Quo vadis Cardiac Glycoside Research?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34064873
PubMed Central
PMC8151307
DOI
10.3390/toxins13050344
PII: toxins13050344
Knihovny.cz E-zdroje
- Klíčová slova
- Na+/K+ ATPase, antiviral potential, cancer treatment, cardenolides, digitoxin, digoxin, drug repositioning, immunogenic cell death, secondary plant metabolites, toxins,
- MeSH
- cílená molekulární terapie * MeSH
- digitoxin farmakologie toxicita MeSH
- digoxin farmakologie toxicita MeSH
- lidé MeSH
- nádory farmakoterapie MeSH
- ouabain farmakologie toxicita MeSH
- protinádorové látky farmakologie toxicita MeSH
- skot MeSH
- sodíko-draslíková ATPasa antagonisté a inhibitory MeSH
- srdeční glykosidy biosyntéza farmakologie toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- digitoxin MeSH
- digoxin MeSH
- ouabain MeSH
- protinádorové látky MeSH
- sodíko-draslíková ATPasa MeSH
- srdeční glykosidy MeSH
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG's toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG's toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG's chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain.
Zobrazit více v PubMed
Lichman B.R. The scaffold-forming steps of plant alkaloid biosynthesis. Nat. Prod. Rep. 2021;38:103–129. doi: 10.1039/D0NP00031K. PubMed DOI
Žuvela P., David J., Yang X., Huang D., Wong M.W. Non-linear quantitative structure⁻activity relationships modelling, mechanistic study and in-silico design of flavonoids as potent antioxidants. Int. J. Mol. Sci. 2019;20:2328. doi: 10.3390/ijms20092328. PubMed DOI PMC
Son N., Thuy P.T., Trang N.V. Antioxidative capacities of stilbenoid suaveolensone A and flavonoid suaveolensone B: A detailed analysis of structural-electronic properties and mechanisms. J. Mol. Struct. 2021;1224:129025. doi: 10.1016/j.molstruc.2020.129025. DOI
Cui S., Jiang H., Chen L., Xu J., Sun W., Sun H., Xie Z., Xu Y., Yang F., Liu W., et al. Design, synthesis and evaluation of wound healing activity for β-sitosterols derivatives as potent Na+/K+-ATPase inhibitors. Bioorg. Chem. 2020;98:103150. doi: 10.1016/j.bioorg.2019.103150. PubMed DOI
The Top 200 Drugs of 2018. [(accessed on 26 April 2021)]; Available online: https://clincalc.com/DrugStats/
Zalucki M.P., Brower L.P., Alonso M.A. Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias Humistrata. Ecol. Entomol. 2001;26:212–224. doi: 10.1046/j.1365-2311.2001.00313.x. DOI
Dobler S., Petschenka G., Wagschal V., Flacht L. Convergent adaptive evolution–how insects master the challenge of cardiac glycoside-containing host plants. Entomol. Exp. Appl. 2015;157:30–39. doi: 10.1111/eea.12340. DOI
Goldberger Z.D., Goldberger A.L. Therapeutic ranges of serum digoxin concentrations in patients with heart failure. Am. J. Cardiol. 2012;109:1818–1821. doi: 10.1016/j.amjcard.2012.02.028. PubMed DOI PMC
Withering W. An Account of the Foxglove, and Some of Its Medical Uses: With Practical Remarks on Dropsy, and Other Diseases. Cambridge University Press; Cambridge, UK: 2014.
Turumtay H., Turumtay E.A., Selvi E.K., Sahin H., Sandallı C., Yazıcı Z.A. Three seasonal comprehensive evaluation process of Digitalis trojana Ivan’s phenolics. Ind. Crop. Prod. 2016;94:160–166. doi: 10.1016/j.indcrop.2016.08.039. DOI
Van Wietmarschena E.H.A., Hagels H., Peters R., Heisteke J., Greef J., Wang M. Optimizing growth conditions for digoxin production in Digitalis lanata Ehrh. World J. Tradit. Chin. Med. 2016;2:24–35. doi: 10.15806/j.issn.2311-8571.2016.0010. DOI
Grosa G., Allegrone G., Del Grosso E. LC-ESI-MS/MS characterization of strophanthin-K. J. Pharm. Biomed. Anal. 2005;38:79–86. doi: 10.1016/j.jpba.2004.12.008. PubMed DOI
Makarevich I.F., Kovalev S.V. Cardiac glycosides from Strophanthus kombe. Chem. Nat. Compd. 2006;42:189–193. doi: 10.1007/s10600-006-0075-9. DOI
Hammerstein F., Kaiser F. Quantitative direct fluorometric determination of extracts of medicinal plants on thin-layer-chromatograms. Planta Med. 1972;21:5–15. doi: 10.1055/s-0028-1099518. PubMed DOI
Pellati F., Bruni R., Bellardi M.G., Bertaccini A., Benvenuti S. Optimization and validation of a high-performance liquid chromatography method for the analysis of cardiac glycosides in Digitalis lanata. J. Chromatogr. A. 2009;1216:3260–3269. doi: 10.1016/j.chroma.2009.02.042. PubMed DOI
Usai M., Atzei A.D., Marchetti M. Cardenolides content in wild Sardinian Digitalis purpurea L. populations. Nat. Prod. Res. 2007;21:798–804. doi: 10.1080/14786410701218291. PubMed DOI
Ikeda Y., Fujii Y., Nakaya I., Yamazaki M. Quantitative HPLC analysis of cardiac glycosides in Digitalis purpurea leaves. J. Nat. Prod. 1995;58:897–901. doi: 10.1021/np50120a012. PubMed DOI
Fujii Y., Ikeda Y., Yamazaki M. Separation and determination of purpurea glycosides in Digitalis purpurea leaves by micro-HPLC. J. High Resolut. Chromatogr. 1987;10:137–140. doi: 10.1002/jhrc.1240100306. DOI
Bai L., Zhao M., Toki A., Hasegawa T., Sakai J.I., Yang X.Y., Bai Y., Ogura H., Mitsui T., Kataoka T., et al. Polar cardenolide monoglycosides from stems and twigs of Nerium oleander and their biological activities. J. Wood Sci. 2011;57:47–55. doi: 10.1007/s10086-010-1138-x. DOI
Turkmen Z., Mercan S., Cengiz S. An HPTLC method for the determination of oleandrin in Nerium plant extracts and its application to forensic toxicology. J. Planar Chromatogr. 2013;26:279–283. doi: 10.1556/JPC.26.2013.3.13. DOI
Opletal L., Vokac K., Hanus V., Sovova M., Blunden G., Patel A., Dacke C. Simultaneous determination of cardenolides and coumarins in the seeds of Coronilla varia L. Folia Pharm. Univ. Carol. 1998;21–22:89–94.
Welsh K.J., Huang R.S.P., Actor J.K., Dasgupta A. Rapid detection of the active cardiac glycoside convallatoxin of lily of the valley using LOCI digoxin assay. Am. J. Clin. Pathol. 2014;142:307–312. doi: 10.1309/AJCPCOXF0O5XXTKD. PubMed DOI
Higano T., Kuroda M., Sakagami H., Mimaki Y. Convallasaponin A, a new 5β-spirostanol triglycoside from the rhizomes of Convallaria majalis. Chem. Pharm. Bull. 2007;55:337–339. doi: 10.1248/cpb.55.337. PubMed DOI
Saxena V.K., Chaturvedi P.K. Novel cardenolide, canarigenin-3-O-α-l-rhamnopyranosyl-(I→5)-O-β-d-xylofuranoside, from rhizomes of Convallaria majalis. J. Nat. Prod. 1992;55:39–42. doi: 10.1021/np50079a005. DOI
Krenn L., Schlifelner L., Stimpfl T., Kopp B. A new HPLC method for the quantification of cardenolides in Convallaria majalis. Pharmazie. 1996;51:906–909.
Fumiko A.B.E., Yamauchi T. Cardenolide glycosides from the roots of Apocynum cannabinum. Chem. Pharm. Bullet. 1994;42:2028–2031. doi: 10.1248/cpb.42.2028. DOI
Radenkova-Saeva J., Atanasov P. Cardiac glycoside plants self-poisoning. Acta Med. Bulg. 2014;41:99–104. doi: 10.2478/amb-2014-0013. DOI
Oerther S.E. Plant poisonings: Common plants that contain cardiac glycosides. J. Emerg. Nurs. 2011;37:102–103. doi: 10.1016/j.jen.2010.09.008. PubMed DOI
Maffè S., Cucchi L., Zenone F., Bertoncelli C., Beldì F., Colombo M.L., Bielli M., Paino A.M., Parravicini U., Paffoni P., et al. Digitalis must be banished from the table: A rare case of acute accidental Digitalis intoxication of a whole family. J. Cardiovasc. Med. 2009;10:727–732. doi: 10.2459/JCM.0b013e32832c2314. PubMed DOI
Lin C.C., Yang C.C., Phua D.H., Deng J.F., Lu L.H. An outbreak of foxglove leaf poisoning. J. Chin. Med. Assoc. 2010;73:97–100. doi: 10.1016/S1726-4901(10)70009-5. PubMed DOI
Keppel M.H., Piecha G., März W., Cadamuro J., Auer S., Felder T.K., Mrazek C., Oberkofler H., Trummer C., Grübler M.R., et al. The endogenous cardiotonic steroid Marinobufagenin and decline in estimated glomerular filtration rate at follow-up in patients with arterial hypertension. PLoS ONE. 2019;14:e0212973. doi: 10.1371/journal.pone.0212973. PubMed DOI PMC
Bauer N., Müller-Ehmsen J., Krämer U., Hambarchian N., Zobel C., Schwinger R.H., Neu H., Kirch U., Grünbaum E.G., Schoner W. Ouabain-like compound changes rapidly on physical exercise in humans and dogs: Effects of beta-blockade and angiotensin-converting enzyme inhibition. Hypertension. 2005;45:1024–1028. doi: 10.1161/01.HYP.0000165024.47728.f7. PubMed DOI
Nesher M., Dvela M., Igbokwe V.U., Rosen H., Lichtstein D. Physiological roles of endogenous ouabain in normal rats. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H2026–H2034. doi: 10.1152/ajpheart.00734.2009. PubMed DOI
Lenaerts C., Wells M., Hambÿe S., Blankert B. Marinobufagenin extraction from Rhinella marina toad glands: Alternative approaches for a systematized strategy. J. Sep. Sci. 2019;42:1384–1392. doi: 10.1002/jssc.201800879. PubMed DOI
Meng Q., Yau L.F., Lu J.G., Wu Z.Z., Zhang B.X., Wang J.R., Jiang Z.H. Chemical profiling and cytotoxicity assay of bufadienolides in toad venom and toad skin. J. Ethnopharmacol. 2016;187:74–82. doi: 10.1016/j.jep.2016.03.062. PubMed DOI
El-Masri M.A., Clark B.J., Qazzaz H.M., Valdes R., Jr. Human adrenal cells in culture produce both ouabain-like and dihydroouabain-like factors. Clin. Chem. 2002;48:1720–1730. doi: 10.1093/clinchem/48.10.1720. PubMed DOI
Bozorgi M., Amin G., Kasebzade S., Shekarchi M. Development and validation of a HPLC-UV method for determination of proscillaridin A in Drimia maritima. Res. J. Pharm. 2016;3:1–7.
Steyn P.S., van Heerden F.R. Bufadienolides of plant and animal origin. Nat. Prod. Rep. 1998;15:397–413. doi: 10.1039/a815397y. PubMed DOI
Schmiedeberg O. Pharmacologically active ingredients of Digitalis purpurea L. Chem. Zent. 1875;46:262.
Smith S. LXXI1.-digoxin, a new digitalis glucoside. J. Chem. Soc. 1930:508–510. doi: 10.1039/JR9300000508. DOI
Hagimori M., Matsumoto T., Obi Y. Studies on the production of Digitalis cardenolides by plant tissue culture III. Effects of nutrients on digitoxin formation by shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Cell Physiol. 1982;23:1205–1211. doi: 10.1093/oxfordjournals.pcp.a076462. PubMed DOI PMC
Patil J.G., Ahire M.L., Nitnaware K.M., Panda S., Bhatt V.P., Kishor P.B., Nikam T.D. In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding. Appl. Microbiol. Biotechnol. 2013;97:2379–2393. doi: 10.1007/s00253-012-4489-y. PubMed DOI
Groeneveld H.W., van Tegelen L.J., Versluis K. Cardenolide and neutral lipid biosynthesis from malonate in Digitalis lanata. Planta Med. 1992;58:239–244. doi: 10.1055/s-2006-961444. PubMed DOI
Haussmann W., Kreis W., Stuhlemmer U., Reinhard E. Effects of various pregnanes and two 23-nor-5-cholenic acids on cardenolide accumulation in cell and organ cultures of Digitalis lanata. Planta Med. 1997;63:446–453. doi: 10.1055/s-2006-957731. PubMed DOI
Pérez-Alonso N., Capote A., Gerth A., Jiménez E. Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell Tissue Organ Cult. 2012;110:153–162. doi: 10.1007/s11240-012-0139-4. DOI
Paranhos A., Fernández-Tárrago J., Corchete P. Relationship between active oxygen species and cardenolide production in cell cultures of Digitalis thapsi: Effect of calcium restriction. New Phytol. 1999;141:51–60. doi: 10.1046/j.1469-8137.1999.00317.x. DOI
Etienne H., Berthouly M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 2002;69:215–231. doi: 10.1023/A:1015668610465. DOI
Pérez-Alonso N., Wilken D., Gerth A., Jähn A., Nitzsche H.M., Kerns G., Capote-Perez A., Jiménez E. Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tissue Organ Cult. 2009;99:151–156. doi: 10.1007/s11240-009-9587-x. DOI
Hagimori M., Matsumoto T., Obi Y. Studies on the production of Digitalis cardenolides by plant tissue culture: II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Physiol. 1982;69:653–656. doi: 10.1104/pp.69.3.653. PubMed DOI PMC
Nester E.W. Agrobacterium: Nature’s genetic engineer. Front. Plant Sci. 2015;5:730. doi: 10.3389/fpls.2014.00730. PubMed DOI PMC
Chandra S. Natural plant genetic engineer Agrobacterium rhizogenes: Role of T-DNA in plant secondary metabolism. Biotechnol. Lett. 2012;34:407–415. doi: 10.1007/s10529-011-0785-3. PubMed DOI
Saito K., Yamazaki M., Shimomura K., Yoshimatsu K., Murakoshi I. Genetic transformation of foxglove (Digitalis purpurea) by chimeric foreign genes and production of cardioactive glycosides. Plant Cell Rep. 1990;9:121–124. doi: 10.1007/BF00232085. PubMed DOI
Lehmann U., Moldenhauer D., Thomar S., Dietrich B., Luckner M. Regeneration of plants from Digitalis Lanata cells transformed with Agrobacterium Tumefaciens carrying bacterial genes encoding neomycin phosphotransferase II and {j-glucuronidase. J. Plant Physiol. 1995;147:53–57. doi: 10.1016/S0176-1617(11)81412-4. DOI
Pradel H., Dumke-Lehmann U., Diettrich B., Luckner M. Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. J. Plant Physiol. 1997;151:209–215. doi: 10.1016/S0176-1617(97)80154-X. DOI
Koga M., Hirashima K., Nakahara T. The transformation system in foxglove (Digitalis purpurea L.) using Agrobacterium rhizogenes and traits of the regenerants. Plant Biotechnol. 2000;17:99–104. doi: 10.5511/plantbiotechnology.17.99. DOI
Pérez-Alonso N., Chong-Pérez B., Capote A., Pérez A., Izquierdo Y., Angenon G., Jiménez E. Agrobacterium tumefaciens-mediated genetic transformation of Digitalis purpurea L. Plant Biotechnol. Rep. 2014;8:387–397. doi: 10.1007/s11816-014-0329-0. DOI
Kairuz E., Pérez-Alonso N., Capote-Pérez A., Pérez-Pérez A., Espinosa-Antón A.A., Angenon G., Jiménez A., Chong-Pérez B. Enhancement of cardenolide production in transgenic Digitalis purpurea L. by expressing a progesterone-5β-reductase from Arabidopsis thaliana L. Ind. Crop. Prod. 2020;146:112166. doi: 10.1016/j.indcrop.2020.112166. DOI
Wu B., Li Y., Yan H., Ma Y., Luo H., Yuan L., Chen S., Lu S. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genom. 2012;13:15. doi: 10.1186/1471-2164-13-15. PubMed DOI PMC
Rieck C., Geiger D., Munkert J., Messerschmidt K., Petersen J., Strasser J., Meitinger N., Kreis W. Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae. Microbiol. Open. 2019;8:e925. doi: 10.1002/mbo3.925. PubMed DOI PMC
Verma S.K., Gantait S., Jeong B.R., Hwang S.J. Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Sci. Rep. 2018;8:18009. doi: 10.1038/s41598-018-36113-9. PubMed DOI PMC
Ogawa H., Shinoda T., Cornelius F., Toyoshima C. Crystal structure of the sodium-potassium pump (Na,K-ATPase) with bound potassium and ouabain. Proc. Natl. Acad. Sci. USA. 2009;106:13742–13747. doi: 10.1073/pnas.0907054106. PubMed DOI PMC
Laursen M., Yatime L., Nissen P., Fedosova N.U. Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proc. Natl. Acad. Sci. USA. 2013;110:10958–10963. doi: 10.1073/pnas.1222308110. PubMed DOI PMC
Calderón-Montaño J.M., Burgos-Morón E., López-Lázaro M. The in vivo antitumor activity of cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact. Oncogene. 2014;33:2947–2948. doi: 10.1038/onc.2013.229. PubMed DOI
O’Brien W.J., Wallick E.T., Lingrel J.B. Amino acid residues of the Na,K-ATPase involved in ouabain sensitivity do not bind the sugar moiety of cardiac glycosides. J. Biol. Chem. 1993;268:7707–7712. doi: 10.1016/S0021-9258(18)53014-3. PubMed DOI
Dalla S., Swarts H.G., Koenderink J.B., Dobler S. Amino acid substitutions of Na,K-ATPase conferring decreased sensitivity to cardenolides in insects compared to mammals. Insect Biochem. Mol. Biol. 2013;43:1109–1115. doi: 10.1016/j.ibmb.2013.09.006. PubMed DOI
Croyle M.L., Woo A.L., Lingrel J.B. Extensive random mutagenesis analysis of the Na+/K+-ATPase alpha subunit identifies known and previously unidentified amino acid residues that alter ouabain sensitivity implications for ouabain binding. Eur. J. Biochem. 1997;248:488–495. doi: 10.1111/j.1432-1033.1997.00488.x. PubMed DOI
Magpusao A.N., Omolloh G., Johnson J., Gascón J., Peczuh M.W., Fenteany G. Cardiac glycoside activities link Na+/K+ ATPase ion-transport to breast cancer cell migration via correlative SAR. ACS Chem. Biol. 2015;10:561–569. doi: 10.1021/cb500665r. PubMed DOI PMC
Manunta P., Hamilton B.P., Hamlyn J.M. Structure-activity relationships for the hypertensinogenic activity of ouabain role of the sugar and lactone ring. Hypertension. 2001;37:472–477. doi: 10.1161/01.HYP.37.2.472. PubMed DOI
Ren Y., Ribas H.T., Heath K., Wu S., Ren J., Shriwas P., Chen X. Na+/K+-ATPase-targeted cytotoxicity of (+)-digoxin and several semisynthetic derivatives. J. Nat. Prod. 2020;83:638–648. doi: 10.1021/acs.jnatprod.9b01060. PubMed DOI PMC
Pessôa M.T.C., Alves S.L.G., Taranto A.G., Villar J.A.F.P., Blanco G., Barbosa L.A. Selectivity analyses of γ-benzylidene digoxin derivatives to different Na,K-ATPase α isoforms: A molecular docking approach. J. Enzym. Inhib. Med. Chem. 2018;33:85–97. doi: 10.1080/14756366.2017.1380637. PubMed DOI PMC
Syeda S.S., Sánchez G., Hong K.H., Hawkinson J.E., Georg G.I., Blanco G. Design, synthesis, and in vitro and in vivo evaluation of ouabain analogues as potent and selective Na,K-ATPase α4 isoform inhibitors for male contraception. J. Med. Chem. 2018;61:1800–1820. doi: 10.1021/acs.jmedchem.7b00925. PubMed DOI PMC
Wang H.Y.L., Xin W., Zhou M., Stueckle T.A., Rojanasakul Y., O’Doherty G.A. Stereochemical survey of digitoxin monosaccharides. ACS Med. Chem. Lett. 2011;2:73–78. doi: 10.1021/ml100219d. PubMed DOI PMC
Petschenka G., Fei C.S., Araya J.J., Schröder S., Timmermann B.N., Agrawal A.A. Relative selectivity of plant cardenolides for Na+/K+-ATPases from the monarch butterfly and non-resistant insects. Front. Plant Sci. 2018;9:1424. doi: 10.3389/fpls.2018.01424. PubMed DOI PMC
Katz A., Lifshitz Y., Bab-Dinitz E., Kapri-Pardes E., Goldshleger R., Tal D.M., Karlish S.J. Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J. Biol. Chem. 2010;285:19582–19592. doi: 10.1074/jbc.M110.119248. PubMed DOI PMC
Reuter H., Henderson S.A., Han T., Ross R.S., Goldhaber J.I., Philipson K.D. The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ. Res. 2002;90:305–308. doi: 10.1161/hh0302.104562. PubMed DOI
Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI
Peterková L., Rimpelová S., Kmoníčková E., Ruml T. Sesquiterpene Lactones: From Weed to Remedy. Chem. Listy. 2019;113:149–155.
Bygrave F.L., Benedetti A. What is the concentration of calcium ions in the endoplasmic reticulum? Cell Calcium. 1996;19:547–551. doi: 10.1016/S0143-4160(96)90064-0. PubMed DOI
McConkey D.J., Lin Y., Nutt L.K., Ozel H.Z., Newman R.A. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res. 2000;60:3807–3812. PubMed
Pan L., Zhang Y., Zhao W., Zhou X., Wang C., Deng F. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway. Cancer Chemother. Pharmacol. 2017;80:91–100. doi: 10.1007/s00280-017-3337-2. PubMed DOI
Garrido C., Galluzzi L., Brunet M., Puig P.E., Didelot C., Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13:1423–1433. doi: 10.1038/sj.cdd.4401950. PubMed DOI
Hughes F.M., Jr., Cidlowski J.A. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv. Enzym. Regul. 1999;39:157–171. doi: 10.1016/S0065-2571(98)00010-7. PubMed DOI
Cain K., Langlais C., Sun X.M., Brown D.G., Cohen G.M. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J. Biol. Chem. 2001;276:41985–41990. doi: 10.1074/jbc.M107419200. PubMed DOI
Andersson B., Janson V., Behnam-Motlagh P., Henriksson R., Grankvist K. Induction of apoptosis by intracellular potassium ion depletion: Using the fluorescent dye PBFI in a 96-well plate method in cultured lung cancer cells. Toxicol. In Vitro. 2006;20:986–994. doi: 10.1016/j.tiv.2005.12.013. PubMed DOI
Wang H., Haas M., Liang M., Cai T., Tian J., Li S., Xie Z. Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J. Biol. Chem. 2004;279:17250–17259. doi: 10.1074/jbc.M313239200. PubMed DOI
Liang M., Tian J., Liu L., Pierre S., Liu J., Shapiro J., Xie Z.J. Identification of a pool of non-pumping Na/K-ATPase. J. Biol. Chem. 2007;282:10585–10593. doi: 10.1074/jbc.M609181200. PubMed DOI
Nie Y., Bai F., Chaudhry M.A., Pratt R., Shapiro J.I., Liu J. The Na/K-ATPase α1 and c-Src form signaling complex under native condition: A crosslinking approach. Sci. Rep. 2020;10:6006. doi: 10.1038/s41598-020-61920-4. PubMed DOI PMC
Kometiani P., Li J., Gnudi L., Kahn B.B., Askari A., Xie Z. Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases. J. Biol. Chem. 1998;273:15249–15256. doi: 10.1074/jbc.273.24.15249. PubMed DOI
Haas M., Askari A., Xie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chem. 2000;275:7832–7837. doi: 10.1074/jbc.M002951200. PubMed DOI
Haas M., Wang H., Tian J., Xie Z. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. 2002;277:18694–18702. doi: 10.1074/jbc.M111357200. PubMed DOI
Xie Z., Kometiani P., Liu J., Li J., Shapiro J.I., Askari A. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J. Biol. Chem. 1999;274:19323–19328. doi: 10.1074/jbc.274.27.19323. PubMed DOI
Wang Y., Ye Q., Liu C., Xie J.X., Yan Y., Lai F., Duan Q., Li X., Tian J., Xie Z. Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells. Free Radic. Biol. Med. 2014;71:415–426. doi: 10.1016/j.freeradbiomed.2014.03.036. PubMed DOI PMC
Miyakawa-Naito A., Uhlén P., Lal M., Aizman O., Mikoshiba K., Brismar H., Zelenin S., Aperia A. Cell signaling microdomain with Na,K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations. J. Biol. Chem. 2003;278:50355–50361. doi: 10.1074/jbc.M305378200. PubMed DOI
Yuan Z., Cai T., Tian J., Ivanov A.V., Giovannucci D.R., Xie Z. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol. Biol. Cell. 2005;16:4034–4045. doi: 10.1091/mbc.e05-04-0295. PubMed DOI PMC
Burlaka I., Liu X.L., Rebetz J., Arvidsson I., Yang L., Brismar H., Karpman D., Aperia A. Ouabain protects against Shiga toxin-triggered apoptosis by reversing the imbalance between Bax and Bcl-xL. J. Am. Soc. Nephrol. 2013;24:1413–1423. doi: 10.1681/ASN.2012101044. PubMed DOI PMC
Wu J., Akkuratov E.E., Bai Y., Gaskill C.M., Askari A., Liu L. Cell signaling associated with Na+/K+-ATPase: Activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry. 2013;52:9059–9067. doi: 10.1021/bi4011804. PubMed DOI PMC
Wick M.J., Dong L.Q., Riojas R.A., Ramos F.J., Liu F. Mechanism of phosphorylation of protein kinase B/Akt by a constitutively active 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem. 2000;275:40400–40406. doi: 10.1074/jbc.M003937200. PubMed DOI
Balendran A., Biondi R.M., Cheung P.C., Casamayor A., Deak M., Alessi D.R. A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta) and PKC-related kinase 2 by PDK1. J. Biol. Chem. 2000;275:20806–20813. doi: 10.1074/jbc.M000421200. PubMed DOI
Jelliffe R.W., Buell J., Kalaba R., Sridhar R., Rockwell R. A mathematical study of the metabolic conversion of digitoxin to digoxin in man. Math. Biosci. 1970;6:387–403. doi: 10.1016/0025-5564(70)90076-3. DOI
Lee T.H., Smith T.W. Serum digoxin concentration and diagnosis of Digitalis toxicity current concepts. Clin. Pharmacokinet. 1983;8:279–285. doi: 10.2165/00003088-198308040-00001. PubMed DOI
Ochs H.R., Pabst J., Greenblatt D.J., Hartlapp J. Digitoxin accumulation. Br. J. Clin. Pharmacol. 1982;14:225–229. doi: 10.1111/j.1365-2125.1982.tb01966.x. PubMed DOI PMC
Roever C., Ferrante J., Gonzalez E.C., Pal N., Roetzheim R.G. Comparing the toxicity of digoxin and digitoxin in a geriatric population: Should an old drug be rediscovered? South Med. J. 2000;93:199–202. doi: 10.1097/00007611-200093020-00009. PubMed DOI
Hamlyn J.M., Blaustein M.P., Bova S., DuCharme D.W., Harris D.W., Mandel F., Mathews W.R., Ludens J.H. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA. 1991;88:6259–6263. doi: 10.1073/pnas.88.14.6259. PubMed DOI PMC
Hamlyn J.M., Linde C.I., Gao J., Huang B.S., Golovina V.A., Blaustein M.P., Leenen F.H. Neuroendocrine humoral and vascular components in the pressor pathway for brain angiotensin II: A new axis in long term blood pressure control. PLoS ONE. 2014;9:e108916. doi: 10.1371/journal.pone.0108916. PubMed DOI PMC
Manunta P., Messaggio E., Ballabeni C., Sciarrone M.T., Lanzani C., Ferrandi M., Hamlyn J.M., Cusi D., Galletti F., Bianchi G. Salt Sensitivity Study Group of the Italian Society of Hypertension. Plasma ouabain-like factor during acute and chronic changes in sodium balance in essential hypertension. Hypertension. 2001;38:198–203. doi: 10.1161/01.HYP.38.2.198. PubMed DOI
Agunanne E., Horvat D., Uddin M.N., Puschett J. The treatment of preeclampsia in a rat model employing. Digibind. Am. J. Perinatol. 2010;27:299–305. doi: 10.1055/s-0029-1241739. PubMed DOI
Blaustein M.P., Hamlyn J.M. Signaling mechanisms that link salt retention to hypertension: Endogenous ouabain, the Na+ pump, the Na+/Ca2+ exchanger and TRPC proteins. Biochim. Biophys. Acta. 2010;1802:1219–1229. doi: 10.1016/j.bbadis.2010.02.011. PubMed DOI PMC
Ferrandi M., Molinari I., Barassi P., Minotti E., Bianchi G., Ferrari P. Organ hypertrophic signaling within caveolae membrane subdomains triggered by ouabain and antagonized by PST 2238. J. Biol. Chem. 2004;279:33306–33314. doi: 10.1074/jbc.M402187200. PubMed DOI
Shiratori O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: In vitro and in vivo studies. GANN Jpn. J. Cancer Res. 1967;58:521–528. PubMed
Stenkvist B., Bengtsson E., Eklund G., Eriksson O., Holmquist J., Nordin B., Westman-Naeser S. Evidence of a modifying influence of heart glucosides on the development of breast cancer. Anal. Quant. Cytol. 1980;2:49–54. PubMed
Stenkvist B., Bengtsson E., Dahlqvist B., Eriksson O., Jarkrans T., Nordin B. Cardiac glycosides and breast cancer, revisited. N. Engl. J. Med. 1982;306:484. PubMed
Barwe S.P., Anilkumar G., Moon S.Y., Zheng Y., Whitelegge J.P., Rajasekaran S.A., Rajasekaran A.K. Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell. 2005;16:1082–1094. doi: 10.1091/mbc.e04-05-0427. PubMed DOI PMC
Shin H.K., Ryu B.J., Choi S.W., Kim S.H., Lee K. Inactivation of Src-to-ezrin pathway: A possible mechanism in the ouabain-mediated inhibition of A549 cell migration. Biomed. Res. Int. 2015;2015:537136. doi: 10.1155/2015/537136. PubMed DOI PMC
Kometiani P., Liu L., Askari A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol. Pharmacol. 2005;67:929–936. doi: 10.1124/mol.104.007302. PubMed DOI
Luo Y., Hurwitz J., Massagué J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature. 1995;375:159–161. doi: 10.1038/375159a0. PubMed DOI
Dulić V., Stein G.H., Far D.F., Reed S.I. Nuclear accumulation of p21Cip1 at the onset of mitosis: A role at the G2/M-phase transition. Mol. Cell Biol. 1998;18:546–557. doi: 10.1128/MCB.18.1.546. PubMed DOI PMC
Harper J.W., Elledge S.J., Keyomarsi K., Dynlacht B., Tsai L.H., Zhang P., Dobrowolski S., Bai C., Connell-Crowley L., Swindell E. Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell. 1995;6:387–400. doi: 10.1091/mbc.6.4.387. PubMed DOI PMC
Yamakawa M., Liu L.X., Date T., Belanger A.J., Vincent K.A., Akita G.Y., Kuriyama T., Cheng S.H., Gregory R.J., Jiang C. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ. Res. 2003;93:664–673. doi: 10.1161/01.RES.0000093984.48643.D7. PubMed DOI
Zhang H., Qian D.Z., Tan Y.S., Lee K., Gao P., Ren Y.R., Rey S., Hammers H., Chang D., Pili R., et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA. 2008;105:19579–19586. doi: 10.1073/pnas.0809763105. PubMed DOI PMC
Lee D.H., Oh S.C., Giles A.J., Jung J., Gilbert M.R., Park D.M. Cardiac glycosides suppress the maintenance of stemness and malignancy via inhibiting HIF-1α in human glioma stem cells. Oncotarget. 2017;8:40233–40245. doi: 10.18632/oncotarget.16714. PubMed DOI PMC
Yang X.S., Xu Z.W., Yi T.L., Xu R.C., Li J., Zhang W.B., Zhang S., Sun H.T., Yu Z.Q., Xu H.X., et al. Ouabain suppresses the growth and migration abilities of glioma U-87MG cells through inhibiting the Akt/mTOR signaling pathway and downregulating the expression of HIF-1α. Mol. Med. Rep. 2018;17:5595–5600. doi: 10.3892/mmr.2018.8587. PubMed DOI PMC
Bejček J., Spiwok V., Kmoníčková E., Ruml T., Rimpelová S. Cardiac glycosides: On their therapeutic potential for cancer treatment. Chem. Listy. 2021;115:4–12.
Fujii T., Shimizu T., Yamamoto S., Funayama K., Fujita K., Tabuchi Y., Ikari A., Takeshima H., Sakai H. Crosstalk between Na+,K+-ATPase and a volume-regulated anion channel in membrane microdomains of human cancer cells. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864:3792–3804. doi: 10.1016/j.bbadis.2018.09.014. PubMed DOI
Pommier Y., Sun Y., Huang S.N., Nitiss J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 2016;17:703–721. doi: 10.1038/nrm.2016.111. PubMed DOI PMC
Bielawski K., Winnicka K., Bielawska A. Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol. Pharm. Bull. 2006;29:1493–1497. doi: 10.1248/bpb.29.1493. PubMed DOI
Bouras T., Southey M.C., Venter D.J. Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu. Cancer Res. 2001;61:903–907. PubMed
Fleming F.J., Myers E., Kelly G., Crotty T.B., McDermott E.W., O’Higgins N.J., Hill A.D., Young L.S. Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. J. Clin. Pathol. 2004;57:1069–1074. doi: 10.1136/jcp.2004.016733. PubMed DOI PMC
Qin L., Liu Z., Chen H., Xu J. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res. 2009;69:3819–3827. doi: 10.1158/0008-5472.CAN-08-4389. PubMed DOI PMC
Gregory C.W., He B., Johnson R.T., Ford O.H., Mohler J.L., French F.S., Wilson E.M. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 2001;61:4315–4359. PubMed
Zhou H.J., Yan J., Luo W., Ayala G., Lin S.H., Erdem H., Ittmann M., Tsai S.Y., Tsai M.J. SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res. 2005;65:7976–7983. doi: 10.1158/0008-5472.CAN-04-4076. PubMed DOI
Wang Y., Lonard D.M., Yu Y., Chow D.C., Palzkill T.G., Wang J., Qi R., Matzuk A.J., Song X., Madoux F., et al. Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res. 2014;74:1506–1517. doi: 10.1158/0008-5472.CAN-13-2939. PubMed DOI PMC
Raghavendra P.B., Sreenivasan Y., Manna S.K. Oleandrin induces apoptosis in human, but not in murine cells: Dephosphorylation of Akt, expression of FasL, and alteration of membrane fluidity. Mol. Immunol. 2007;44:2292–2302. doi: 10.1016/j.molimm.2006.11.009. PubMed DOI
Manna S.K., Sreenivasan Y., Sarkar A. Cardiac glycoside inhibits IL-8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity. J. Cell Physiol. 2006;207:195–207. doi: 10.1002/jcp.20555. PubMed DOI
Laird G.M., Eisele E.E., Rabi S.A., Nikolaeva D., Siliciano R.F. A novel cell-based high-throughput screen for inhibitors of HIV-1 gene expression and budding identifies the cardiac glycosides. J. Antimicrob. Chemother. 2014;69:988–994. doi: 10.1093/jac/dkt471. PubMed DOI PMC
Wong R.W., Lingwood C.A., Ostrowski M.A., Cabral T., Cochrane A. Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci. Rep. 2018;8:850. doi: 10.1038/s41598-018-19298-x. PubMed DOI PMC
Wong R.W., Balachandran A., Ostrowski M.A., Cochrane A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog. 2013;9:e1003241. doi: 10.1371/journal.ppat.1003241. PubMed DOI PMC
Kapoor A., Cai H., Forman M., He R., Shamay M., Arav-Boger R. Human cytomegalovirus inhibition by cardiac glycosides: Evidence for involvement of the HERG gene. Antimicrob. Agents Chemother. 2012;56:4891–4899. doi: 10.1128/AAC.00898-12. PubMed DOI PMC
Mukhopadhyay R., Venkatadri R., Katsnelson J., Arav-Boger R. Digitoxin suppresses human cytomegalovirus replication via Na+, K+/ATPase α1 subunit-dependent AMP-activated protein kinase and autophagy activation. J. Virol. 2018;92:e01861. doi: 10.1128/JVI.01861-17. PubMed DOI PMC
Su C.T., Hsu J.T., Hsieh H.P., Lin P.H., Chen T.C., Kao C.L., Lee C.N., Chang S.Y. Anti-HSV activity of digitoxin and its possible mechanisms. Antivir. Res. 2008;79:62–70. doi: 10.1016/j.antiviral.2008.01.156. PubMed DOI
Zhang C.X., Ofiyai H., He M., Bu X., Wen Y., Jia W. Neuronal activity regulates viral replication of herpes simplex virus type 1 in the nervous system. J. Neurovirol. 2005;11:256–264. doi: 10.1080/13550280590952781. PubMed DOI
Amarelle L., Katzen J., Shigemura M., Welch L.C., Cajigas H., Peteranderl C., Celli D., Herold S., Lecuona E., Sznajder J.I. Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am. J. Physiol. Lung Cell Mol. Physiol. 2019;316:L1094–L1106. doi: 10.1152/ajplung.00173.2018. PubMed DOI PMC
Burkard C., Verheije M.H., Haagmans B.L., van Kuppeveld F.J., Rottier P.J., Bosch B.J., de Haan C.A. ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J. Virol. 2015;89:4434–4448. doi: 10.1128/JVI.03274-14. PubMed DOI PMC
Rimpelová S., Zimmermann T., Drašar P.B., Dolenský B., Bejček J., Kmoníčková E., Cihlářová P., Gurská S., Kuklíková L., Hajdůch M., et al. Steroid glycosides hyrcanoside and deglucohyrcanoside: On isolation, structural identification, and anticancer activity. Foods. 2021;10:136. doi: 10.3390/foods10010136. PubMed DOI PMC
Škubník J., Pavlíčková V., Rimpelová S. Cardiac glycosides as immune system modulators. Biomolecules. 2021;11:659. doi: 10.3390/biom11050659. PubMed DOI PMC
Bejček J., Spiwok V., Kmoníčková E., Rimpelová S. Na+/K+-ATPase revisited: On its mechanism of action, role in cancer, and activity modulation. Molecules. 2021;26:1905. doi: 10.3390/molecules26071905. PubMed DOI PMC
Zhang H.Y., Xu W.Q., Zheng Y.Y., Omari-Siaw E., Zhu Y., Cao X., Tong S.S., Yu J.N., Xu X.M. Octreotide-periplocymarin conjugate prodrug for improving targetability and anti-tumor efficiency: Synthesis, in vitro and in vivo evaluation. Oncotarget. 2016;7:86326–86338. doi: 10.18632/oncotarget.13389. PubMed DOI PMC
Zhu J.J., Zhang X.X., Miao Y.Q., He S.F., Tian D.M., Yao X.S., Tang J.S., Gan Y. Delivery of acetylthevetin B, an antitumor cardiac glycoside, using polymeric micelles for enhanced therapeutic efficacy against lung cancer cells. Acta Pharmacol. Sin. 2017;38:290–300. doi: 10.1038/aps.2016.113. PubMed DOI PMC
Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses