Novel 7-Chloro-(4-thioalkylquinoline) Derivatives: Synthesis and Antiproliferative Activity through Inducing Apoptosis and DNA/RNA Damage
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ-OPENSCREEN-LM2018130, and EATRIS-CZ-LM2018133
the Czech Ministry of Education, Youth and Sports
2013000438
The France-Venezuela PCP program
2022-MED-001
Escuela de Medicina UES
PubMed
36297346
PubMed Central
PMC9607427
DOI
10.3390/ph15101234
PII: ph15101234
Knihovny.cz E-zdroje
- Klíčová slova
- DNA/RNA damage, Sulfanyl-Sulfinyl-Sulfonyl groups, antiproliferative activity, cell cycle, synthesis of 4-thioalkylquinoline,
- Publikační typ
- časopisecké články MeSH
A series of 78 synthetic 7-chloro-(4-thioalkylquinoline) derivatives were investigated for cytotoxic activity against eight human cancer as well as 4 non-tumor cell lines. The results showed, with some exceptions, that sulfanyl 5-40 and sulfinyl 41-62 derivatives exhibited lower cytotoxicity for cancer cell lines than those of well-described sulfonyl N-oxide derivatives 63-82. As for compound 81, the most pronounced selectivity (compared against BJ and MRC-5 cells) was observed for human cancer cells from HCT116 (human colorectal cancer with wild-type p53) and HCT116p53-/- (human colorectal cancer with deleted p53), as well as leukemia cell lines (CCRF-CEM, CEM-DNR, K562, and K562-TAX), lung (A549), and osteosarcoma cells (U2OS). A good selectivity was also detected for compounds 73 and 74 for leukemic and colorectal (with and without p53 deletion) cancer cells (compared to MRC-5). At higher concentrations (5 × IC50) against the CCRF-CEM cancer cell line, we observe the accumulation of the cells in the G0/G1 cell phase, inhibition of DNA and RNA synthesis, and induction of apoptosis. In addition, X-ray data for compound 15 is being reported. These results provide useful scientific data for the development of 4-thioalkylquinoline derivatives as a new class of anticancer candidates.
Department of Chemical and Environmental Science University of Limerick V94 T9PX Limerick Ireland
Dirección de Investigación Universidad ECOTEC Km 13 5 Vía Samborondón Guayaquil 092302 Ecuador
Escuela de Medicina UEES Universidad Espíritu Santo Samborondón 092301 Ecuador
Institut Universitaire de France CEDEX 05 75231 Paris France
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Gupta S.C., Sung B., Prasad S., Webb L.J., Aggarwal B.B. Cancer drug discovery by repurposing: Teaching new tricks to old dogs. Trends Pharmacol. Sci. 2013;34:508–517. doi: 10.1016/j.tips.2013.06.005. PubMed DOI
Iqbal J., Abbasi B.A., Mahmood T., Kanwal S., Ali B., Shah S.A., Khalil A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017;7:1129–1150. doi: 10.1016/j.apjtb.2017.10.016. DOI
Al-Bari M.A.A. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother. 2015;70:1608–1621. doi: 10.1093/jac/dkv018. PubMed DOI PMC
Plantone D., Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: A mini-review. Clin. Drug Investig. 2018;38:653–671. doi: 10.1007/s40261-018-0656-y. PubMed DOI
Shukla A.M., Shukla A.W. Expanding horizons for clinical applications of chloroquine, hydroxychloroquine, and related structural analogues. Drugs Context. 2019;8:2019-9-1. doi: 10.7573/dic.2019-9-1. PubMed DOI PMC
Verbaanderd C., Maes H., Schaaf M.B., Sukhatme V.P., Pantziarka P., Sukhatme V., Agostinis P., Bouche G. Repurposing Drugs in Oncology (ReDO)–chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience. 2017;11:781. doi: 10.3332/ecancer.2017.781. PubMed DOI PMC
Samaras P., Tusup M., Nguyen-Kim T.D.L., Seifert B., Bachmann H., von Moos R., Knuth A., Pascolo S. Phase I study of a chloroquine-gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemother. Pharmacol. 2017;80:1005–1012. doi: 10.1007/s00280-017-3446-y. PubMed DOI
Afzal O., Kumar S., Haider R., Ali R., Kumar R., Jaggi M., Bawa S. A review of the anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 2015;97:871–910. doi: 10.1016/j.ejmech.2014.07.044. PubMed DOI
Blaney F.E., Raveglia L.F., Artico M., Cavagnera S., Dartois C., Farina C., Grugni M., Gagliardi S., Luttmann M.A., Martinelli M., et al. Stepwise modulation of neurokinin-3 and neurokinin-2 receptor affinity and selectivity in quinoline tachykinin receptor antagonists. J. Med. Chem. 2001;44:1675–1689. doi: 10.1021/jm000501v. PubMed DOI
Kaur R., Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem. 2021;215:113220. doi: 10.1016/j.ejmech.2021.113220. PubMed DOI PMC
Solomon V.R., Hua C., Lee H. Design and synthesis of chloroquine analogs with anti-breast cancer property. Eur. J. Med. Chem. 2010;45:3916–3923. doi: 10.1016/j.ejmech.2010.05.046. PubMed DOI
Raj R., Landb K.M., Kumar V. 4-Aminoquinoline-hybridization en route towards the development of rationally designed antimalarial agents. RSC Adv. 2015;5:82676–82698. doi: 10.1039/C5RA16361G. DOI
Salgueiro W.G., Xavier M.C., Duarte L.F., Câmara D.F., Fagundez D.A., Soares A.T., Perin G., Alves D., Avila D.S. Direct synthesis of 4-organylsulfenyl-7-chloro quinolines and their toxicological and pharmacological activities in Caenorhabditis elegans. Eur. J. Med. Chem. 2014;75:448–459. doi: 10.1016/j.ejmech.2014.01.037. PubMed DOI
De Souza M.V., Pais K.C., Kaiser C.R., Peralta M.A., Ferreira M.L., Lourenço M.C. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorg. Med. Chem. 2009;17:1474–1480. doi: 10.1016/j.bmc.2009.01.013. PubMed DOI
Matada B.S., Pattanashettar R., Yernale N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021;32:115973. doi: 10.1016/j.bmc.2020.115973. PubMed DOI
Mah S., Park J.H., Jung H.-Y., Ahn K., Choi S., Tae H.S., Jung K.H., Rho J.K., Lee J.C., Hong S.-S., et al. Identification of 4-phenoxyquinoline based inhibitors for L1196M mutant of anaplastic lymphoma kinase by structure-based design. J. Med. Chem. 2017;60:9205–9221. doi: 10.1021/acs.jmedchem.7b01039. PubMed DOI
Rodrigues J.R., Charris J., Ferrer R., Gamboa N., Ángel J., Nitzsche B., Hoepfner M., Lein M., Jung K., Abramjuk C. Effect of quinolinyl acrylate derivatives on prostate cancer in vitro and in vivo. Investig. New Drugs. 2012;30:1426–1433. doi: 10.1007/s10637-011-9716-3. PubMed DOI
Romero J.A., Acosta M.E., Gamboa N.D., Mijares M.R., Sanctis J.B., Charris J.E. Optimization of antimalarial, and anticancer activities of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate. Bioorg. Med. Chem. 2018;26:815–823. doi: 10.1016/j.bmc.2017.12.022. PubMed DOI
Ramírez H., Rodrigues J.R., Mijares M.R., De Sanctis J.B., Charris J.E. Synthesis and biological activity of 2-[2-(7-chloroquinolin-4-ylthio)-4-methylthiazol-5-yl]-N-phenylacetamide derivatives as antimalarial and cytotoxic agents. J. Chem. Res. 2020;44:305–314. doi: 10.1177/1747519819899073. DOI
Colmenarez C., Acosta M., Rodríguez M., Charris J. Synthesis and antimalarial activity of (S)-methyl-(7-chloroquinolin-4-ylthio) acetamidoalquilate derivatives. J. Chem. Res. 2020;44:161–166. doi: 10.1177/1747519819890559. DOI
Ramírez H., Fernandez E., Rodrigues J., Mayora S., Martínez G., Celis C., De Sanctis J.B., Mijares M., Charris J. Synthesis and antimalarial and anticancer evaluation of 7-chlorquinoline-4-thiazoleacetic derivatives containing aryl hydrazide moieties. Arch. Pharm. 2021;354:e2100002. doi: 10.1002/ardp.202100002. PubMed DOI
Kazi S.A., Kelso G.F., Harris S., Boysen R.I., Chowdhury J., Hearn M. Synthesis of quinoline thioethers as novel small molecule enhancers of monoclonal antibody production in mammalian cell culture. Tetrahedron. 2010;66:9461–9467. doi: 10.1016/j.tet.2010.09.020. DOI
Chitra S., Paul N., Muthusubramanian S., Manisankar P., Yogeeswari P., Sriram D. Synthesis of 3-heteroarylthioquinoline derivatives and their in vitro antituberculosis and cytotoxicity studies. Eur. J. Med. Chem. 2011;46:4897–4903. doi: 10.1016/j.ejmech.2011.07.046. PubMed DOI
Kim Y.H., Kauffman J.M., Foye W.O. Synthesis and Antileukemic Activity of 2-(2-Methylthio-2-aminovinyl)-1-methylquinolinium Iodides. J. Pharm. Sci. 1983;72:1356–1358. doi: 10.1002/jps.2600721132. PubMed DOI
Cai Z., Zhoua W., Sun L. Synthesis and HMG CoA reductase inhibition of 4-thiophenylquinolines as potential hypocholesterolemic agents. Bioorg. Med. Chem. 2007;15:7809–7829. doi: 10.1016/j.bmc.2007.08.044. PubMed DOI
Coimbra E.S., Antinarelli L.M., Silva N.P., Souza I.O., Meinel R.S., Rocha M.N., Soares R.P., da Silva A.D. Quinoline derivatives: Synthesis, leishmanicidal activity and involvement of mitochondrial oxidative stress as mechanism of action. Chem. Biol. Interact. 2016;260:50–57. doi: 10.1016/j.cbi.2016.10.017. PubMed DOI
Lukevics E., Abele E., Arsenyan P., Abele R., Rubina K., Shestakova I., Domracheva I., Vologdina V. Synthesis and cytotoxicity of silicon containing pyridine and quinoline sulfides. Met. Based Drugs. 2002;9:45–51. doi: 10.1155/MBD.2002.45. PubMed DOI PMC
Mól W., Matyja M., Filip B., Wietrzyk J., Boryczka S. Synthesis and antiproliferative activity in vitro of novel (2-butynyl)thioquinolines. Bioorg. Med. Chem. 2008;16:8136–8141. doi: 10.1016/j.bmc.2008.07.047. PubMed DOI
Neises B., Steglich W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Ed. 1978;17:522–524. doi: 10.1002/anie.197805221. DOI
Spek A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003;36:7–13. doi: 10.1107/S0021889802022112. DOI
MacRae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC
Jurášek M., Džubák P., Rimpelová S., Sedlák D., Konečný P., Frydrych I., Gurská S., Hajdúch M., Bogdanová K., Kolář M., et al. Trilobolide-steroid hybrids: Synthesis, cytotoxic and antimycobacterial activity. Steroids. 2017;117:97–104. doi: 10.1016/j.steroids.2016.08.011. PubMed DOI
Rimpelová S., Zimmermann T., Drašar P.B., Dolenský B., Bejček J., Kmoníčková E., Cihlárová P., Gurská S., Kuklíková L., Hajdúch M., et al. Steroid glycosides hyrcanoside and deglucohyrcanoside: On isolation, structural identification, and anticancer activity. Foods. 2021;10:136. doi: 10.3390/foods10010136. PubMed DOI PMC
Džubak P., Gurská S., Bogdanová K., Uhríková D., Kanjaková N., Combet S., Klunda T., Kolář M., Hajdúch M., Poláková M. Antimicrobial and cytotoxic activity of (thio)alkyl hexopyranosides, nonionic glycolipid mimetics. Carbohydr. Res. 2020;488:107905. doi: 10.1016/j.carres.2019.107905. PubMed DOI
Řehulka J., Vychodilová K., Krejčí P., Gurská S., Hradil P., Hajdúch M., Džubák P., Hlaváč J. Fluorinated derivatives of 2-phenyl-3-hydroxy-4(1H)-quinolinone as tubulin polymerization inhibitors. Eur. J. Med. Chem. 2020;192:112176. doi: 10.1016/j.ejmech.2020.112176. PubMed DOI
Sasaki K., Tsuno N.H., Sunami E., Tsurita G., Kawai K., Okaji Y., Nishikawa T., Shuno Y., Hongo K., Hiyoshi M., et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer. 2010;10:370. doi: 10.1186/1471-2407-10-370. PubMed DOI PMC
Monma H., Iida Y., Moritani T., Okimoto T., Tanino R., Tajima Y., Harada M. Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS ONE. 2018;13:e0193990. doi: 10.1371/journal.pone.0193990. PubMed DOI PMC
Hu T., Li P., Luo Z., Chen X., Zhang J., Wang C., Chen P., Dong Z. Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo. Oncol. Rep. 2016;35:43–49. doi: 10.3892/or.2015.4380. PubMed DOI PMC
Jia L., Wang J., Wu T., Wu J., Ling J., Cheng B. In vitro and in vivo antitumor effects of chloroquine on oral squamous cell carcinoma. Mol. Med. Rep. 2017;16:5779–5786. doi: 10.3892/mmr.2017.7342. PubMed DOI PMC
Jiang P., Zhao Y., Shi W., Deng X., Xie G., Mao Y., Li Z., Zheng Y., Yang S., Wei Y. Cell Growth Inhibition, G2/M Cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell Physiol. Biochem. 2008;22:431–440. doi: 10.1159/000185488. PubMed DOI
Bruker . SMART. Bruker AXS Inc.; Madison, WI, USA: 2012.
Bruker . SAINT. Bruker AXS Inc.; Madison, WI, USA: 2012.
Sheldrick G.M. IUCr, Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI