge University Press; Cambridge, UK: 2014.

Turumtay H., Turumtay E.A., Selvi E.K., Sahin H., Sandallı C., Yazıcı Z.A. Three seasonal comprehensive evaluation process of Digitalis trojana Ivan’s phenolics. Ind. Crop. Prod. 2016;94:160–166. doi: 10.1016/j.indcrop.2016.08.039. DOI

Van Wietmarschena E.H.A., Hagels H., Peters R., Heisteke J., Greef J., Wang M. Optimizing growth conditions for digoxin production in Digitalis lanata Ehrh. World J. Tradit. Chin. Med. 2016;2:24–35. doi: 10.15806/j.issn.2311-8571.2016.0010. DOI

Grosa G., Allegrone G., Del Grosso E. LC-ESI-MS/MS characterization of strophanthin-K. J. Pharm. Biomed. Anal. 2005;38:79–86. doi: 10.1016/j.jpba.2004.12.008. PubMed DOI

Makarevich I.F., Kovalev S.V. Cardiac glycosides from Strophanthus kombe. Chem. Nat. Compd. 2006;42:189–193. doi: 10.1007/s10600-006-0075-9. DOI

Hammerstein F., Kaiser F. Quantitative direct fluorometric determination of extracts of medicinal plants on thin-layer-chromatograms. Planta Med. 1972;21:5–15. doi: 10.1055/s-0028-1099518. PubMed DOI

Pellati F., Bruni R., Bellardi M.G., Bertaccini A., Benvenuti S. Optimization and validation of a high-performance liquid chromatography method for the analysis of cardiac glycosides in Digitalis lanata. J. Chromatogr. A. 2009;1216:3260–3269. doi: 10.1016/j.chroma.2009.02.042. PubMed DOI

Usai M., Atzei A.D., Marchetti M. Cardenolides content in wild Sardinian Digitalis purpurea L. populations. Nat. Prod. Res. 2007;21:798–804. doi: 10.1080/14786410701218291. PubMed DOI

Ikeda Y., Fujii Y., Nakaya I., Yamazaki M. Quantitative HPLC analysis of cardiac glycosides in Digitalis purpurea leaves. J. Nat. Prod. 1995;58:897–901. doi: 10.1021/np50120a012. PubMed DOI

Fujii Y., Ikeda Y., Yamazaki M. Separation and determination of purpurea glycosides in Digitalis purpurea leaves by micro-HPLC. J. High Resolut. Chromatogr. 1987;10:137–140. doi: 10.1002/jhrc.1240100306. DOI

Bai L., Zhao M., Toki A., Hasegawa T., Sakai J.I., Yang X.Y., Bai Y., Ogura H., Mitsui T., Kataoka T., et al. Polar cardenolide monoglycosides from stems and twigs of Nerium oleander and their biological activities. J. Wood Sci. 2011;57:47–55. doi: 10.1007/s10086-010-1138-x. DOI

Turkmen Z., Mercan S., Cengiz S. An HPTLC method for the determination of oleandrin in Nerium plant extracts and its application to forensic toxicology. J. Planar Chromatogr. 2013;26:279–283. doi: 10.1556/JPC.26.2013.3.13. DOI

Opletal L., Vokac K., Hanus V., Sovova M., Blunden G., Patel A., Dacke C. Simultaneous determination of cardenolides and coumarins in the seeds of Coronilla varia L. Folia Pharm. Univ. Carol. 1998;21–22:89–94.

Welsh K.J., Huang R.S.P., Actor J.K., Dasgupta A. Rapid detection of the active cardiac glycoside convallatoxin of lily of the valley using LOCI digoxin assay. Am. J. Clin. Pathol. 2014;142:307–312. doi: 10.1309/AJCPCOXF0O5XXTKD. PubMed DOI

Higano T., Kuroda M., Sakagami H., Mimaki Y. Convallasaponin A, a new 5β-spirostanol triglycoside from the rhizomes of Convallaria majalis. Chem. Pharm. Bull. 2007;55:337–339. doi: 10.1248/cpb.55.337. PubMed DOI

Saxena V.K., Chaturvedi P.K. Novel cardenolide, canarigenin-3-O-α-l-rhamnopyranosyl-(I→5)-O-β-d-xylofuranoside, from rhizomes of Convallaria majalis. J. Nat. Prod. 1992;55:39–42. doi: 10.1021/np50079a005. DOI

Krenn L., Schlifelner L., Stimpfl T., Kopp B. A new HPLC method for the quantification of cardenolides in Convallaria majalis. Pharmazie. 1996;51:906–909.

Fumiko A.B.E., Yamauchi T. Cardenolide glycosides from the roots of Apocynum cannabinum. Chem. Pharm. Bullet. 1994;42:2028–2031. doi: 10.1248/cpb.42.2028. DOI

Radenkova-Saeva J., Atanasov P. Cardiac glycoside plants self-poisoning. Acta Med. Bulg. 2014;41:99–104. doi: 10.2478/amb-2014-0013. DOI

Oerther S.E. Plant poisonings: Common plants that contain cardiac glycosides. J. Emerg. Nurs. 2011;37:102–103. doi: 10.1016/j.jen.2010.09.008. PubMed DOI

Maffè S., Cucchi L., Zenone F., Bertoncelli C., Beldì F., Colombo M.L., Bielli M., Paino A.M., Parravicini U., Paffoni P., et al. Digitalis must be banished from the table: A rare case of acute accidental Digitalis intoxication of a whole family. J. Cardiovasc. Med. 2009;10:727–732. doi: 10.2459/JCM.0b013e32832c2314. PubMed DOI

Lin C.C., Yang C.C., Phua D.H., Deng J.F., Lu L.H. An outbreak of foxglove leaf poisoning. J. Chin. Med. Assoc. 2010;73:97–100. doi: 10.1016/S1726-4901(10)70009-5. PubMed DOI

Keppel M.H., Piecha G., März W., Cadamuro J., Auer S., Felder T.K., Mrazek C., Oberkofler H., Trummer C., Grübler M.R., et al. The endogenous cardiotonic steroid Marinobufagenin and decline in estimated glomerular filtration rate at follow-up in patients with arterial hypertension. PLoS ONE. 2019;14:e0212973. doi: 10.1371/journal.pone.0212973. PubMed DOI PMC

Bauer N., Müller-Ehmsen J., Krämer U., Hambarchian N., Zobel C., Schwinger R.H., Neu H., Kirch U., Grünbaum E.G., Schoner W. Ouabain-like compound changes rapidly on physical exercise in humans and dogs: Effects of beta-blockade and angiotensin-converting enzyme inhibition. Hypertension. 2005;45:1024–1028. doi: 10.1161/01.HYP.0000165024.47728.f7. PubMed DOI

Nesher M., Dvela M., Igbokwe V.U., Rosen H., Lichtstein D. Physiological roles of endogenous ouabain in normal rats. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H2026–H2034. doi: 10.1152/ajpheart.00734.2009. PubMed DOI

Lenaerts C., Wells M., Hambÿe S., Blankert B. Marinobufagenin extraction from Rhinella marina toad glands: Alternative approaches for a systematized strategy. J. Sep. Sci. 2019;42:1384–1392. doi: 10.1002/jssc.201800879. PubMed DOI

Meng Q., Yau L.F., Lu J.G., Wu Z.Z., Zhang B.X., Wang J.R., Jiang Z.H. Chemical profiling and cytotoxicity assay of bufadienolides in toad venom and toad skin. J. Ethnopharmacol. 2016;187:74–82. doi: 10.1016/j.jep.2016.03.062. PubMed DOI

El-Masri M.A., Clark B.J., Qazzaz H.M., Valdes R., Jr. Human adrenal cells in culture produce both ouabain-like and dihydroouabain-like factors. Clin. Chem. 2002;48:1720–1730. doi: 10.1093/clinchem/48.10.1720. PubMed DOI

Bozorgi M., Amin G., Kasebzade S., Shekarchi M. Development and validation of a HPLC-UV method for determination of proscillaridin A in Drimia maritima. Res. J. Pharm. 2016;3:1–7.

Steyn P.S., van Heerden F.R. Bufadienolides of plant and animal origin. Nat. Prod. Rep. 1998;15:397–413. doi: 10.1039/a815397y. PubMed DOI

Schmiedeberg O. Pharmacologically active ingredients of Digitalis purpurea L. Chem. Zent. 1875;46:262.

Smith S. LXXI1.-digoxin, a new digitalis glucoside. J. Chem. Soc. 1930:508–510. doi: 10.1039/JR9300000508. DOI

Hagimori M., Matsumoto T., Obi Y. Studies on the production of Digitalis cardenolides by plant tissue culture III. Effects of nutrients on digitoxin formation by shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Cell Physiol. 1982;23:1205–1211. doi: 10.1093/oxfordjournals.pcp.a076462. PubMed DOI PMC

Patil J.G., Ahire M.L., Nitnaware K.M., Panda S., Bhatt V.P., Kishor P.B., Nikam T.D. In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding. Appl. Microbiol. Biotechnol. 2013;97:2379–2393. doi: 10.1007/s00253-012-4489-y. PubMed DOI

Groeneveld H.W., van Tegelen L.J., Versluis K. Cardenolide and neutral lipid biosynthesis from malonate in Digitalis lanata. Planta Med. 1992;58:239–244. doi: 10.1055/s-2006-961444. PubMed DOI

Haussmann W., Kreis W., Stuhlemmer U., Reinhard E. Effects of various pregnanes and two 23-nor-5-cholenic acids on cardenolide accumulation in cell and organ cultures of Digitalis lanata. Planta Med. 1997;63:446–453. doi: 10.1055/s-2006-957731. PubMed DOI

Pérez-Alonso N., Capote A., Gerth A., Jiménez E. Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell Tissue Organ Cult. 2012;110:153–162. doi: 10.1007/s11240-012-0139-4. DOI

Paranhos A., Fernández-Tárrago J., Corchete P. Relationship between active oxygen species and cardenolide production in cell cultures of Digitalis thapsi: Effect of calcium restriction. New Phytol. 1999;141:51–60. doi: 10.1046/j.1469-8137.1999.00317.x. DOI

Etienne H., Berthouly M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 2002;69:215–231. doi: 10.1023/A:1015668610465. DOI

Pérez-Alonso N., Wilken D., Gerth A., Jähn A., Nitzsche H.M., Kerns G., Capote-Perez A., Jiménez E. Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tissue Organ Cult. 2009;99:151–156. doi: 10.1007/s11240-009-9587-x. DOI

Hagimori M., Matsumoto T., Obi Y. Studies on the production of Digitalis cardenolides by plant tissue culture: II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Physiol. 1982;69:653–656. doi: 10.1104/pp.69.3.653. PubMed DOI PMC

Nester E.W. Agrobacterium: Nature’s genetic engineer. Front. Plant Sci. 2015;5:730. doi: 10.3389/fpls.2014.00730. PubMed DOI PMC

Chandra S. Natural plant genetic engineer Agrobacterium rhizogenes: Role of T-DNA in plant secondary metabolism. Biotechnol. Lett. 2012;34:407–415. doi: 10.1007/s10529-011-0785-3. PubMed DOI

Saito K., Yamazaki M., Shimomura K., Yoshimatsu K., Murakoshi I. Genetic transformation of foxglove (Digitalis purpurea) by chimeric foreign genes and production of cardioactive glycosides. Plant Cell Rep. 1990;9:121–124. doi: 10.1007/BF00232085. PubMed DOI

Lehmann U., Moldenhauer D., Thomar S., Dietrich B., Luckner M. Regeneration of plants from Digitalis Lanata cells transformed with Agrobacterium Tumefaciens carrying bacterial genes encoding neomycin phosphotransferase II and {j-glucuronidase. J. Plant Physiol. 1995;147:53–57. doi: 10.1016/S0176-1617(11)81412-4. DOI

Pradel H., Dumke-Lehmann U., Diettrich B., Luckner M. Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. J. Plant Physiol. 1997;151:209–215. doi: 10.1016/S0176-1617(97)80154-X. DOI

Koga M., Hirashima K., Nakahara T. The transformation system in foxglove (Digitalis purpurea L.) using Agrobacterium rhizogenes and traits of the regenerants. Plant Biotechnol. 2000;17:99–104. doi: 10.5511/plantbiotechnology.17.99. DOI

Pérez-Alonso N., Chong-Pérez B., Capote A., Pérez A., Izquierdo Y., Angenon G., Jiménez E. Agrobacterium tumefaciens-mediated genetic transformation of Digitalis purpurea L. Plant Biotechnol. Rep. 2014;8:387–397. doi: 10.1007/s11816-014-0329-0. DOI

Kairuz E., Pérez-Alonso N., Capote-Pérez A., Pérez-Pérez A., Espinosa-Antón A.A., Angenon G., Jiménez A., Chong-Pérez B. Enhancement of cardenolide production in transgenic Digitalis purpurea L. by expressing a progesterone-5β-reductase from Arabidopsis thaliana L. Ind. Crop. Prod. 2020;146:112166. doi: 10.1016/j.indcrop.2020.112166. DOI

Wu B., Li Y., Yan H., Ma Y., Luo H., Yuan L., Chen S., Lu S. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genom. 2012;13:15. doi: 10.1186/1471-2164-13-15. PubMed DOI PMC

Rieck C., Geiger D., Munkert J., Messerschmidt K., Petersen J., Strasser J., Meitinger N., Kreis W. Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae. Microbiol. Open. 2019;8:e925. doi: 10.1002/mbo3.925. PubMed DOI PMC

Verma S.K., Gantait S., Jeong B.R., Hwang S.J. Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Sci. Rep. 2018;8:18009. doi: 10.1038/s41598-018-36113-9. PubMed DOI PMC

Ogawa H., Shinoda T., Cornelius F., Toyoshima C. Crystal structure of the sodium-potassium pump (Na,K-ATPase) with bound potassium and ouabain. Proc. Natl. Acad. Sci. USA. 2009;106:13742–13747. doi: 10.1073/pnas.0907054106. PubMed DOI PMC

Laursen M., Yatime L., Nissen P., Fedosova N.U. Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proc. Natl. Acad. Sci. USA. 2013;110:10958–10963. doi: 10.1073/pnas.1222308110. PubMed DOI PMC

Calderón-Montaño J.M., Burgos-Morón E., López-Lázaro M. The in vivo antitumor activity of cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact. Oncogene. 2014;33:2947–2948. doi: 10.1038/onc.2013.229. PubMed DOI

O’Brien W.J., Wallick E.T., Lingrel J.B. Amino acid residues of the Na,K-ATPase involved in ouabain sensitivity do not bind the sugar moiety of cardiac glycosides. J. Biol. Chem. 1993;268:7707–7712. doi: 10.1016/S0021-9258(18)53014-3. PubMed DOI

Dalla S., Swarts H.G., Koenderink J.B., Dobler S. Amino acid substitutions of Na,K-ATPase conferring decreased sensitivity to cardenolides in insects compared to mammals. Insect Biochem. Mol. Biol. 2013;43:1109–1115. doi: 10.1016/j.ibmb.2013.09.006. PubMed DOI

Croyle M.L., Woo A.L., Lingrel J.B. Extensive random mutagenesis analysis of the Na+/K+-ATPase alpha subunit identifies known and previously unidentified amino acid residues that alter ouabain sensitivity implications for ouabain binding. Eur. J. Biochem. 1997;248:488–495. doi: 10.1111/j.1432-1033.1997.00488.x. PubMed DOI

Magpusao A.N., Omolloh G., Johnson J., Gascón J., Peczuh M.W., Fenteany G. Cardiac glycoside activities link Na+/K+ ATPase ion-transport to breast cancer cell migration via correlative SAR. ACS Chem. Biol. 2015;10:561–569. doi: 10.1021/cb500665r. PubMed DOI PMC

Manunta P., Hamilton B.P., Hamlyn J.M. Structure-activity relationships for the hypertensinogenic activity of ouabain role of the sugar and lactone ring. Hypertension. 2001;37:472–477. doi: 10.1161/01.HYP.37.2.472. PubMed DOI

Ren Y., Ribas H.T., Heath K., Wu S., Ren J., Shriwas P., Chen X. Na+/K+-ATPase-targeted cytotoxicity of (+)-digoxin and several semisynthetic derivatives. J. Nat. Prod. 2020;83:638–648. doi: 10.1021/acs.jnatprod.9b01060. PubMed DOI PMC

Pessôa M.T.C., Alves S.L.G., Taranto A.G., Villar J.A.F.P., Blanco G., Barbosa L.A. Selectivity analyses of γ-benzylidene digoxin derivatives to different Na,K-ATPase α isoforms: A molecular docking approach. J. Enzym. Inhib. Med. Chem. 2018;33:85–97. doi: 10.1080/14756366.2017.1380637. PubMed DOI PMC

Syeda S.S., Sánchez G., Hong K.H., Hawkinson J.E., Georg G.I., Blanco G. Design, synthesis, and in vitro and in vivo evaluation of ouabain analogues as potent and selective Na,K-ATPase α4 isoform inhibitors for male contraception. J. Med. Chem. 2018;61:1800–1820. doi: 10.1021/acs.jmedchem.7b00925. PubMed DOI PMC

Wang H.Y.L., Xin W., Zhou M., Stueckle T.A., Rojanasakul Y., O’Doherty G.A. Stereochemical survey of digitoxin monosaccharides. ACS Med. Chem. Lett. 2011;2:73–78. doi: 10.1021/ml100219d. PubMed DOI PMC

Petschenka G., Fei C.S., Araya J.J., Schröder S., Timmermann B.N., Agrawal A.A. Relative selectivity of plant cardenolides for Na+/K+-ATPases from the monarch butterfly and non-resistant insects. Front. Plant Sci. 2018;9:1424. doi: 10.3389/fpls.2018.01424. PubMed DOI PMC

Katz A., Lifshitz Y., Bab-Dinitz E., Kapri-Pardes E., Goldshleger R., Tal D.M., Karlish S.J. Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J. Biol. Chem. 2010;285:19582–19592. doi: 10.1074/jbc.M110.119248. PubMed DOI PMC

Reuter H., Henderson S.A., Han T., Ross R.S., Goldhaber J.I., Philipson K.D. The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ. Res. 2002;90:305–308. doi: 10.1161/hh0302.104562. PubMed DOI

Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI

Peterková L., Rimpelová S., Kmoníčková E., Ruml T. Sesquiterpene Lactones: From Weed to Remedy. Chem. Listy. 2019;113:149–155.

Bygrave F.L., Benedetti A. What is the concentration of calcium ions in the endoplasmic reticulum? Cell Calcium. 1996;19:547–551. doi: 10.1016/S0143-4160(96)90064-0. PubMed DOI

McConkey D.J., Lin Y., Nutt L.K., Ozel H.Z., Newman R.A. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res. 2000;60:3807–3812. PubMed

Pan L., Zhang Y., Zhao W., Zhou X., Wang C., Deng F. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway. Cancer Chemother. Pharmacol. 2017;80:91–100. doi: 10.1007/s00280-017-3337-2. PubMed DOI

Garrido C., Galluzzi L., Brunet M., Puig P.E., Didelot C., Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13:1423–1433. doi: 10.1038/sj.cdd.4401950. PubMed DOI

Hughes F.M., Jr., Cidlowski J.A. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv. Enzym. Regul. 1999;39:157–171. doi: 10.1016/S0065-2571(98)00010-7. PubMed DOI

Cain K., Langlais C., Sun X.M., Brown D.G., Cohen G.M. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J. Biol. Chem. 2001;276:41985–41990. doi: 10.1074/jbc.M107419200. PubMed DOI

Andersson B., Janson V., Behnam-Motlagh P., Henriksson R., Grankvist K. Induction of apoptosis by intracellular potassium ion depletion: Using the fluorescent dye PBFI in a 96-well plate method in cultured lung cancer cells. Toxicol. In Vitro. 2006;20:986–994. doi: 10.1016/j.tiv.2005.12.013. PubMed DOI

Wang H., Haas M., Liang M., Cai T., Tian J., Li S., Xie Z. Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J. Biol. Chem. 2004;279:17250–17259. doi: 10.1074/jbc.M313239200. PubMed DOI

Liang M., Tian J., Liu L., Pierre S., Liu J., Shapiro J., Xie Z.J. Identification of a pool of non-pumping Na/K-ATPase. J. Biol. Chem. 2007;282:10585–10593. doi: 10.1074/jbc.M609181200. PubMed DOI

Nie Y., Bai F., Chaudhry M.A., Pratt R., Shapiro J.I., Liu J. The Na/K-ATPase α1 and c-Src form signaling complex under native condition: A crosslinking approach. Sci. Rep. 2020;10:6006. doi: 10.1038/s41598-020-61920-4. PubMed DOI PMC

Kometiani P., Li J., Gnudi L., Kahn B.B., Askari A., Xie Z. Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases. J. Biol. Chem. 1998;273:15249–15256. doi: 10.1074/jbc.273.24.15249. PubMed DOI

Haas M., Askari A., Xie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chem. 2000;275:7832–7837. doi: 10.1074/jbc.M002951200. PubMed DOI

Haas M., Wang H., Tian J., Xie Z. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. 2002;277:18694–18702. doi: 10.1074/jbc.M111357200. PubMed DOI

Xie Z., Kometiani P., Liu J., Li J., Shapiro J.I., Askari A. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J. Biol. Chem. 1999;274:19323–19328. doi: 10.1074/jbc.274.27.19323. PubMed DOI

Wang Y., Ye Q., Liu C., Xie J.X., Yan Y., Lai F., Duan Q., Li X., Tian J., Xie Z. Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells. Free Radic. Biol. Med. 2014;71:415–426. doi: 10.1016/j.freeradbiomed.2014.03.036. PubMed DOI PMC

Miyakawa-Naito A., Uhlén P., Lal M., Aizman O., Mikoshiba K., Brismar H., Zelenin S., Aperia A. Cell signaling microdomain with Na,K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations. J. Biol. Chem. 2003;278:50355–50361. doi: 10.1074/jbc.M305378200. PubMed DOI

Yuan Z., Cai T., Tian J., Ivanov A.V., Giovannucci D.R., Xie Z. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol. Biol. Cell. 2005;16:4034–4045. doi: 10.1091/mbc.e05-04-0295. PubMed DOI PMC

Burlaka I., Liu X.L., Rebetz J., Arvidsson I., Yang L., Brismar H., Karpman D., Aperia A. Ouabain protects against Shiga toxin-triggered apoptosis by reversing the imbalance between Bax and Bcl-xL. J. Am. Soc. Nephrol. 2013;24:1413–1423. doi: 10.1681/ASN.2012101044. PubMed DOI PMC

Wu J., Akkuratov E.E., Bai Y., Gaskill C.M., Askari A., Liu L. Cell signaling associated with Na+/K+-ATPase: Activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry. 2013;52:9059–9067. doi: 10.1021/bi4011804. PubMed DOI PMC

Wick M.J., Dong L.Q., Riojas R.A., Ramos F.J., Liu F. Mechanism of phosphorylation of protein kinase B/Akt by a constitutively active 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem. 2000;275:40400–40406. doi: 10.1074/jbc.M003937200. PubMed DOI

Balendran A., Biondi R.M., Cheung P.C., Casamayor A., Deak M., Alessi D.R. A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta) and PKC-related kinase 2 by PDK1. J. Biol. Chem. 2000;275:20806–20813. doi: 10.1074/jbc.M000421200. PubMed DOI

Jelliffe R.W., Buell J., Kalaba R., Sridhar R., Rockwell R. A mathematical study of the metabolic conversion of digitoxin to digoxin in man. Math. Biosci. 1970;6:387–403. doi: 10.1016/0025-5564(70)90076-3. DOI

Lee T.H., Smith T.W. Serum digoxin concentration and diagnosis of Digitalis toxicity current concepts. Clin. Pharmacokinet. 1983;8:279–285. doi: 10.2165/00003088-198308040-00001. PubMed DOI

Ochs H.R., Pabst J., Greenblatt D.J., Hartlapp J. Digitoxin accumulation. Br. J. Clin. Pharmacol. 1982;14:225–229. doi: 10.1111/j.1365-2125.1982.tb01966.x. PubMed DOI PMC

Roever C., Ferrante J., Gonzalez E.C., Pal N., Roetzheim R.G. Comparing the toxicity of digoxin and digitoxin in a geriatric population: Should an old drug be rediscovered? South Med. J. 2000;93:199–202. doi: 10.1097/00007611-200093020-00009. PubMed DOI

Hamlyn J.M., Blaustein M.P., Bova S., DuCharme D.W., Harris D.W., Mandel F., Mathews W.R., Ludens J.H. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA. 1991;88:6259–6263. doi: 10.1073/pnas.88.14.6259. PubMed DOI PMC

Hamlyn J.M., Linde C.I., Gao J., Huang B.S., Golovina V.A., Blaustein M.P., Leenen F.H. Neuroendocrine humoral and vascular components in the pressor pathway for brain angiotensin II: A new axis in long term blood pressure control. PLoS ONE. 2014;9:e108916. doi: 10.1371/journal.pone.0108916. PubMed DOI PMC

Manunta P., Messaggio E., Ballabeni C., Sciarrone M.T., Lanzani C., Ferrandi M., Hamlyn J.M., Cusi D., Galletti F., Bianchi G. Salt Sensitivity Study Group of the Italian Society of Hypertension. Plasma ouabain-like factor during acute and chronic changes in sodium balance in essential hypertension. Hypertension. 2001;38:198–203. doi: 10.1161/01.HYP.38.2.198. PubMed DOI

Agunanne E., Horvat D., Uddin M.N., Puschett J. The treatment of preeclampsia in a rat model employing. Digibind. Am. J. Perinatol. 2010;27:299–305. doi: 10.1055/s-0029-1241739. PubMed DOI

Blaustein M.P., Hamlyn J.M. Signaling mechanisms that link salt retention to hypertension: Endogenous ouabain, the Na+ pump, the Na+/Ca2+ exchanger and TRPC proteins. Biochim. Biophys. Acta. 2010;1802:1219–1229. doi: 10.1016/j.bbadis.2010.02.011. PubMed DOI PMC

Ferrandi M., Molinari I., Barassi P., Minotti E., Bianchi G., Ferrari P. Organ hypertrophic signaling within caveolae membrane subdomains triggered by ouabain and antagonized by PST 2238. J. Biol. Chem. 2004;279:33306–33314. doi: 10.1074/jbc.M402187200. PubMed DOI

Shiratori O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: In vitro and in vivo studies. GANN Jpn. J. Cancer Res. 1967;58:521–528. PubMed

Stenkvist B., Bengtsson E., Eklund G., Eriksson O., Holmquist J., Nordin B., Westman-Naeser S. Evidence of a modifying influence of heart glucosides on the development of breast cancer. Anal. Quant. Cytol. 1980;2:49–54. PubMed

Stenkvist B., Bengtsson E., Dahlqvist B., Eriksson O., Jarkrans T., Nordin B. Cardiac glycosides and breast cancer, revisited. N. Engl. J. Med. 1982;306:484. PubMed

Barwe S.P., Anilkumar G., Moon S.Y., Zheng Y., Whitelegge J.P., Rajasekaran S.A., Rajasekaran A.K. Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell. 2005;16:1082–1094. doi: 10.1091/mbc.e04-05-0427. PubMed DOI PMC

Shin H.K., Ryu B.J., Choi S.W., Kim S.H., Lee K. Inactivation of Src-to-ezrin pathway: A possible mechanism in the ouabain-mediated inhibition of A549 cell migration. Biomed. Res. Int. 2015;2015:537136. doi: 10.1155/2015/537136. PubMed DOI PMC

Kometiani P., Liu L., Askari A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol. Pharmacol. 2005;67:929–936. doi: 10.1124/mol.104.007302. PubMed DOI

Luo Y., Hurwitz J., Massagué J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature. 1995;375:159–161. doi: 10.1038/375159a0. PubMed DOI

Dulić V., Stein G.H., Far D.F., Reed S.I. Nuclear accumulation of p21Cip1 at the onset of mitosis: A role at the G2/M-phase transition. Mol. Cell Biol. 1998;18:546–557. doi: 10.1128/MCB.18.1.546. PubMed DOI PMC

Harper J.W., Elledge S.J., Keyomarsi K., Dynlacht B., Tsai L.H., Zhang P., Dobrowolski S., Bai C., Connell-Crowley L., Swindell E. Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell. 1995;6:387–400. doi: 10.1091/mbc.6.4.387. PubMed DOI PMC

Yamakawa M., Liu L.X., Date T., Belanger A.J., Vincent K.A., Akita G.Y., Kuriyama T., Cheng S.H., Gregory R.J., Jiang C. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ. Res. 2003;93:664–673. doi: 10.1161/01.RES.0000093984.48643.D7. PubMed DOI

Zhang H., Qian D.Z., Tan Y.S., Lee K., Gao P., Ren Y.R., Rey S., Hammers H., Chang D., Pili R., et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA. 2008;105:19579–19586. doi: 10.1073/pnas.0809763105. PubMed DOI PMC

Lee D.H., Oh S.C., Giles A.J., Jung J., Gilbert M.R., Park D.M. Cardiac glycosides suppress the maintenance of stemness and malignancy via inhibiting HIF-1α in human glioma stem cells. Oncotarget. 2017;8:40233–40245. doi: 10.18632/oncotarget.16714. PubMed DOI PMC

Yang X.S., Xu Z.W., Yi T.L., Xu R.C., Li J., Zhang W.B., Zhang S., Sun H.T., Yu Z.Q., Xu H.X., et al. Ouabain suppresses the growth and migration abilities of glioma U-87MG cells through inhibiting the Akt/mTOR signaling pathway and downregulating the expression of HIF-1α. Mol. Med. Rep. 2018;17:5595–5600. doi: 10.3892/mmr.2018.8587. PubMed DOI PMC

Bejček J., Spiwok V., Kmoníčková E., Ruml T., Rimpelová S. Cardiac glycosides: On their therapeutic potential for cancer treatment. Chem. Listy. 2021;115:4–12.

Fujii T., Shimizu T., Yamamoto S., Funayama K., Fujita K., Tabuchi Y., Ikari A., Takeshima H., Sakai H. Crosstalk between Na+,K+-ATPase and a volume-regulated anion channel in membrane microdomains of human cancer cells. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864:3792–3804. doi: 10.1016/j.bbadis.2018.09.014. PubMed DOI

Pommier Y., Sun Y., Huang S.N., Nitiss J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 2016;17:703–721. doi: 10.1038/nrm.2016.111. PubMed DOI PMC

Bielawski K., Winnicka K., Bielawska A. Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol. Pharm. Bull. 2006;29:1493–1497. doi: 10.1248/bpb.29.1493. PubMed DOI

Bouras T., Southey M.C., Venter D.J. Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu. Cancer Res. 2001;61:903–907. PubMed

Fleming F.J., Myers E., Kelly G., Crotty T.B., McDermott E.W., O’Higgins N.J., Hill A.D., Young L.S. Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. J. Clin. Pathol. 2004;57:1069–1074. doi: 10.1136/jcp.2004.016733. PubMed DOI PMC

Qin L., Liu Z., Chen H., Xu J. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res. 2009;69:3819–3827. doi: 10.1158/0008-5472.CAN-08-4389. PubMed DOI PMC

Gregory C.W., He B., Johnson R.T., Ford O.H., Mohler J.L., French F.S., Wilson E.M. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 2001;61:4315–4359. PubMed

Zhou H.J., Yan J., Luo W., Ayala G., Lin S.H., Erdem H., Ittmann M., Tsai S.Y., Tsai M.J. SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res. 2005;65:7976–7983. doi: 10.1158/0008-5472.CAN-04-4076. PubMed DOI

Wang Y., Lonard D.M., Yu Y., Chow D.C., Palzkill T.G., Wang J., Qi R., Matzuk A.J., Song X., Madoux F., et al. Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res. 2014;74:1506–1517. doi: 10.1158/0008-5472.CAN-13-2939. PubMed DOI PMC

Raghavendra P.B., Sreenivasan Y., Manna S.K. Oleandrin induces apoptosis in human, but not in murine cells: Dephosphorylation of Akt, expression of FasL, and alteration of membrane fluidity. Mol. Immunol. 2007;44:2292–2302. doi: 10.1016/j.molimm.2006.11.009. PubMed DOI

Manna S.K., Sreenivasan Y., Sarkar A. Cardiac glycoside inhibits IL-8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity. J. Cell Physiol. 2006;207:195–207. doi: 10.1002/jcp.20555. PubMed DOI

Laird G.M., Eisele E.E., Rabi S.A., Nikolaeva D., Siliciano R.F. A novel cell-based high-throughput screen for inhibitors of HIV-1 gene expression and budding identifies the cardiac glycosides. J. Antimicrob. Chemother. 2014;69:988–994. doi: 10.1093/jac/dkt471. PubMed DOI PMC

Wong R.W., Lingwood C.A., Ostrowski M.A., Cabral T., Cochrane A. Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci. Rep. 2018;8:850. doi: 10.1038/s41598-018-19298-x. PubMed DOI PMC

Wong R.W., Balachandran A., Ostrowski M.A., Cochrane A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog. 2013;9:e1003241. doi: 10.1371/journal.ppat.1003241. PubMed DOI PMC

Kapoor A., Cai H., Forman M., He R., Shamay M., Arav-Boger R. Human cytomegalovirus inhibition by cardiac glycosides: Evidence for involvement of the HERG gene. Antimicrob. Agents Chemother. 2012;56:4891–4899. doi: 10.1128/AAC.00898-12. PubMed DOI PMC

Mukhopadhyay R., Venkatadri R., Katsnelson J., Arav-Boger R. Digitoxin suppresses human cytomegalovirus replication via Na+, K+/ATPase α1 subunit-dependent AMP-activated protein kinase and autophagy activation. J. Virol. 2018;92:e01861. doi: 10.1128/JVI.01861-17. PubMed DOI PMC

Su C.T., Hsu J.T., Hsieh H.P., Lin P.H., Chen T.C., Kao C.L., Lee C.N., Chang S.Y. Anti-HSV activity of digitoxin and its possible mechanisms. Antivir. Res. 2008;79:62–70. doi: 10.1016/j.antiviral.2008.01.156. PubMed DOI

Zhang C.X., Ofiyai H., He M., Bu X., Wen Y., Jia W. Neuronal activity regulates viral replication of herpes simplex virus type 1 in the nervous system. J. Neurovirol. 2005;11:256–264. doi: 10.1080/13550280590952781. PubMed DOI

Amarelle L., Katzen J., Shigemura M., Welch L.C., Cajigas H., Peteranderl C., Celli D., Herold S., Lecuona E., Sznajder J.I. Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am. J. Physiol. Lung Cell Mol. Physiol. 2019;316:L1094–L1106. doi: 10.1152/ajplung.00173.2018. PubMed DOI PMC

Burkard C., Verheije M.H., Haagmans B.L., van Kuppeveld F.J., Rottier P.J., Bosch B.J., de Haan C.A. ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J. Virol. 2015;89:4434–4448. doi: 10.1128/JVI.03274-14. PubMed DOI PMC

Rimpelová S., Zimmermann T., Drašar P.B., Dolenský B., Bejček J., Kmoníčková E., Cihlářová P., Gurská S., Kuklíková L., Hajdůch M., et al. Steroid glycosides hyrcanoside and deglucohyrcanoside: On isolation, structural identification, and anticancer activity. Foods. 2021;10:136. doi: 10.3390/foods10010136. PubMed DOI PMC

Škubník J., Pavlíčková V., Rimpelová S. Cardiac glycosides as immune system modulators. Biomolecules. 2021;11:659. doi: 10.3390/biom11050659. PubMed DOI PMC

Bejček J., Spiwok V., Kmoníčková E., Rimpelová S. Na+/K+-ATPase revisited: On its mechanism of action, role in cancer, and activity modulation. Molecules. 2021;26:1905. doi: 10.3390/molecules26071905. PubMed DOI PMC

Zhang H.Y., Xu W.Q., Zheng Y.Y., Omari-Siaw E., Zhu Y., Cao X., Tong S.S., Yu J.N., Xu X.M. Octreotide-periplocymarin conjugate prodrug for improving targetability and anti-tumor efficiency: Synthesis, in vitro and in vivo evaluation. Oncotarget. 2016;7:86326–86338. doi: 10.18632/oncotarget.13389. PubMed DOI PMC

Zhu J.J., Zhang X.X., Miao Y.Q., He S.F., Tian D.M., Yao X.S., Tang J.S., Gan Y. Delivery of acetylthevetin B, an antitumor cardiac glycoside, using polymeric micelles for enhanced therapeutic efficacy against lung cancer cells. Acta Pharmacol. Sin. 2017;38:290–300. doi: 10.1038/aps.2016.113. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses

. 2021 Sep 16 ; 26 (18) : . [epub] 20210916

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...