Novel 7-Chloro-(4-thioalkylquinoline) Derivatives: Synthesis and Antiproliferative Activity through Inducing Apoptosis and DNA/RNA Damage

. 2022 Oct 08 ; 15 (10) : . [epub] 20221008

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36297346

Grantová podpora
CZ-OPENSCREEN-LM2018130, and EATRIS-CZ-LM2018133 the Czech Ministry of Education, Youth and Sports
2013000438 The France-Venezuela PCP program
2022-MED-001 Escuela de Medicina UES

A series of 78 synthetic 7-chloro-(4-thioalkylquinoline) derivatives were investigated for cytotoxic activity against eight human cancer as well as 4 non-tumor cell lines. The results showed, with some exceptions, that sulfanyl 5-40 and sulfinyl 41-62 derivatives exhibited lower cytotoxicity for cancer cell lines than those of well-described sulfonyl N-oxide derivatives 63-82. As for compound 81, the most pronounced selectivity (compared against BJ and MRC-5 cells) was observed for human cancer cells from HCT116 (human colorectal cancer with wild-type p53) and HCT116p53-/- (human colorectal cancer with deleted p53), as well as leukemia cell lines (CCRF-CEM, CEM-DNR, K562, and K562-TAX), lung (A549), and osteosarcoma cells (U2OS). A good selectivity was also detected for compounds 73 and 74 for leukemic and colorectal (with and without p53 deletion) cancer cells (compared to MRC-5). At higher concentrations (5 × IC50) against the CCRF-CEM cancer cell line, we observe the accumulation of the cells in the G0/G1 cell phase, inhibition of DNA and RNA synthesis, and induction of apoptosis. In addition, X-ray data for compound 15 is being reported. These results provide useful scientific data for the development of 4-thioalkylquinoline derivatives as a new class of anticancer candidates.

Zobrazit více v PubMed

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Gupta S.C., Sung B., Prasad S., Webb L.J., Aggarwal B.B. Cancer drug discovery by repurposing: Teaching new tricks to old dogs. Trends Pharmacol. Sci. 2013;34:508–517. doi: 10.1016/j.tips.2013.06.005. PubMed DOI

Iqbal J., Abbasi B.A., Mahmood T., Kanwal S., Ali B., Shah S.A., Khalil A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017;7:1129–1150. doi: 10.1016/j.apjtb.2017.10.016. DOI

Al-Bari M.A.A. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother. 2015;70:1608–1621. doi: 10.1093/jac/dkv018. PubMed DOI PMC

Plantone D., Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: A mini-review. Clin. Drug Investig. 2018;38:653–671. doi: 10.1007/s40261-018-0656-y. PubMed DOI

Shukla A.M., Shukla A.W. Expanding horizons for clinical applications of chloroquine, hydroxychloroquine, and related structural analogues. Drugs Context. 2019;8:2019-9-1. doi: 10.7573/dic.2019-9-1. PubMed DOI PMC

Verbaanderd C., Maes H., Schaaf M.B., Sukhatme V.P., Pantziarka P., Sukhatme V., Agostinis P., Bouche G. Repurposing Drugs in Oncology (ReDO)–chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience. 2017;11:781. doi: 10.3332/ecancer.2017.781. PubMed DOI PMC

Samaras P., Tusup M., Nguyen-Kim T.D.L., Seifert B., Bachmann H., von Moos R., Knuth A., Pascolo S. Phase I study of a chloroquine-gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemother. Pharmacol. 2017;80:1005–1012. doi: 10.1007/s00280-017-3446-y. PubMed DOI

Afzal O., Kumar S., Haider R., Ali R., Kumar R., Jaggi M., Bawa S. A review of the anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 2015;97:871–910. doi: 10.1016/j.ejmech.2014.07.044. PubMed DOI

Blaney F.E., Raveglia L.F., Artico M., Cavagnera S., Dartois C., Farina C., Grugni M., Gagliardi S., Luttmann M.A., Martinelli M., et al. Stepwise modulation of neurokinin-3 and neurokinin-2 receptor affinity and selectivity in quinoline tachykinin receptor antagonists. J. Med. Chem. 2001;44:1675–1689. doi: 10.1021/jm000501v. PubMed DOI

Kaur R., Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem. 2021;215:113220. doi: 10.1016/j.ejmech.2021.113220. PubMed DOI PMC

Solomon V.R., Hua C., Lee H. Design and synthesis of chloroquine analogs with anti-breast cancer property. Eur. J. Med. Chem. 2010;45:3916–3923. doi: 10.1016/j.ejmech.2010.05.046. PubMed DOI

Raj R., Landb K.M., Kumar V. 4-Aminoquinoline-hybridization en route towards the development of rationally designed antimalarial agents. RSC Adv. 2015;5:82676–82698. doi: 10.1039/C5RA16361G. DOI

Salgueiro W.G., Xavier M.C., Duarte L.F., Câmara D.F., Fagundez D.A., Soares A.T., Perin G., Alves D., Avila D.S. Direct synthesis of 4-organylsulfenyl-7-chloro quinolines and their toxicological and pharmacological activities in Caenorhabditis elegans. Eur. J. Med. Chem. 2014;75:448–459. doi: 10.1016/j.ejmech.2014.01.037. PubMed DOI

De Souza M.V., Pais K.C., Kaiser C.R., Peralta M.A., Ferreira M.L., Lourenço M.C. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorg. Med. Chem. 2009;17:1474–1480. doi: 10.1016/j.bmc.2009.01.013. PubMed DOI

Matada B.S., Pattanashettar R., Yernale N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021;32:115973. doi: 10.1016/j.bmc.2020.115973. PubMed DOI

Mah S., Park J.H., Jung H.-Y., Ahn K., Choi S., Tae H.S., Jung K.H., Rho J.K., Lee J.C., Hong S.-S., et al. Identification of 4-phenoxyquinoline based inhibitors for L1196M mutant of anaplastic lymphoma kinase by structure-based design. J. Med. Chem. 2017;60:9205–9221. doi: 10.1021/acs.jmedchem.7b01039. PubMed DOI

Rodrigues J.R., Charris J., Ferrer R., Gamboa N., Ángel J., Nitzsche B., Hoepfner M., Lein M., Jung K., Abramjuk C. Effect of quinolinyl acrylate derivatives on prostate cancer in vitro and in vivo. Investig. New Drugs. 2012;30:1426–1433. doi: 10.1007/s10637-011-9716-3. PubMed DOI

Romero J.A., Acosta M.E., Gamboa N.D., Mijares M.R., Sanctis J.B., Charris J.E. Optimization of antimalarial, and anticancer activities of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate. Bioorg. Med. Chem. 2018;26:815–823. doi: 10.1016/j.bmc.2017.12.022. PubMed DOI

Ramírez H., Rodrigues J.R., Mijares M.R., De Sanctis J.B., Charris J.E. Synthesis and biological activity of 2-[2-(7-chloroquinolin-4-ylthio)-4-methylthiazol-5-yl]-N-phenylacetamide derivatives as antimalarial and cytotoxic agents. J. Chem. Res. 2020;44:305–314. doi: 10.1177/1747519819899073. DOI

Colmenarez C., Acosta M., Rodríguez M., Charris J. Synthesis and antimalarial activity of (S)-methyl-(7-chloroquinolin-4-ylthio) acetamidoalquilate derivatives. J. Chem. Res. 2020;44:161–166. doi: 10.1177/1747519819890559. DOI

Ramírez H., Fernandez E., Rodrigues J., Mayora S., Martínez G., Celis C., De Sanctis J.B., Mijares M., Charris J. Synthesis and antimalarial and anticancer evaluation of 7-chlorquinoline-4-thiazoleacetic derivatives containing aryl hydrazide moieties. Arch. Pharm. 2021;354:e2100002. doi: 10.1002/ardp.202100002. PubMed DOI

Kazi S.A., Kelso G.F., Harris S., Boysen R.I., Chowdhury J., Hearn M. Synthesis of quinoline thioethers as novel small molecule enhancers of monoclonal antibody production in mammalian cell culture. Tetrahedron. 2010;66:9461–9467. doi: 10.1016/j.tet.2010.09.020. DOI

Chitra S., Paul N., Muthusubramanian S., Manisankar P., Yogeeswari P., Sriram D. Synthesis of 3-heteroarylthioquinoline derivatives and their in vitro antituberculosis and cytotoxicity studies. Eur. J. Med. Chem. 2011;46:4897–4903. doi: 10.1016/j.ejmech.2011.07.046. PubMed DOI

Kim Y.H., Kauffman J.M., Foye W.O. Synthesis and Antileukemic Activity of 2-(2-Methylthio-2-aminovinyl)-1-methylquinolinium Iodides. J. Pharm. Sci. 1983;72:1356–1358. doi: 10.1002/jps.2600721132. PubMed DOI

Cai Z., Zhoua W., Sun L. Synthesis and HMG CoA reductase inhibition of 4-thiophenylquinolines as potential hypocholesterolemic agents. Bioorg. Med. Chem. 2007;15:7809–7829. doi: 10.1016/j.bmc.2007.08.044. PubMed DOI

Coimbra E.S., Antinarelli L.M., Silva N.P., Souza I.O., Meinel R.S., Rocha M.N., Soares R.P., da Silva A.D. Quinoline derivatives: Synthesis, leishmanicidal activity and involvement of mitochondrial oxidative stress as mechanism of action. Chem. Biol. Interact. 2016;260:50–57. doi: 10.1016/j.cbi.2016.10.017. PubMed DOI

Lukevics E., Abele E., Arsenyan P., Abele R., Rubina K., Shestakova I., Domracheva I., Vologdina V. Synthesis and cytotoxicity of silicon containing pyridine and quinoline sulfides. Met. Based Drugs. 2002;9:45–51. doi: 10.1155/MBD.2002.45. PubMed DOI PMC

Mól W., Matyja M., Filip B., Wietrzyk J., Boryczka S. Synthesis and antiproliferative activity in vitro of novel (2-butynyl)thioquinolines. Bioorg. Med. Chem. 2008;16:8136–8141. doi: 10.1016/j.bmc.2008.07.047. PubMed DOI

Neises B., Steglich W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Ed. 1978;17:522–524. doi: 10.1002/anie.197805221. DOI

Spek A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003;36:7–13. doi: 10.1107/S0021889802022112. DOI

MacRae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC

Jurášek M., Džubák P., Rimpelová S., Sedlák D., Konečný P., Frydrych I., Gurská S., Hajdúch M., Bogdanová K., Kolář M., et al. Trilobolide-steroid hybrids: Synthesis, cytotoxic and antimycobacterial activity. Steroids. 2017;117:97–104. doi: 10.1016/j.steroids.2016.08.011. PubMed DOI

Rimpelová S., Zimmermann T., Drašar P.B., Dolenský B., Bejček J., Kmoníčková E., Cihlárová P., Gurská S., Kuklíková L., Hajdúch M., et al. Steroid glycosides hyrcanoside and deglucohyrcanoside: On isolation, structural identification, and anticancer activity. Foods. 2021;10:136. doi: 10.3390/foods10010136. PubMed DOI PMC

Džubak P., Gurská S., Bogdanová K., Uhríková D., Kanjaková N., Combet S., Klunda T., Kolář M., Hajdúch M., Poláková M. Antimicrobial and cytotoxic activity of (thio)alkyl hexopyranosides, nonionic glycolipid mimetics. Carbohydr. Res. 2020;488:107905. doi: 10.1016/j.carres.2019.107905. PubMed DOI

Řehulka J., Vychodilová K., Krejčí P., Gurská S., Hradil P., Hajdúch M., Džubák P., Hlaváč J. Fluorinated derivatives of 2-phenyl-3-hydroxy-4(1H)-quinolinone as tubulin polymerization inhibitors. Eur. J. Med. Chem. 2020;192:112176. doi: 10.1016/j.ejmech.2020.112176. PubMed DOI

Sasaki K., Tsuno N.H., Sunami E., Tsurita G., Kawai K., Okaji Y., Nishikawa T., Shuno Y., Hongo K., Hiyoshi M., et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer. 2010;10:370. doi: 10.1186/1471-2407-10-370. PubMed DOI PMC

Monma H., Iida Y., Moritani T., Okimoto T., Tanino R., Tajima Y., Harada M. Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS ONE. 2018;13:e0193990. doi: 10.1371/journal.pone.0193990. PubMed DOI PMC

Hu T., Li P., Luo Z., Chen X., Zhang J., Wang C., Chen P., Dong Z. Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo. Oncol. Rep. 2016;35:43–49. doi: 10.3892/or.2015.4380. PubMed DOI PMC

Jia L., Wang J., Wu T., Wu J., Ling J., Cheng B. In vitro and in vivo antitumor effects of chloroquine on oral squamous cell carcinoma. Mol. Med. Rep. 2017;16:5779–5786. doi: 10.3892/mmr.2017.7342. PubMed DOI PMC

Jiang P., Zhao Y., Shi W., Deng X., Xie G., Mao Y., Li Z., Zheng Y., Yang S., Wei Y. Cell Growth Inhibition, G2/M Cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell Physiol. Biochem. 2008;22:431–440. doi: 10.1159/000185488. PubMed DOI

Bruker . SMART. Bruker AXS Inc.; Madison, WI, USA: 2012.

Bruker . SAINT. Bruker AXS Inc.; Madison, WI, USA: 2012.

Sheldrick G.M. IUCr, Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...