New Derivatives of Caracasine Acid with Anti-Leukemic Activity and Limited Effectiveness in Spheroid Cultures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20230PGP99
Venezuelan Ministry of Science and Technology and FONACIT Project
LM2023052
Czech National Node to the European Infrastructure for Translational Medicine
LM2023052
CZ-OPENSCREEN
LM2023033
Czech biobank network
. LX22NPO5102
National Institute for Cancer Research Program EXCELES
TN02000109
Technology Agency of the Czech Republic
CZ.02.01.01/00/22_008/0004644
Ministry of Education, Youth and Sports of the Czech Republic. SAVAGE Project
PubMed
40732330
PubMed Central
PMC12298629
DOI
10.3390/ph18071043
PII: ph18071043
Knihovny.cz E-zdroje
- Klíčová slova
- caracasine acid derivatives, cytotoxicity, leukemia, spheroids,
- Publikační typ
- časopisecké články MeSH
Background: The natural compounds caracasine acid (1) and its methyl ester, caracasine (2), isolated from the flowers of Croton micans, are effective against several tumor cell lines. Five semi-synthetic derivatives (3-7) were synthesized based on these structures. The study aimed to evaluate the cytotoxic activity of these compounds in 2D and spheroid cultures. Methods: The assays were performed in a panel of 12 human cell lines, 8 cancer and 4 normal cell lines. The compounds were evaluated on spheroids derived from the HCT116, HCT116 p53 knockout (p53KO), A549, and U2OS cell lines, as well as mixed spheroids comprising tumor cells and normal fibroblasts. Results: The parent compound (1), the natural ester (2), and two novel derivatives, the anhydride (7) and the cyclohexanol ester (3), demonstrated cytotoxicity against different leukemic cells and HCT116, HCT116 p53 knockout (p53KO), A549, and U2OS cell lines in conventional two-dimensional cultures. Peroxide formation, however, was significantly higher in leukemic cell lines (p < 0.01) in 2D culture as compared with the other tumor cell lines. The compounds did not induce cell death in spheroid cultures; caspases 8, 9, and 3 were not activated upon treatment. Conclusions: These findings indicate potential applications in leukemia treatment, albeit with limited efficacy against solid tumors.
Zobrazit více v PubMed
Coy-Barrera C.A., Galvis L., Rueda M.J., Torres-Cortés S.A. The Croton genus (Euphorbiaceae) and its richness in chemical constituents with a potential range of applications. Phytomed. Plus. 2025;5:100746. doi: 10.1016/j.phyplu.2025.100746. DOI
Guerrero-Solano J.A., Urrutia-Hernández T.A., Flores-Bazán T., Casco-Gallardo K.I., Coutiño-Laguna B.d.C., Vega-Cabrera N.V., Jaramillo-Morales O.A. Antinociceptive potential of Croton genus: A systematic review. Future Pharmacol. 2024;4:853–872. doi: 10.3390/futurepharmacol4040045. DOI
Obende S.O., Ochieng C.O., Shikanga E.A., Cruz J.N., Santos C.B.R., Kimani N.M. Croton’s therapeutic promise: A review of its phytochemistry and critical computacional ADME/Tox analysis. S. Afr. J. Bot. 2024;171:648–672. doi: 10.1016/j.sajb.2024.06.031. DOI
Espinoza-Hernández F.A., Moreno-Vargas A.D., Andrade-Cetto A. Diabetes-Related Mechanisms of Action Involved in the Therapeutic Effect of Croton Species: A Systematic Review. Plants. 2023;12:2014. doi: 10.3390/plants12102014. PubMed DOI PMC
Terefe E.M., Okalebo F.A., Derese S., Langat M.K., Mas-Claret E., Qureshi K.A., Jaremko M., Muriuki J. Anti-HIV Ermiasolides from Croton megalocarpus. Molecules. 2022;27:7040. doi: 10.3390/molecules27207040. PubMed DOI PMC
Terefe E.M., Okalebo F.A., Derese S., Muruki J., Batiha G.E.-S. In Vitro Cytotoxicity and Anti-HIV Activity of Crude Extracts of Croton macrostachyus, Croton megalocarpus and Croton dichogamus. J. Exp. Pharmacol. 2021;13:971–979. doi: 10.2147/JEP.S335104. PubMed DOI PMC
Nath R., Roy S., De B., Choudhury D. Anticancer and antioxidant activity of Croton: A review. Int. J. Pharm. Pharm. Sci. 2013;5:63–70.
Salatino A., Salatino M.L.F., Negri G. Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae) J. Braz. Chem. Soc. 2007;18:11–33. doi: 10.1590/S0103-50532007000100002. DOI
Wu X.A., Zhao Y.M. Advance on chemical composition and pharmacological action of Croton L. Nat. Prod. Res. Dev. 2004;16:467–472.
Xu W.H., Liu W.Y., Liang Q. Chemical constituents from Croton species and their biological activities. Molecules. 2018;23:2333. doi: 10.3390/molecules23092333. PubMed DOI PMC
Fu Y., Li S., Zu Y., Yang G., Yang Z., Luo M., Jiang S., Wink M., Efferth T. Medicinal chemistry of paclitaxel and its analogues. Curr. Med. Chem. 2009;16:3966–3985. doi: 10.2174/092986709789352277. PubMed DOI
Qiu C.L., Ye Z.N., Yan B.C., Hu K., Yang J., Yang X.Z., Li H.M., Li X.N., Sun H.D., Puno P.T. Structurally diverse diterpenoids from Isodon oresbius and their bioactivity. Bioorg. Chem. 2022;124:105811. doi: 10.1016/j.bioorg.2022.105811. PubMed DOI
García P.B., de Oliveira A.B., Batista R. Occurrence, Biological Activities and Synthesis of Kaurane Diterpenes and their Glycosides. Molecules. 2007;12:455–483. doi: 10.3390/12030455. PubMed DOI PMC
Lee J.-E., Thuy N.T.T., Lee Y., Cho N., Yoo H.M. An Antiproliferative ent-Kaurane Diterpen Isolated from the Roots of Mallotus japonicus Induced Apoptosis in Leukemic Cells. Nat. Prod. Commun. 2020;15:897496. doi: 10.1177/1934578x19897496. DOI
Kibet S., Kimani N.M., Mwanza S.S., Mudalungu C.M., Santos C.B.R., Tanga C.M. Unveiling the Potential of Ent-Kaurane Diterpenoids: Multifaceted Natural Products for Drug Discovery. Pharmaceuticals. 2024;17:510. doi: 10.3390/ph17040510. PubMed DOI PMC
Trang N.T.K. The Review on Biological Activities of Ent-Kaurane Diterpenoids extracted from Croton tonkinensis. Thai Binh J. Med. Pharm. 2024;14:23–28. doi: 10.62685/tbjmp.2024.14.04. DOI
Hai Q.-X., Hu K., Chen S.-P., Fu Y.-Y., Li X.-N., Sun H.-D., He H.-P., Puno P.-T. Silvaticusins A–D: ent-kaurane diterpenoids and a cyclobutane-containing ent-kaurane dimer from Isodon silvaticus. Nat. Prod. Bioprospect. 2024;14:45. doi: 10.1007/s13659-024-00465-9. PubMed DOI PMC
Ibrahim T.S., Khongorzul P., Muyaba M., Alolga R.N. Ent-kaurane diterpenoids from the Annonaceae family: A review of research progress and call for further research. Front. Pharmacol. 2023;14:1227574. doi: 10.3389/fphar.2023.1227574. PubMed DOI PMC
Luo Y., Wang Z., Li Y., Zhang L. Longikaurin A, a natural ent-kaurane, suppresses proliferation, invasion and tumorigenicity in oral squamous cell carcinoma cell by via inhibiting PI3K/Akt pathway in vitro and in vivo. J. Cancer. 2025;16:708–719. doi: 10.7150/jca.102125. PubMed DOI PMC
Huang H.-T., Liaw C.-C., Lin Y.-C., Liao G.-Y., Chao C.-H., Chiou C.-T., Kuo Y.-H., Lee K.-T. New Diterpenoids from Mesona procumbens with Antiproliferative Activities Modulate Cell Cycle Arrest and Apoptosis in Human Leukemia Cancer Cells. Pharmaceuticals. 2021;14:1108. doi: 10.3390/ph14111108. PubMed DOI PMC
de Sousa I.P., Sousa Teixeira M.V., Jacometti Cardoso Furtado N.A. An Overview of Biotransformation and Toxicity of Diterpenes. Molecules. 2018;23:1387. doi: 10.3390/molecules23061387. PubMed DOI PMC
Tsichritzis F., Jakupovic J. Diterpenes and other Constituents from Relhania species. Phytochemistry. 1990;29:3173–3187. doi: 10.1016/0031-9422(90)80181-F. DOI
Li H., Jiao R., Mu M., Xu S., Li X., Wang X., Li Z., Xu J., Hua H., Li D. Bioactive Natural Spirolactone-Type 6,7-seco-ent-Kaurane Diterpenoids and Synthetic Derivatives. Molecules. 2018;23:2914. doi: 10.3390/molecules23112914. PubMed DOI PMC
Fan R.-Z., Chen L., Su T., Li W., Huang J.-L., Sang J., Tang G.-H., Yin S. Discovery of 8,9-seco-ent-Kaurane Diterpenoids as Potential Leads for the Treatment of Triple-Negative Breast Cancer. J. Med. Chem. 2021;64:9926–9942. doi: 10.1021/acs.jmedchem.1c00166. PubMed DOI
Sun H.-D., Huang S.-H., Han Q.-B. Diterpenoids from Isodon species and their biological activities. Nat. Prod. Rep. 2006;23:673–698. doi: 10.1039/b604174d. PubMed DOI
Ding G., Fei J., Wang J., Xie Y., Li R., Gong N., Lv Y., Yu C., Zou Z. Fimbriatols A–J, Highly Oxidized ent-Kaurane Diterpenoids from Traditional Chinese Plant Flickingeria fimbriata (B1.) Hawkes. Sci. Rep. 2016;6:30560. doi: 10.1038/srep30560. PubMed DOI PMC
Mora S., Castro V., Poveda L., Chavarr M., Murillo R. Two New 3,4-Seco-ent-kaurenes and Other Constituents from the Costa Rican Endemic Species Croton megistocarpus. Helv. Chim. Acta. 2011;94:1888–1892. doi: 10.1002/hlca.201100127. DOI
Suárez A.I., Chavez K., Delle Monache F., Vasquez L., Orsini G., Compagnone R.S. New 3,4-seco-entkaurenes from Croton caracasana Flowers. Nat. Prod. Comm. 2008;3:319–322. doi: 10.1177/1934578X0800300303. DOI
Fu Y.-Y., Hu K., Hou S.-Y., Yan B.-C., Li X.-N., Yang X.-Z., Sun H.-D., Puno P.-T. 8,14-seco-ent-Kaurane Diterpenoids from Isodon glutinosus: Enol-Enol Tautomerism and Antitumor Activity. Org. Chem. Front. 2025 doi: 10.1039/D5QO00356C. DOI
Mateu E., Chávez K., Riina R., Compagnone R.S., Delle Monache F., Suárez A.I. New 3,4-Seco-ent-kaurene Dimers from Croton micans. Nat. Prod. Comm. 2012;7:5–8. doi: 10.1177/1934578X1200700104. PubMed DOI
Suárez A.I., Chávez K., Mateu E., Compagnone R.S., Muñoz A., Sojo F., Arvelo F., Mijares M., De Sanctis J.B. Cytotoxic activity of seco-ent-kaurenes from Croton caracasana on human cancer cell lines. Nat. Prod. Comm. 2009;4:1547–1550. PubMed
Martínez G.P., Mijares M.R., Chávez K., Suárez A.I., Compagnone R.S., Chirinos P., De Sanctis J.B. Caracasine acid, an ent-3,4-seco-kaurene, promotes apoptosis and cell differentiation through NFkB signal pathway inhibition in leukemia cells. Eur. J. Pharmacol. 2019;862:172624. doi: 10.1016/j.ejphar.2019.172624. PubMed DOI
Martínez G.P., Mijares M.R., Chávez K., Chirinos P., Suárez A.I., De Sanctis J.B. Caracasine, an ent-kaurane diterpene with proapoptotic and pro-differentiator activity in human leukemia cell lines. Anticancer Agents Med. Chem. 2023;23:1145–1155. doi: 10.2174/1871520622666220415105615. PubMed DOI
Chávez K., Compagnone R.S., Alvarez A., Figarella K., Galindo-Castro I., Marsicobrete S., Trivino J., Arocha I., Taddei A., Orsini G., et al. Synthesis and biological evaluation of caracasine acid derivatives. Biorg. Med. Chem. 2015;23:3687–3695. doi: 10.1016/j.bmc.2015.04.015. PubMed DOI
Gutiérrez J.E., Fernandez-Moreira E., Rodríguez M.A., Mijares M.R., De Sanctis J.B., Gurská S., Džubák P., Hajdůch M., Bruno-Colmenarez J., Rojas L., et al. Novel 7-Chloro-(4-thioalkylquinoline) Derivatives: Synthesis and Antiproliferative Activity through Inducing Apoptosis and DNA/RNA Damage. Pharmaceuticals. 2022;15:1234. doi: 10.3390/ph15101234. PubMed DOI PMC
Jian Z.-P., Zou B.-H., Li X.-J., Liu J.-J., Shen L., Wu J. Ent-kauranes from the Chinese Excoecaria agallocha L. and NF-κB inhibitory activity. Fitoterapia. 2019;133:159–170. doi: 10.1016/j.fitote.2019.01.007. PubMed DOI
Htwe S.S., Harrington H., Knox A., Rose F., Aylott J., Haycock J.W., Ghaemmaghami A.M. Investigating NF-κB signaling in lung fibroblasts in 2D and 3D culture systems. Respir. Res. 2015;16:144. doi: 10.1186/s12931-015-0302-7. PubMed DOI PMC
Zhang L., Jin X. Nano and liposome cancer chemotherapy: A review of advances in drug delivery with applications. Int. J. Clin. Pharmacol. Ther. 2025;63:208–216. doi: 10.5414/CP204715. PubMed DOI
Figueroa D., Asaduzzaman M., Young F. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2′,7′-dichlorofluorescin diacetate (DCFDA) assay. Pt 1J. Pharmacol. Toxicol. Method. 2018;94:26–33. doi: 10.1016/j.vascn.2018.03.007. PubMed DOI
Miyazato H., Taira J., Ueda K. Hydrogen peroxide derived from marine peroxy sesquiterpenoids induces apoptosis in HCT116 human colon cancer cells. Bioorg. Med. Chem. Lett. 2016;26:4641–4644. doi: 10.1016/j.bmcl.2016.08.057. PubMed DOI
Das V., Fürst T., Gurská S., Džubák P., Hajdúch M. Evaporation-reducing Culture Condition Increases the Reproducibility of Multicellular Spheroid Formation in Microtiter Plates. J. Vis. Exp. 2017;7:55403. doi: 10.3791/55403. PubMed DOI PMC
Muñoz-Garcia J., Jubelin C., Loussouarn A., Goumard M., Griscom L., Renodon-Cornière A., Heymann M.F., Heymann D. In vitro three-dimensional cell cultures for bone sarcomas. J. Bone Oncol. 2021;30:100379. doi: 10.1016/j.jbo.2021.100379. PubMed DOI PMC