Steroid Glycosides Hyrcanoside and Deglucohyrcanoside: On Isolation, Structural Identification, and Anticancer Activity

. 2021 Jan 11 ; 10 (1) : . [epub] 20210111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33440629

Grantová podpora
14-04329S Grantová Agentura České Republiky
LM2018130 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018133 Ministerstvo Školství, Mládeže a Tělovýchovy

Cardiac glycosides (CGs) represent a group of sundry compounds of natural origin. Most CGs are potent inhibitors of Na+/K+-ATPase, and some are routinely utilized in the treatment of various cardiac conditions. Biological activities of other lesser known CGs have not been fully explored yet. Interestingly, the anticancer potential of some CGs was revealed and thereby, some of these compounds are now being evaluated for drug repositioning. However, high systemic toxicity and low cancer cell selectivity of the clinically used CGs have severely limited their utilization in cancer treatment so far. Therefore, in this study, we have focused on two poorly described CGs: hyrcanoside and deglucohyrcanoside. We elaborated on their isolation, structural identification, and cytotoxicity evaluation in a panel of cancerous and noncancerous cell lines, and on their potential to induce cell cycle arrest in the G2/M phase. The activity of hyrcanoside and deglucohyrcanoside was compared to three other CGs: ouabain, digitoxin, and cymarin. Furthermore, by in silico modeling, interaction of these CGs with Na+/K+-ATPase was also studied. Hopefully, these compounds could serve not only as a research tool for Na+/K+-ATPase inhibition, but also as novel cancer therapeutics.

Zobrazit více v PubMed

WHO. [(accessed on 7 December 2020)]; Available online: https://www.who.int/news-room/fact-sheets/detail/cancer.

Xue H., Li J., Xie H., Wang Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci. 2018;14:1232–1244. doi: 10.7150/ijbs.24612. PubMed DOI PMC

Clinical Trials. [(accessed on 7 December 2020)]; Available online: ClinicalTrials.gov.

Platz E.A., Yegnasubramanian S., Liu J.O., Chong C.R., Shim J.S., Kenfield S.A., Stampfer M.J., Willett W.C., Giovannucci E., Nelson W.G. A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. Cancer Discov. 2011;1:68–77. doi: 10.1158/2159-8274.CD-10-0020. PubMed DOI PMC

Osman M.H., Farrag E., Selim M., Osman M.S., Hasanine A., Selim A. Cardiac glycosides use and the risk and mortality of cancer; systematic review and meta-analysis of observational studies. PLoS ONE. 2017;12:e0178611. doi: 10.1371/journal.pone.0178611. PubMed DOI PMC

Couraud S., Azoulay L., Dell’Aniello S., Suissa S. Cardiac glycosides use and the risk of lung cancer: A nested case–control study. BMC Cancer. 2014;14:573. doi: 10.1186/1471-2407-14-573. PubMed DOI PMC

Karasneh R.A., Murray L.J., Cardwell C.R. Cardiac glycosides and breast cancer risk: A systematic review and meta-analysis of observational studies. Int. J. Cancer. 2017;140:1035–1041. doi: 10.1002/ijc.30520. PubMed DOI

Kepp O., Menger L., Vacchelli E., Adjemian S., Martins I., Ma Y., Sukkurwala A.Q., Michaud M., Galluzzi L., Zitvogel L., et al. Anticancer activity of cardiac glycosides. At the frontier between cell-autonomous and immunological effects. Oncoimmunology. 2012;1:1640–1642. doi: 10.4161/onci.21684. PubMed DOI PMC

Schönfeld W., Weiland J., Lindig C., Masnyk M., Kabat M.M., Kurek A., Wicha J., Repke K.R.H. The lead structure in cardiac glycosides is 5β,14β-androstane-3β,14-diol. Naunyn Schmiedebergs Arch. Pharmacol. 1985;329:414–426. doi: 10.1007/BF00496377. PubMed DOI

Morsy N. References. In: El-Shemy H., editor. Aromatic and Medicinal Plants—Back to Nature. IntechOpen; London, UK: 2017. pp. 29–45.

Manunta P., Hamilton B.P., Hamlyn J.M. Structure-activity relationships for the hypertensinogenic activity of ouabain. Hypertension. 2001;37:472–477. doi: 10.1161/01.HYP.37.2.472. PubMed DOI

Magpusao A.N., Omolloh G., Johnson J., Gascón J., Peczuh M.W., Fenteany G. Cardiac glycoside activities link Na+/K+ ATPase ion-transport to breast cancer cell migration via correlative SAR. ACS Chem. Biol. 2015;10:561–569. doi: 10.1021/cb500665r. PubMed DOI PMC

Wang H.Y., Xin W., Zhou M., Stueckle T.A., Rojanasakul Y., O’Doherty G.A. Stereochemical survey of digitoxin monosaccharides: New anticancer analogues with enhanced apoptotic activity and growth inhibitory effect on human non-small cell lung cancer cell. ACS Med. Chem. Lett. 2011;2:73–78. doi: 10.1021/ml100219d. PubMed DOI PMC

Iyer A.K.V., Zhou M., Azad N., Elbaz H., Wang L., Rogalsky D.K., Rojanasakul Y., O’Doherty G.A., Langenhan J.M. A direct comparison of the anticancer activities of digitoxin MeON-neoglycosides and O-glycosides. ACS Med. Chem. Lett. 2010;1:326–330. doi: 10.1021/ml1000933. PubMed DOI PMC

López-Lázaro M., Pastor N., Azrak S.S., Ayuso M.J., Austin C.A., Cortés F. Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J. Nat. Prod. 2005;68:1642–1645. doi: 10.1021/np050226l. PubMed DOI

Ayogu J.I., Odoh A.S. Prospects and therapeutic applications of cardiac glycosides in cancer remediation. ACS Comb. Sci. 2020;22:543–553. doi: 10.1021/acscombsci.0c00082. PubMed DOI

Reuter H., Henderson S.A., Han T., Ross R.S., Goldhaber J.I., Philipson K.D. The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ. Res. 2002;90:305–308. doi: 10.1161/hh0302.104562. PubMed DOI

Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI

Haas M., Askari A., Xie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chem. 2000;275:27832–27837. doi: 10.1074/jbc.M002951200. PubMed DOI

Haas M., Wang H., Tian J., Xie Z. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. 2002;277:18694–18702. doi: 10.1074/jbc.M111357200. PubMed DOI

Danen E.H.J., Sonneveld P., Sonnenberg A., Yamada K.M. Dual stimulation of Ras/mitogen-activated protein kinase and Rhoa by cell adhesion to fibronectin supports growth factor–stimulated cell cycle progression. J. Cell Biol. 2000;151:1413–1422. doi: 10.1083/jcb.151.7.1413. PubMed DOI PMC

Prassas I., Karagiannis G.S., Batruch I., Dimitromanolakis A., Datti A., Diamandis E.P. Digitoxin-induced cytotoxicity in cancer cells is mediated through distinct kinase and interferon signaling networks. Mol. Cancer Ther. 2011;10:2083–2093. doi: 10.1158/1535-7163.MCT-11-0421. PubMed DOI

McConkey D.J., Lin Y., Nutt L.K., Ozel H.Z., Newman R.A. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res. 2000;60:3807–3812. PubMed

Menger L., Vacchelli E., Adjemian S., Martins I., Ma Y., Shen S., Yamazaki T., Sukkurwala A.Q., Michaud M., Mignot G., et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl. Med. 2012;4:143–199. doi: 10.1126/scitranslmed.3003807. PubMed DOI

Katz A., Lifshitz Y., Bab-Dinitz E., Kapri-Pardes E., Goldshleger R., Tal D.M., Karlish S.J.D. Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J. Biol. Chem. 2010;285:19582–19592. doi: 10.1074/jbc.M110.119248. PubMed DOI PMC

Elbaz H.A., Stueckle T.A., Wang H.Y.L., O’Doherty G.A., Lowry D.T., Sargent L.M., Wang L., Dinu C.Z., Rojanasakul Y. Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells. Toxicol. Appl. Pharmacol. 2012;258:51–60. doi: 10.1016/j.taap.2011.10.007. PubMed DOI PMC

Xu Y., Li J., Chen B., Zhou M., Zeng Y., Zhang Q., Guo Y., Chen J., Ouyang J. Cardiac glycosides inhibit proliferation and induce apoptosis of human hematological malignant cells. Int. J. Clin. Exp. Pathol. 2016;9:9268–9275.

Zhang Y.Z., Chen X., Fan X.X., He J.X., Huang J., Xiao D.K., Zhou Y.L., Zheng S.Y., Xu J.H., Yao X.J., et al. Compound library screening identified cardiac glycoside digitoxin as an effective growth inhibitor of gefitinib-resistant non-small cell lung cancer via downregulation of alpha-tubulin and inhibition of microtubule formation. Molecules. 2016;21:374. doi: 10.3390/molecules21030374. PubMed DOI PMC

Williams L.M., Cassady J.M. Potential antitumor agents: A cytotoxic cardenolide from Coronilla varia L. J. Pharm. Sci. 1976;65:912–914. doi: 10.1002/jps.2600650628. PubMed DOI

Hembree J.A., Chang C.J., McLaughlin L.J., Peck G., Cassady J.M. Potential antitumor agents: A cytotoxic cardenolide from Coronilla varia. J. Nat. Prod. 1979;42:293–298. doi: 10.1021/np50003a009. DOI

Slavík J., Zácková P., Michlová J., Opletal L., Sovová M. Phytotherapeutic aspects of diseases of the circulatory system. III. Cardiotonic and cardiotoxic effects of hyrcanoside and deglucohyrcanoside isolated from Coronilla varia L. Ceska Slov. Farm. 1994;43:298–302. PubMed

Zácková P., Sovová M., Horáková M., Opletalová V. Study of Coronilla varia L. III. Pharmacological evaluation of its effects on heart function. Ceskoslovenska Farm. 1982;31:242–246. PubMed

Gersl V. Effects of Coronilla varia Linné extract and lanatoside C in rabbits with experimental acute heart overloading in vivo. Sb. Ved. Pr. Lek. Fak. Karlov. Univerzity Hradci Kral. Suppl. 1980;23:445–457. PubMed

Jurášek M., Džubák P., Rimpelová S., Sedlák D., Konečný P., Frydrych I., Gurská S., Hajdúch M., Bogdanová K., Kolář M., et al. Trilobolide-steroid hybrids: Synthesis, cytotoxic and antimycobacterial activity. Steroids. 2017;117:97–104. doi: 10.1016/j.steroids.2016.08.011. PubMed DOI

Řehulka J., Vychodilová K., Krejčí P., Gurská S., Hradil P., Hajdúch M., Džubák P., Hlaváč J. Fluorinated derivatives of 2-phenyl-3-hydroxy-4(1H)-quinolinone as tubulin polymerization inhibitors. Eur. J. Med. Chem. 2020;192:112176. doi: 10.1016/j.ejmech.2020.112176. PubMed DOI

Bagirov R.B., Komissarenko N.F. New cardenolides from seeds of Coronilla hyrcana. Khimiya Prir. Soedin. 1966;2:251–257.

Nurmukhamedova M.R., Nikonov G.K. Glycosides from Dorema hyrcanum. Khimiya Prir. Soedin. 1976;3:101–102.

Khushbaktova Z.A., Mukhtasimova R., Syrov V.N., Sultanov M.B. O farmakologicheskikh svoistvach novogo fenolglykozida—girkanozida [Pharmacological properties of a new phenolglycoside—hyrcanoside] Dokl. Akad. Nauk. 1983;39:54–55.

Abubakirov N.K. The chemistry of cardiac glycosides in the Soviet union. Khimiya Prir. Soedin. 1971;7:553–571. doi: 10.1007/BF00568404. DOI

Zatula V.V., Maksyutina N.P., Kolesnikov D.G. Cardenolides of Securigera securidaca. Khimiya Prir. Soedin. 1965;1:153–156.

Zatula V.V., Chernobrovaya N.V., Kolesnikov D.G. A chemical study of the structure of securigenin and its bioside securidaside. Khimiya Prir. Soedin. 1966;2:438–439. doi: 10.1007/BF00564226. DOI

Zatula V.V. Kil’kisne vyznachennia sekurydazydu v nasinni sekuryhery mechovydnoi [Quantitative determination of securidazide in seeds of Securigera securidaca] Farmatsevtychnyi Zhurnal (Kiev) 1968;23:85–88. PubMed

Zatula V.V., Kovalev I.P., Kolesnikov D.G. The structure of securigenin and securigenol. Khimiya Prir. Soedin. 1969;5:127–128. doi: 10.1007/BF00633300. DOI

Tofighi Z., Moradi-Afrapoli F., Ebrahimi S.N., Goodarzi S., Hadjiakhoondi A., Neuburger M., Hamburger M., Abdollahi M., Yassa N. Securigenin glycosides as hypoglycemic principles of Securigera securidaca seeds. J. Nat. Med. 2017;71:272–280. doi: 10.1007/s11418-016-1060-7. PubMed DOI

Laursen M., Yatimea L., Nissena P., Fedosova N.U. Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site 1. Proc. Natl. Acad. Sci. USA. 2013;110:10958–10963. doi: 10.1073/pnas.1222308110. PubMed DOI PMC

Laursen M., Gregersena J.L., Yatimea L., Nissena P., Fedosova N.U. Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex. Proc. Natl. Acad. Sci. USA. 2015;112:1755–1760. doi: 10.1073/pnas.1422997112. PubMed DOI PMC

Chen W.L., Ren Y., Ren J., Erxleben C., Johnson M.E., Gentile S., Kinghorn A.D., Swanson S.M., Burdette J.E. (+)-Strebloside-induced cytotoxicity in ovarian cancer cells is mediated through cardiac glycoside signaling networks. J. Nat. Prod. 2017;80:659–669. doi: 10.1021/acs.jnatprod.6b01150. PubMed DOI PMC

Paula S., Tabet M.R., Ball W.J. Interactions between cardiac glycosides and sodium/potassium-ATPase: Three-dimensional structure-activity relationship models for ligand binding to the E2-Pi form of the enzyme versus activity inhibition. Biochemistry. 2005;44:498–510. doi: 10.1021/bi048680w. PubMed DOI

Levrier C., Kiremire B., Guéritte F., Litaudon M. Toxicarioside M, a new cytotoxic 10β-hydroxy-19-nor-cardenolide from Antiaris toxicaria. Fitoterapia. 2012;83:660–664. doi: 10.1016/j.fitote.2012.02.001. PubMed DOI

Perne A., Muellner M.K., Steinrueck M., Craig-Mueller N., Mayerhofer J., Schwarzinger I., Sloane M., Uras I.Z., Hoermann G., Nijman S.M.B., et al. Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis. PLoS ONE. 2009;4:e8292. doi: 10.1371/journal.pone.0008292. PubMed DOI PMC

Price E.M., Lingrel J.B. Structure-function relationships in the Na,K-ATPase alpha subunit: Site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry. 1988;27:8400–8408. doi: 10.1021/bi00422a016. PubMed DOI

Calderon-Montano J.M., Burgos-Moron E., Lopez-Lazaro M. The in vivo antitumor activity of cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact. Oncogene. 2014;33:2947–2948. doi: 10.1038/onc.2013.229. PubMed DOI

Zhang X.J., Mei W.L., Tan G.H., Wang C.C., Zhou S.L., Huang F.R., Chen B., Dai H.F., Huang F.Y. Strophalloside induces apoptosis of SGC-7901 cells through the mitochondrion-dependent caspase-3 pathway. Molecules. 2015;20:5714–5728. doi: 10.3390/molecules20045714. PubMed DOI PMC

Akimova O.A., Tverskoi A.M., Smolyaninova L.V., Mongin A.A., Lopina O.D., La J., Dulin N.O., Orlov S.N. Critical role of the α1-Na(+), K(+)-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain. Apoptosis. 2015;20:1200–1210. doi: 10.1007/s10495-015-1144-y. PubMed DOI PMC

Wen S.Y., Chen Y.Y., Deng C.M., Zhang C.Q., Jiang M.M. Nerigoside suppresses colorectal cancer cell growth and metastatic potential through inhibition of ERK/GSK3β/β-catenin signaling pathway. Phytomedicine. 2019;57:352–363. doi: 10.1016/j.phymed.2018.12.033. PubMed DOI

Lei Y., Gan H., Huang Y., Chen Y., Chen L., Shan A., Zhao H., Wu M., Li X., Ma Q., et al. Digitoxin inhibits proliferation of multidrug-resistant HepG2 cells through G2/M cell cycle arrest and apoptosis. Oncol. Lett. 2020;20:71. doi: 10.3892/ol.2020.11932. PubMed DOI PMC

Hiyoshi H., Abdelhady S., Segerström L., Sveinbjörnsson B., Nuriya M., Lundgren T.K., Desfrere L., Miyakawa A., Yasui M., Kogner P., et al. Quiescence and γH2AX in neuroblastoma are regulated by ouabain/Na,K-ATPase. Br. J. Cancer. 2012;106:1807–1815. doi: 10.1038/bjc.2012.159. PubMed DOI PMC

Newman R.A., Kondo Y., Yokoyama T., Dixon S., Cartwright C., Chan D., Johansen M., Yang P. Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr. Cancer Ther. 2007;6:354–364. doi: 10.1177/1534735407309623. PubMed DOI

Wang T., Xu P., Wang F., Zhou D., Wang R., Meng L., Wang X., Zhou M., Chen B., Ouyang J. Effects of digoxin on cell cycle, apoptosis and NF-κB pathway in Burkitt’s lymphoma cells and animal model. Leuk. Lymphoma. 2017;58:1673–1685. doi: 10.1080/10428194.2016.1256480. PubMed DOI

Škubník J., Jurášek M., Ruml T., Rimpelová S. Mitotic poisons in research and medicine. Molecules. 2020;25:4632. doi: 10.3390/molecules25204632. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace