Steroid Glycosides Hyrcanoside and Deglucohyrcanoside: On Isolation, Structural Identification, and Anticancer Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
14-04329S
Grantová Agentura České Republiky
LM2018130
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018133
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33440629
PubMed Central
PMC7827417
DOI
10.3390/foods10010136
PII: foods10010136
Knihovny.cz E-zdroje
- Klíčová slova
- Na+/K+-ATPase inhibitors, anticancer activity, cardiac glycosides, cymarin, deglucohyrcanoside, digitoxin, hyrcanoside, natural product isolation, ouabain, secondary plant metabolites,
- Publikační typ
- časopisecké články MeSH
Cardiac glycosides (CGs) represent a group of sundry compounds of natural origin. Most CGs are potent inhibitors of Na+/K+-ATPase, and some are routinely utilized in the treatment of various cardiac conditions. Biological activities of other lesser known CGs have not been fully explored yet. Interestingly, the anticancer potential of some CGs was revealed and thereby, some of these compounds are now being evaluated for drug repositioning. However, high systemic toxicity and low cancer cell selectivity of the clinically used CGs have severely limited their utilization in cancer treatment so far. Therefore, in this study, we have focused on two poorly described CGs: hyrcanoside and deglucohyrcanoside. We elaborated on their isolation, structural identification, and cytotoxicity evaluation in a panel of cancerous and noncancerous cell lines, and on their potential to induce cell cycle arrest in the G2/M phase. The activity of hyrcanoside and deglucohyrcanoside was compared to three other CGs: ouabain, digitoxin, and cymarin. Furthermore, by in silico modeling, interaction of these CGs with Na+/K+-ATPase was also studied. Hopefully, these compounds could serve not only as a research tool for Na+/K+-ATPase inhibition, but also as novel cancer therapeutics.
Zobrazit více v PubMed
WHO. [(accessed on 7 December 2020)]; Available online: https://www.who.int/news-room/fact-sheets/detail/cancer.
Xue H., Li J., Xie H., Wang Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci. 2018;14:1232–1244. doi: 10.7150/ijbs.24612. PubMed DOI PMC
Clinical Trials. [(accessed on 7 December 2020)]; Available online: ClinicalTrials.gov.
Platz E.A., Yegnasubramanian S., Liu J.O., Chong C.R., Shim J.S., Kenfield S.A., Stampfer M.J., Willett W.C., Giovannucci E., Nelson W.G. A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. Cancer Discov. 2011;1:68–77. doi: 10.1158/2159-8274.CD-10-0020. PubMed DOI PMC
Osman M.H., Farrag E., Selim M., Osman M.S., Hasanine A., Selim A. Cardiac glycosides use and the risk and mortality of cancer; systematic review and meta-analysis of observational studies. PLoS ONE. 2017;12:e0178611. doi: 10.1371/journal.pone.0178611. PubMed DOI PMC
Couraud S., Azoulay L., Dell’Aniello S., Suissa S. Cardiac glycosides use and the risk of lung cancer: A nested case–control study. BMC Cancer. 2014;14:573. doi: 10.1186/1471-2407-14-573. PubMed DOI PMC
Karasneh R.A., Murray L.J., Cardwell C.R. Cardiac glycosides and breast cancer risk: A systematic review and meta-analysis of observational studies. Int. J. Cancer. 2017;140:1035–1041. doi: 10.1002/ijc.30520. PubMed DOI
Kepp O., Menger L., Vacchelli E., Adjemian S., Martins I., Ma Y., Sukkurwala A.Q., Michaud M., Galluzzi L., Zitvogel L., et al. Anticancer activity of cardiac glycosides. At the frontier between cell-autonomous and immunological effects. Oncoimmunology. 2012;1:1640–1642. doi: 10.4161/onci.21684. PubMed DOI PMC
Schönfeld W., Weiland J., Lindig C., Masnyk M., Kabat M.M., Kurek A., Wicha J., Repke K.R.H. The lead structure in cardiac glycosides is 5β,14β-androstane-3β,14-diol. Naunyn Schmiedebergs Arch. Pharmacol. 1985;329:414–426. doi: 10.1007/BF00496377. PubMed DOI
Morsy N. References. In: El-Shemy H., editor. Aromatic and Medicinal Plants—Back to Nature. IntechOpen; London, UK: 2017. pp. 29–45.
Manunta P., Hamilton B.P., Hamlyn J.M. Structure-activity relationships for the hypertensinogenic activity of ouabain. Hypertension. 2001;37:472–477. doi: 10.1161/01.HYP.37.2.472. PubMed DOI
Magpusao A.N., Omolloh G., Johnson J., Gascón J., Peczuh M.W., Fenteany G. Cardiac glycoside activities link Na+/K+ ATPase ion-transport to breast cancer cell migration via correlative SAR. ACS Chem. Biol. 2015;10:561–569. doi: 10.1021/cb500665r. PubMed DOI PMC
Wang H.Y., Xin W., Zhou M., Stueckle T.A., Rojanasakul Y., O’Doherty G.A. Stereochemical survey of digitoxin monosaccharides: New anticancer analogues with enhanced apoptotic activity and growth inhibitory effect on human non-small cell lung cancer cell. ACS Med. Chem. Lett. 2011;2:73–78. doi: 10.1021/ml100219d. PubMed DOI PMC
Iyer A.K.V., Zhou M., Azad N., Elbaz H., Wang L., Rogalsky D.K., Rojanasakul Y., O’Doherty G.A., Langenhan J.M. A direct comparison of the anticancer activities of digitoxin MeON-neoglycosides and O-glycosides. ACS Med. Chem. Lett. 2010;1:326–330. doi: 10.1021/ml1000933. PubMed DOI PMC
López-Lázaro M., Pastor N., Azrak S.S., Ayuso M.J., Austin C.A., Cortés F. Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J. Nat. Prod. 2005;68:1642–1645. doi: 10.1021/np050226l. PubMed DOI
Ayogu J.I., Odoh A.S. Prospects and therapeutic applications of cardiac glycosides in cancer remediation. ACS Comb. Sci. 2020;22:543–553. doi: 10.1021/acscombsci.0c00082. PubMed DOI
Reuter H., Henderson S.A., Han T., Ross R.S., Goldhaber J.I., Philipson K.D. The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ. Res. 2002;90:305–308. doi: 10.1161/hh0302.104562. PubMed DOI
Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI
Haas M., Askari A., Xie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chem. 2000;275:27832–27837. doi: 10.1074/jbc.M002951200. PubMed DOI
Haas M., Wang H., Tian J., Xie Z. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. 2002;277:18694–18702. doi: 10.1074/jbc.M111357200. PubMed DOI
Danen E.H.J., Sonneveld P., Sonnenberg A., Yamada K.M. Dual stimulation of Ras/mitogen-activated protein kinase and Rhoa by cell adhesion to fibronectin supports growth factor–stimulated cell cycle progression. J. Cell Biol. 2000;151:1413–1422. doi: 10.1083/jcb.151.7.1413. PubMed DOI PMC
Prassas I., Karagiannis G.S., Batruch I., Dimitromanolakis A., Datti A., Diamandis E.P. Digitoxin-induced cytotoxicity in cancer cells is mediated through distinct kinase and interferon signaling networks. Mol. Cancer Ther. 2011;10:2083–2093. doi: 10.1158/1535-7163.MCT-11-0421. PubMed DOI
McConkey D.J., Lin Y., Nutt L.K., Ozel H.Z., Newman R.A. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res. 2000;60:3807–3812. PubMed
Menger L., Vacchelli E., Adjemian S., Martins I., Ma Y., Shen S., Yamazaki T., Sukkurwala A.Q., Michaud M., Mignot G., et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl. Med. 2012;4:143–199. doi: 10.1126/scitranslmed.3003807. PubMed DOI
Katz A., Lifshitz Y., Bab-Dinitz E., Kapri-Pardes E., Goldshleger R., Tal D.M., Karlish S.J.D. Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J. Biol. Chem. 2010;285:19582–19592. doi: 10.1074/jbc.M110.119248. PubMed DOI PMC
Elbaz H.A., Stueckle T.A., Wang H.Y.L., O’Doherty G.A., Lowry D.T., Sargent L.M., Wang L., Dinu C.Z., Rojanasakul Y. Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells. Toxicol. Appl. Pharmacol. 2012;258:51–60. doi: 10.1016/j.taap.2011.10.007. PubMed DOI PMC
Xu Y., Li J., Chen B., Zhou M., Zeng Y., Zhang Q., Guo Y., Chen J., Ouyang J. Cardiac glycosides inhibit proliferation and induce apoptosis of human hematological malignant cells. Int. J. Clin. Exp. Pathol. 2016;9:9268–9275.
Zhang Y.Z., Chen X., Fan X.X., He J.X., Huang J., Xiao D.K., Zhou Y.L., Zheng S.Y., Xu J.H., Yao X.J., et al. Compound library screening identified cardiac glycoside digitoxin as an effective growth inhibitor of gefitinib-resistant non-small cell lung cancer via downregulation of alpha-tubulin and inhibition of microtubule formation. Molecules. 2016;21:374. doi: 10.3390/molecules21030374. PubMed DOI PMC
Williams L.M., Cassady J.M. Potential antitumor agents: A cytotoxic cardenolide from Coronilla varia L. J. Pharm. Sci. 1976;65:912–914. doi: 10.1002/jps.2600650628. PubMed DOI
Hembree J.A., Chang C.J., McLaughlin L.J., Peck G., Cassady J.M. Potential antitumor agents: A cytotoxic cardenolide from Coronilla varia. J. Nat. Prod. 1979;42:293–298. doi: 10.1021/np50003a009. DOI
Slavík J., Zácková P., Michlová J., Opletal L., Sovová M. Phytotherapeutic aspects of diseases of the circulatory system. III. Cardiotonic and cardiotoxic effects of hyrcanoside and deglucohyrcanoside isolated from Coronilla varia L. Ceska Slov. Farm. 1994;43:298–302. PubMed
Zácková P., Sovová M., Horáková M., Opletalová V. Study of Coronilla varia L. III. Pharmacological evaluation of its effects on heart function. Ceskoslovenska Farm. 1982;31:242–246. PubMed
Gersl V. Effects of Coronilla varia Linné extract and lanatoside C in rabbits with experimental acute heart overloading in vivo. Sb. Ved. Pr. Lek. Fak. Karlov. Univerzity Hradci Kral. Suppl. 1980;23:445–457. PubMed
Jurášek M., Džubák P., Rimpelová S., Sedlák D., Konečný P., Frydrych I., Gurská S., Hajdúch M., Bogdanová K., Kolář M., et al. Trilobolide-steroid hybrids: Synthesis, cytotoxic and antimycobacterial activity. Steroids. 2017;117:97–104. doi: 10.1016/j.steroids.2016.08.011. PubMed DOI
Řehulka J., Vychodilová K., Krejčí P., Gurská S., Hradil P., Hajdúch M., Džubák P., Hlaváč J. Fluorinated derivatives of 2-phenyl-3-hydroxy-4(1H)-quinolinone as tubulin polymerization inhibitors. Eur. J. Med. Chem. 2020;192:112176. doi: 10.1016/j.ejmech.2020.112176. PubMed DOI
Bagirov R.B., Komissarenko N.F. New cardenolides from seeds of Coronilla hyrcana. Khimiya Prir. Soedin. 1966;2:251–257.
Nurmukhamedova M.R., Nikonov G.K. Glycosides from Dorema hyrcanum. Khimiya Prir. Soedin. 1976;3:101–102.
Khushbaktova Z.A., Mukhtasimova R., Syrov V.N., Sultanov M.B. O farmakologicheskikh svoistvach novogo fenolglykozida—girkanozida [Pharmacological properties of a new phenolglycoside—hyrcanoside] Dokl. Akad. Nauk. 1983;39:54–55.
Abubakirov N.K. The chemistry of cardiac glycosides in the Soviet union. Khimiya Prir. Soedin. 1971;7:553–571. doi: 10.1007/BF00568404. DOI
Zatula V.V., Maksyutina N.P., Kolesnikov D.G. Cardenolides of Securigera securidaca. Khimiya Prir. Soedin. 1965;1:153–156.
Zatula V.V., Chernobrovaya N.V., Kolesnikov D.G. A chemical study of the structure of securigenin and its bioside securidaside. Khimiya Prir. Soedin. 1966;2:438–439. doi: 10.1007/BF00564226. DOI
Zatula V.V. Kil’kisne vyznachennia sekurydazydu v nasinni sekuryhery mechovydnoi [Quantitative determination of securidazide in seeds of Securigera securidaca] Farmatsevtychnyi Zhurnal (Kiev) 1968;23:85–88. PubMed
Zatula V.V., Kovalev I.P., Kolesnikov D.G. The structure of securigenin and securigenol. Khimiya Prir. Soedin. 1969;5:127–128. doi: 10.1007/BF00633300. DOI
Tofighi Z., Moradi-Afrapoli F., Ebrahimi S.N., Goodarzi S., Hadjiakhoondi A., Neuburger M., Hamburger M., Abdollahi M., Yassa N. Securigenin glycosides as hypoglycemic principles of Securigera securidaca seeds. J. Nat. Med. 2017;71:272–280. doi: 10.1007/s11418-016-1060-7. PubMed DOI
Laursen M., Yatimea L., Nissena P., Fedosova N.U. Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site 1. Proc. Natl. Acad. Sci. USA. 2013;110:10958–10963. doi: 10.1073/pnas.1222308110. PubMed DOI PMC
Laursen M., Gregersena J.L., Yatimea L., Nissena P., Fedosova N.U. Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex. Proc. Natl. Acad. Sci. USA. 2015;112:1755–1760. doi: 10.1073/pnas.1422997112. PubMed DOI PMC
Chen W.L., Ren Y., Ren J., Erxleben C., Johnson M.E., Gentile S., Kinghorn A.D., Swanson S.M., Burdette J.E. (+)-Strebloside-induced cytotoxicity in ovarian cancer cells is mediated through cardiac glycoside signaling networks. J. Nat. Prod. 2017;80:659–669. doi: 10.1021/acs.jnatprod.6b01150. PubMed DOI PMC
Paula S., Tabet M.R., Ball W.J. Interactions between cardiac glycosides and sodium/potassium-ATPase: Three-dimensional structure-activity relationship models for ligand binding to the E2-Pi form of the enzyme versus activity inhibition. Biochemistry. 2005;44:498–510. doi: 10.1021/bi048680w. PubMed DOI
Levrier C., Kiremire B., Guéritte F., Litaudon M. Toxicarioside M, a new cytotoxic 10β-hydroxy-19-nor-cardenolide from Antiaris toxicaria. Fitoterapia. 2012;83:660–664. doi: 10.1016/j.fitote.2012.02.001. PubMed DOI
Perne A., Muellner M.K., Steinrueck M., Craig-Mueller N., Mayerhofer J., Schwarzinger I., Sloane M., Uras I.Z., Hoermann G., Nijman S.M.B., et al. Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis. PLoS ONE. 2009;4:e8292. doi: 10.1371/journal.pone.0008292. PubMed DOI PMC
Price E.M., Lingrel J.B. Structure-function relationships in the Na,K-ATPase alpha subunit: Site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry. 1988;27:8400–8408. doi: 10.1021/bi00422a016. PubMed DOI
Calderon-Montano J.M., Burgos-Moron E., Lopez-Lazaro M. The in vivo antitumor activity of cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact. Oncogene. 2014;33:2947–2948. doi: 10.1038/onc.2013.229. PubMed DOI
Zhang X.J., Mei W.L., Tan G.H., Wang C.C., Zhou S.L., Huang F.R., Chen B., Dai H.F., Huang F.Y. Strophalloside induces apoptosis of SGC-7901 cells through the mitochondrion-dependent caspase-3 pathway. Molecules. 2015;20:5714–5728. doi: 10.3390/molecules20045714. PubMed DOI PMC
Akimova O.A., Tverskoi A.M., Smolyaninova L.V., Mongin A.A., Lopina O.D., La J., Dulin N.O., Orlov S.N. Critical role of the α1-Na(+), K(+)-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain. Apoptosis. 2015;20:1200–1210. doi: 10.1007/s10495-015-1144-y. PubMed DOI PMC
Wen S.Y., Chen Y.Y., Deng C.M., Zhang C.Q., Jiang M.M. Nerigoside suppresses colorectal cancer cell growth and metastatic potential through inhibition of ERK/GSK3β/β-catenin signaling pathway. Phytomedicine. 2019;57:352–363. doi: 10.1016/j.phymed.2018.12.033. PubMed DOI
Lei Y., Gan H., Huang Y., Chen Y., Chen L., Shan A., Zhao H., Wu M., Li X., Ma Q., et al. Digitoxin inhibits proliferation of multidrug-resistant HepG2 cells through G2/M cell cycle arrest and apoptosis. Oncol. Lett. 2020;20:71. doi: 10.3892/ol.2020.11932. PubMed DOI PMC
Hiyoshi H., Abdelhady S., Segerström L., Sveinbjörnsson B., Nuriya M., Lundgren T.K., Desfrere L., Miyakawa A., Yasui M., Kogner P., et al. Quiescence and γH2AX in neuroblastoma are regulated by ouabain/Na,K-ATPase. Br. J. Cancer. 2012;106:1807–1815. doi: 10.1038/bjc.2012.159. PubMed DOI PMC
Newman R.A., Kondo Y., Yokoyama T., Dixon S., Cartwright C., Chan D., Johansen M., Yang P. Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr. Cancer Ther. 2007;6:354–364. doi: 10.1177/1534735407309623. PubMed DOI
Wang T., Xu P., Wang F., Zhou D., Wang R., Meng L., Wang X., Zhou M., Chen B., Ouyang J. Effects of digoxin on cell cycle, apoptosis and NF-κB pathway in Burkitt’s lymphoma cells and animal model. Leuk. Lymphoma. 2017;58:1673–1685. doi: 10.1080/10428194.2016.1256480. PubMed DOI
Škubník J., Jurášek M., Ruml T., Rimpelová S. Mitotic poisons in research and medicine. Molecules. 2020;25:4632. doi: 10.3390/molecules25204632. PubMed DOI PMC
Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses