Mitotic Poisons in Research and Medicine

. 2020 Oct 12 ; 25 (20) : . [epub] 20201012

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33053667

Cancer is one of the greatest challenges of the modern medicine. Although much effort has been made in the development of novel cancer therapeutics, it still remains one of the most common causes of human death in the world, mainly in low and middle-income countries. According to the World Health Organization (WHO), cancer treatment services are not available in more then 70% of low-income countries (90% of high-income countries have them available), and also approximately 70% of cancer deaths are reported in low-income countries. Various approaches on how to combat cancer diseases have since been described, targeting cell division being among them. The so-called mitotic poisons are one of the cornerstones in cancer therapies. The idea that cancer cells usually divide almost uncontrolled and far more rapidly than normal cells have led us to think about such compounds that would take advantage of this difference and target the division of such cells. Many groups of such compounds with different modes of action have been reported so far. In this review article, the main approaches on how to target cancer cell mitosis are described, involving microtubule inhibition, targeting aurora and polo-like kinases and kinesins inhibition. The main representatives of all groups of compounds are discussed and attention has also been paid to the presence and future of the clinical use of these compounds as well as their novel derivatives, reviewing the finished and ongoing clinical trials.

Zobrazit více v PubMed

WHO. [(accessed on 7 October 2020)]; Available online: https://www.who.int/news-room/fact-sheets/detail/cancer.

Dumbrava E.I., Meric-Bernstam F. Personalized cancer therapy-leveraging a knowledge base for clinical decision-making. Cold Spring Harb. Mol. Case Stud. 2018;4:a001578. doi: 10.1101/mcs.a001578. PubMed DOI PMC

WHO. [(accessed on 7 October 2020)]; Available online: https://www.who.int/medicines/publications/essentialmedicines/en/

Cahill D.P., Lengauer C., Yu J., Riggins G.J., Willson J.K., Markowitz S.D., Kinzler K.W., Vogelstein B. Mutations of mitotic checkpoint genes in human cancers. Nature. 1998;392:300–303. doi: 10.1038/32688. PubMed DOI

Chen X., Widmer L.A., Stangier M.M., Steinmetz M.O., Stelling J., Barral Y. Remote control of microtubule plus-end dynamics and function from the minus-end. eLife. 2019;8:e48627. doi: 10.7554/eLife.48627. PubMed DOI PMC

Li C., Li J., Goodson H.V., Alber M.S. Microtubule dynamic instability: The role of cracks between protofilaments. Soft Matter. 2014;10:2069–2080. doi: 10.1039/C3SM52892H. PubMed DOI

Strothman C., Farmer V., Arpağ G., Rodgers N., Podolski M., Norris S., Ohi R., Zanic M. Microtubule minus-end stability is dictated by the tubulin off-rate. J. Cell Biol. 2019;218:2841–2853. doi: 10.1083/jcb.201905019. PubMed DOI PMC

Ferro L.S., Can S., Turner M.A., ElShenawy M.M., Yildiz A. Kinesin and dynein use distinct mechanisms to bypass obstacles. eLife. 2019;8:e48629. doi: 10.7554/eLife.48629. PubMed DOI PMC

Stearns T., Evans L., Kirschner M. γ-Tubulin is a highly conserved component of the centrosome. Cell. 1991;65:825–836. doi: 10.1016/0092-8674(91)90390-K. PubMed DOI

Findeisen P., Mühlhausen S., Dempewolf S., Hertzog J., Zietlow A., Carlomagno T., Kollmar M. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol. Evol. 2014;6:2274–2288. doi: 10.1093/gbe/evu187. PubMed DOI PMC

Ross I., Clarissa C., Giddings T.H., Jr., Winey M. ε-tubulin is essential in Tetrahymena thermophila for the assembly and stability of basal bodies. J. Cell Sci. 2013;126:3441–3451. doi: 10.1242/jcs.128694. PubMed DOI PMC

Garreau de Loubresse N., Ruiz F., Beisson J., Klotz C. Role of delta-tubulin and the C-tubule in assembly of Paramecium basal bodies. BMC Cell Biol. 2001;2:4. doi: 10.1186/1471-2121-2-4. PubMed DOI PMC

Song Y., Brady S.T. Post-translational modifications of tubulin: Pathways to functional diversity of microtubules. Trends Cell Biol. 2015;25:125–136. doi: 10.1016/j.tcb.2014.10.004. PubMed DOI PMC

Clinical Trials. [(accessed on 13 July 2020)]; Available online: http://clinicaltrials.gov.

Hartung E.F. History of the use of colchicum and related medicaments in gout; with suggestions for further research. Ann. Rheum. Dis. 1954;13:190–200. doi: 10.1136/ard.13.3.190. PubMed DOI PMC

Graham W., Roberts J.B. Intravenous colchicine in the management of gouty arthritis. Ann. Rheum. Dis. 1953;12:16–19. doi: 10.1136/ard.12.1.16. PubMed DOI PMC

Eigsti O.J., Dustin P., Jr., Gay-winn N. On the discovery of the action of colchicine on mitosis in 1889. Science. 1949;110:692. doi: 10.1126/science.110.2869.692. PubMed DOI

Spasevska I., Ayoub A.T., Winter P., Preto J., Wong G.K.-S., Dumontet C., Tuszynski J.A. Modeling the Colchicum autumnale tubulin and a comparison of its interaction with colchicine to human tubulin. Int. J. Mol. Sci. 2017;18:1676. doi: 10.3390/ijms18081676. PubMed DOI PMC

Bhattacharyya B., Panda D., Gupta S., Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med. Res. Rev. 2008;28:155–183. doi: 10.1002/med.20097. PubMed DOI

Ateş F.B., Özmen N., Sezginer E.K., Kurt E.E. Effects of colchicine on cell cycle arrest and MMP-2 mRNA expression in MCF 7 breast adenocarcinoma cells. Turk. Bull. Hyg. Exp. Biol. 2018;75:239–244. doi: 10.5505/TurkHijyen.2018.22755. DOI

McCarty D.J. Urate crystals, inflammation, and colchicine. Arthritis Rheum. 2008;58:S20–S24. doi: 10.1002/art.23069. PubMed DOI

Paschke S., Weidner A.F., Paust T., Marti O., Beil M., Ben-Chetrit E. Technical advance: Inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. J. Leukoc. Biol. 2013;94:1091–1096. doi: 10.1189/jlb.1012510. PubMed DOI

Dinarello C.A., Wolff S.M., Goldfinger S.E., Dale D.C., Alling D.W. Colchicine therapy for familial mediterranean fever. A double-blind trial. N. Engl. J. Med. 1974;291:934–937. doi: 10.1056/NEJM197410312911804. PubMed DOI

Filkenstein Y., Aks S.E., Hutson J.R., Juurlink D.N., Nguyen P., Dubnov-Raz G., Pollak U., Koren G., Bentur Y. Colchicine poisoning: The dark side of an ancient drug. Clin. Toxicol. 2010;48:407–414. PubMed

Bhattacharya S., Das A., Datta S., Ganguli A., Chakrabarti G. Colchicine induces autophagy and senescence in lung cancer cells at clinically admissible concentration: Potential use of colchicine in combination with autophagy inhibitor in cancer therapy. Tumor Biol. 2016;37:10653–10664. doi: 10.1007/s13277-016-4972-7. PubMed DOI

Majcher U., Klejborowska G., Kaik M., Maj E., Wietrzyk J., Moshari M., Preto J., Tuszynski J.A., Huczyński A. Synthesis and biological evaluation of novel triple-modified colchicine derivatives as potent tubulin-targeting anticancer agents. Cells. 2018;7:216. doi: 10.3390/cells7110216. PubMed DOI PMC

Kang G.J., Getahun Z., Muzaffar A., Brossi A., Hamel E. N-acetylcolchinol O-methyl ether and thiocolchicine, potent analogs of colchicine modified in the C ring. Evaluation of the mechanistic basis for their enhanced biological properties. J. Biol. Chem. 1990;265:10255–10259. PubMed

Yasobu N., Kitajima M., Kogure N., Shishido Y., Matsuzaki T., Nagaoka M., Takayama H. Design, synthesis, and antitumor activity of 4-halocolchicines and their pro-drugs activated by cathepsin B. ACS Med. Chem. Lett. 2011;2:348–352. doi: 10.1021/ml100287y. PubMed DOI PMC

Larocque K., Ovadje P., Djurdjevic S., Mehdi M., Green J., Pandey S. Novel analogue of colchicine induces selective pro-death autophagy and necrosis in human cancer cells. PLoS ONE. 2014;9:e87064. doi: 10.1371/journal.pone.0087064. PubMed DOI PMC

Davis P.D., Dougherty G.J., Blakey D.C., Galbraith S.M., Tozer G.M., Holder A.L., Naylor M.A., Nolan J., Stratford M.R.L., Chaplin D.J., et al. ZD6126, A novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res. 2002;62:7247–7253. PubMed

Gracheva I.A., Svirshchevskaya E.V., Faerman V.I., Beletskaya I.P., Fedorov A.Y. Synthesis and antiproliferative properties of bifunctional allocolchicine derivatives. Synthesis. 2018;50:2753–2760.

Lippert J.W., 3rd Vascular disrupting agents. Bioorg. Med. Chem. 2007;15:605–615. doi: 10.1016/j.bmc.2006.10.020. PubMed DOI

Marzo-Mas A., Falomir E., Murga J., Carda M., Marco J.A. Effects on tubulin polymerization and down-regulation of c-Myc, hTERT and VEGF genes by colchicine haloacetyl and haloaroyl derivatives. Eur. J. Med. Chem. 2018;150:591–600. doi: 10.1016/j.ejmech.2018.03.019. PubMed DOI

Cortese M., Goellner S., Acosta E.G., Neufeldt C.J., Oleksiuk O., Lampe M., Haselmann U., Funaya C., Schieber N., Ronchi P., et al. Ultrastructural characterization of zika virus replication factories. Cell Rep. 2017;18:2113–2123. doi: 10.1016/j.celrep.2017.02.014. PubMed DOI PMC

Richter M., Boldescu V., Graf D., Streicher F., Dimoglo A., Bartenschlager R., Klein C.D. Synthesis, biological evaluation, and molecular docking of combretastatin and colchicine derivatives and their hCE1-activated prodrugs as antiviral agents. ChemMedChem. 2019;14:469–483. doi: 10.1002/cmdc.201800641. PubMed DOI

Choi M.Y., Wee Y.M., Kim Y.H., Shin S., Yoo S.E., Han D.J. Novel colchicine derivatives enhance graft survival after transplantation via suppression of T-cell differentiation and activity. J. Cell Biochem. 2019;120:12436–12449. doi: 10.1002/jcb.28510. PubMed DOI

Van Tamelen E.E., Spencer T.A., Jr., Allen D.S., Jr., Orvis R.L. The total synthesis of colchicine. J. Am. Chem. Soc. 1959;81:6341–6342. doi: 10.1021/ja01532a070. DOI

Schreiber J., Leimgruber W., Pesaro M., Schudel P., Eschenmoser A. Synthese des colchicins. Angew. Chem. 1959;71:637–640. doi: 10.1002/ange.19590712002. DOI

Chen B., Liu X., Hu Y.J., Zhang D.M., Deng L., Lu J., Min L., Ye W.C., Li C.C. Enantioselective total synthesis of (−)-colchicine, (+)-demecolcinone and metacolchicine: Determination of the absolute configurations of the latter two alkaloids. Chem. Sci. 2017;8:4961–4966. doi: 10.1039/C7SC01341H. PubMed DOI PMC

Pandey D.K., Banik R.M. Optimization of extraction conditions for colchicine from Gloriosa superba tubers using response surface methodology. J. Agric. Technol. 2012;8:1301–1315.

Kefi S. A novel approach for production of colchicine as a plant secondary metabolite by in vitro plant cell and tissue cultures. J. Agric. Sci. Technol. A. 2018;8:121–128.

Sivakumar G., Alba K., Phillips G.C. Biorhizome: A biosynthetic platform for colchicine biomanufacturing. Front. Plant Sci. 2017;8:1137. doi: 10.3389/fpls.2017.01137. PubMed DOI PMC

Wani M.C., Taylor H.L., Wall M.E., Coggon P., McPhail A.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971;93:2325–2327. doi: 10.1021/ja00738a045. PubMed DOI

Parness J., Horwitz S.B. Taxol binds to polymerized tubulin in vitro. J. Cell Biol. 1981;91:479–487. doi: 10.1083/jcb.91.2.479. PubMed DOI PMC

Jordan M.A., Toso R.J., Thrower D., Wilson L. Mechanism of mitotic block and inhibition of cell-proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. USA. 1993;90:9552–9556. doi: 10.1073/pnas.90.20.9552. PubMed DOI PMC

Ozols R.F., Bundy B.N., Greer B.E., Fowler J.M., Clarke-Pearson D., Burger R.A., Mannel R.S., DeGeest K., Hartenbach E.M., Baergen R., et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A gynecologic oncology group study. J. Clin. Oncol. 2003;21:3194–3200. doi: 10.1200/JCO.2003.02.153. PubMed DOI

Weiss R.B., Donehower R.C., Wiernik P.H., Ohnuma T., Gralla R.J., Trump D.L., Baker J.R., Jr., Van Echo D.A., Von Hoff D.D., Leyland-Jones B. Hypersensitivity reactions from taxol. J. Clin. Oncol. 1990;8:1263–1268. doi: 10.1200/JCO.1990.8.7.1263. PubMed DOI

Miele E., Spinelli G.P., Miele E., Tomao F., Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine. 2009;4:99–105. PubMed PMC

Du X., Yin S., Xu L., Ma J., Yu H., Wang G., Li J. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr. Polym. 2020;229:115484. doi: 10.1016/j.carbpol.2019.115484. PubMed DOI

Zhao M., Li H., Fan L., Ma Y., Gong H., Lai W., Fang Q., Hu Z. Quantitative proteomic analysis to the first commercialized liposomal paclitaxel nano-platform Lipusu revealed the molecular mechanism of the enhanced anti-tumor effect. Artif. Cells Nanomed. Biotechnol. 2018;46:S147–S155. doi: 10.1080/21691401.2018.1489822. PubMed DOI

Ranade A.A., Joshi D.A., Phadke G.K., Patil P.P., Kasbekar R.B., Apte T.G., Dasare R.R., Mengde S.D., Parikh P.M., Bhattacharyya G.S., et al. Clinical and economic implications of the use of nanoparticle paclitaxel (Nanoxel) in India. Ann. Oncol. 2013;24:v6–v12. doi: 10.1093/annonc/mdt322. PubMed DOI

Galletti E., Magnani M., Renzulli M.L., Botta M. Paclitaxel and docetaxel resistance: Molecular mechanisms and development of new generation taxanes. ChemMedChem. 2007;2:920–942. doi: 10.1002/cmdc.200600308. PubMed DOI

Clarke S.J., Rivory L.P. Clinical pharmacokinetics of docetaxel. Clin. Pharmacokinet. 1999;36:99–114. doi: 10.2165/00003088-199936020-00002. PubMed DOI

Valero V., Jones S.E., Von Hoff D.D., Booser D.J., Mennel R.G., Ravdin P.M., Holmes F.A., Rahman Z., Schottstaedt M.W., Erban J.K., et al. A phase II study of docetaxel in patients with paclitaxel-resistant metastatic breast cancer. J. Clin. Oncol. 1998;16:3362–3368. doi: 10.1200/JCO.1998.16.10.3362. PubMed DOI

Leonelli F., La Bella A., Migneco L.M., Bettolo R.M. Design, synthesis and applications of hyaluronic acid-paclitaxel bioconjugates. Molecules. 2008;13:360–378. doi: 10.3390/molecules13020360. PubMed DOI PMC

Safavy A., Raisch K.P., Khazaeli M.B., Buchsbaum D.J., Bonner J.A. Paclitaxel derivatives for targeted therapy of cancer: Toward the development of smart taxanes. J. Med. Chem. 1999;42:4919–4924. doi: 10.1021/jm990355x. PubMed DOI

Nakamura J., Nakajima N., Matsumura K., Hyon S.H. Water-soluble taxol conjugates with dextran and targets tumor cells by folic acid immobilization. Anticancer Res. 2010;30:903–909. PubMed

Darmostuk M., Rimpelova S., Gbelcova H., Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol. Adv. 2015;33:1141–1161. doi: 10.1016/j.biotechadv.2015.02.008. PubMed DOI

Li F., Lu J., Liu J., Liang C., Wang M., Wang L., Li D., Yao H., Zhang Q., Wen J., et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat. Commun. 2017;8:1390. doi: 10.1038/s41467-017-01565-6. PubMed DOI PMC

Zhang C., Zhang S., Zhi D., Zhao Y., Cui S., Cui J. Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy. Colloid Surf. A-Physicochem. Eng. Asp. 2020;585:124054. doi: 10.1016/j.colsurfa.2019.124054. DOI

Lee J., Chae S.W., Ma L.J., Lim S.Y., Alnajjar S., Choo H.Y.P., Lee H.J., Rhie S.J. Pharmacokinetic alteration of paclitaxel by ferulic acid derivative. Pharmaceutics. 2019;11:593. doi: 10.3390/pharmaceutics11110593. PubMed DOI PMC

Kubo T., Nogami N., Bessho A., Morita A., Ikeo S., Yokoyama T., Ishihara M., Honda T., Fujimoto N., Murakami S., et al. Phase II trial of carboplatin, nab-paclitaxel and bevacizumab for advanced non-squamous non-small cell lung cancer (CARNAVAL study; TORG1424/OLCSG1402) Ann. Oncol. 2019;30:ix172–ix173. doi: 10.1093/annonc/mdz437.037. DOI

Redondo A., Colombo N., Dreosti L.M., McCormack M., Nogeira Rodrigues A., Scambia G., Roszak A., Donica M., Ulker B., González Martín A. Primary results from CECILIA, a global single-arm phase II study evaluating bevacizumab (BEV), carboplatin (C) and paclitaxel (P) for advanced cervical cancer (aCC) Ann. Oncol. 2019;30:v403–v434. doi: 10.1093/annonc/mdz250.061. PubMed DOI

González Martín A., Oza A.M., Embleton A.C., Pfisterer J., Ledermann J.A., Pujade-Lauraine E., Kristensen G., Bertrand M.A., Beale P., Cervantes A., et al. ICON7 investigators. Exploratory outcome analyses according to stage and/or residual disease in the ICON7 trial of carboplatin and paclitaxel with or without bevacizumab for newly diagnosed ovarian cancer. Gynecol. Oncol. 2019;152:53–60. doi: 10.1016/j.ygyno.2018.08.036. PubMed DOI PMC

El-Sayed E.R., Ahmed A.S., Hassan I.A., Ismaiel A.A., El-Din A.A.K. Strain improvement and immobilization technique for enhanced production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima. Appl. Microbiol. Biotechnol. 2019;103:8923–8935. doi: 10.1007/s00253-019-10129-1. PubMed DOI

Holton R.A., Somoza C., Kim H.B., Liang F., Biediger R.J., Boatman D., Shindo M., Smith C.C., Kim S., Nadizadeh H., et al. First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc. 1994;116:1597–1598. doi: 10.1021/ja00083a066. DOI

Nicolaou K.C., Yang Z., Liu J.J., Ueno H., Nantermet P.G., Guy R.K., Claiborne C.F., Renaud J., Couladouros E.A., Paulvannan K., et al. Total synthesis of taxol. Nature. 1994;367:630–634. doi: 10.1038/367630a0. PubMed DOI

Danishefsky S.J., Masters J.J., Young W.B., Link J.T., Snyder L.B., Magee T.V., Jung D.K., Isaacs R.C.A., Bornmann W.G., Alaimo C.A., et al. Total synthesis of baccatin III and taxol. J. Am. Chem. Soc. 1996;118:2843–2859. doi: 10.1021/ja952692a. DOI

Wender P.A., Badham N.F., Conway S.P., Floreancig P.E., Glass T.E., Gränicher C., Houze J.B., Jänichen J., Lee D., Marquess D.G., et al. The pinene path to taxanes. 5. Stereocontrolled synthesis of a versatile taxane precursor. J. Am. Chem. Soc. 1997;119:2755–2756. doi: 10.1021/ja9635387. DOI

Morihira K., Hara R., Kawahara S., Nishimori T., Nakamura N., Kusama H., Kuwajima I. Enantioselective total synthesis of taxol. J. Am. Chem. Soc. 1998;120:12980–12981. doi: 10.1021/ja9824932. DOI

Isamu S., Hayato I., Hiroki S., Masatoshi H., Yu-ichirou T., Teruaki M. A new method for the synthesis of baccatin III. Chem. Lett. 1998;27:1–2.

Doi T., Fuse S., Miyamoto S., Nakai K., Sasuga D., Takahashi T. A formal total synthesis of taxol aided by an automated synthesizer. Chem. Asian J. 2006;1:370–383. doi: 10.1002/asia.200600156. PubMed DOI

Fukaya K., Kodama K., Tanaka Y., Yamazaki H., Sugai T., Yamaguchi Y., Watanabe A., Oishi T., Sato T., Chida N. Synthesis of paclitaxel. 2. Construction of the ABCD ring and formal synthesis. Org. Lett. 2015;17:2574–2577. doi: 10.1021/acs.orglett.5b01174. PubMed DOI

Hirai S., Utsugi M., Iwamoto M., Nakada M. Formal total synthesis of (−)-taxol through Pd-catalyzed eight-membered carbocyclic ring formation. Chem. Eur. J. 2015;21:355–359. doi: 10.1002/chem.201404295. PubMed DOI

Patel R.N. Tour de paclitaxel: Biocatalysis for semisynthesis. Annu. Rev. Microbiol. 1998;52:361–395. doi: 10.1146/annurev.micro.52.1.361. PubMed DOI

Ganem B., Franke R.R. Paclitaxel from primary taxanes: A perspective on creative invention in organozirconium chemistry. J. Org. Chem. 2007;72:3981–3987. doi: 10.1021/jo070129s. PubMed DOI

Kumar P., Singh B., Thakur V., Thakur A., Thakur N., Pandey D., Chand D. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol. Rep. 2019;24:e00395. doi: 10.1016/j.btre.2019.e00395. PubMed DOI PMC

Soliman S.S.M., Raizada M.N. Darkness: A crucial factor in fungal taxol production. Front. Microbiol. 2018;9:353. doi: 10.3389/fmicb.2018.00353. PubMed DOI PMC

Mooberry S.L., Tien G., Hernandez A.H., Plubrukarn A., Davidson B.S. Laulimalide and isolaulimalide, new paclitaxel-like microtubule stabilizing agents. Cancer Res. 1999;59:653–660. PubMed

Churchill C.D.M., Klobukowski M., Tuszynski J.A. The unique binding mode of laulimalide to two tubulin protofilaments. Chem. Biol. Drug Des. 2015;86:190–199. doi: 10.1111/cbdd.12475. PubMed DOI

Castro-Alvarez A., Pineda O., Vilarrasa J. Further insight into the interactions of the cytotoxic macrolides laulimalide and peloruside A with their common binding site. ACS Omega. 2018;3:1770–1782. doi: 10.1021/acsomega.7b01723. PubMed DOI PMC

Pryor D.E., O’Brate A., Bilcer G., Díaz J.F., Wang Y., Wang Y., Kabaki M., Jung M.K., Andreu J.M., Ghosh A.K., et al. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry. 2002;41:9109–9115. doi: 10.1021/bi020211b. PubMed DOI

Clark E.A., Hills P.M., Davidson B.S., Wender P.A., Mooberry S.L. Laulimalide and synthetic laulimalide analogues are synergistic with paclitaxel and 2-methoxyestradiol. Mol. Pharm. 2006;3:457–467. doi: 10.1021/mp060016h. PubMed DOI

Liu J., Towle M.J., Cheng H., Saxton P., Reardon C., Wu J., Murphy E.A., Kuznetsov G., Johannes C.W., Tremblay M.R., et al. In vitro and in vivo anticancer activities of synthetic (−)-laulimalide, a marine natural product microtubule stabilizing agent. Anticancer Res. 2007;27:1509–1518. PubMed

Paterson I., Menche D., Håkansson A.E., Longstaff A., Wong D., Barasoain I., Buey R.M., Díaz J.F. Design, synthesis and biological evaluation of novel, simplified analogues of laulimalide: Modification of the side chain. Bioorg. Med. Chem. Lett. 2005;15:2243–2247. doi: 10.1016/j.bmcl.2005.03.018. PubMed DOI

Paterson I., Bergmann H., Menche D., Berkessel A. Synthesis of novel 11-desmethyl analogues of laulimalide by Nozaki-Kishi coupling. Org. Lett. 2004;6:1293–1295. doi: 10.1021/ol049791q. PubMed DOI

Mooberry S.L., Randall-Hlubek D.A., Leal R.M., Hegde S.G., Hubbard R.D., Zhang L., Wender P.A. Microtubule-stabilizing agents based on designed laulimalide analogues. Proc. Natl. Acad. Sci. USA. 2004;101:8803–8808. doi: 10.1073/pnas.0402759101. PubMed DOI PMC

Wender P.A., Hegde S.G., Hubbard R.D., Zhang L., Mooberry S.L. Synthesis and biological evaluation of (−)-laulimalide analogues. Org. Lett. 2003;5:3507–3509. doi: 10.1021/ol035339f. PubMed DOI

Gallagher B.M., Jr., Fang F.G., Johannes C.W., Pesant M., Tremblay M.R., Zhao H., Akasaka K., Li X., Liu J., Littlefield B.A. Synthesis and biological evaluation of (−)-laulimalide analogues. Bioorg. Med. Chem. Lett. 2004;14:575–579. doi: 10.1016/j.bmcl.2003.12.001. PubMed DOI

Ahmed A., Hoegenauer E.K., Enev V.S., Hanbauer M., Kaehlig H., Öhler E., Mulzer J. Total synthesis of the microtubule stabilizing antitumor agent laulimalide and some nonnatural analogues: The power of sharpless’ asymmetric epoxidation. J. Org. Chem. 2003;68:3026–3042. doi: 10.1021/jo026743f. PubMed DOI

Crimmins M.T., Stanton M.G., Allwein S.P. Asymmetric total synthesis of (−)-laulimalide: Exploiting the asymmetric glycolate alkylation reaction. J. Am. Chem. Soc. 2002;124:5958–5959. doi: 10.1021/ja026269v. PubMed DOI

Enev V.S., Kaehlig H., Mulzer J. Macrocyclization via allyl transfer: Total synthesis of laulimalide. J. Am. Chem. Soc. 2001;123:10764–10765. doi: 10.1021/ja016752q. PubMed DOI

Ghosh A.K., Wang Y. Total synthesis of (−)-laulimalide. J. Am. Chem. Soc. 2000;122:11027–11028. doi: 10.1021/ja0027416. PubMed DOI PMC

Mulzer J., Hanbauer M. Total synthesis of the antitumor agent (−)-laulimalide. Tetrahedron Lett. 2002;43:3381–3383. doi: 10.1016/S0040-4039(02)00472-0. DOI

Nelson S.G., Cheung W.S., Kassick A.J., Hilfiker M.A. A de novo enantioselective total synthesis of (−)-laulimalide. J. Am. Chem. Soc. 2002;124:13654–13655. doi: 10.1021/ja028019k. PubMed DOI

Paterson I., De Savi C., Tudge M. Total synthesis of the microtubule-stabilizing agent (−)-laulimalide. Org. Lett. 2001;3:3149–3152. doi: 10.1021/ol010150u. PubMed DOI

Trost B.M., Seganish W.M., Chung C.K., Amans D. Total synthesis of laulimalide: Synthesis of the Northern and Southern fragments. Chem. Eur. J. 2012;18:2948–2960. doi: 10.1002/chem.201102898. PubMed DOI PMC

Uenishi J., Ohmi M. Total synthesis of (−)-laulimalide: Pd-catalyzed stereospecific ring construction of the substituted 3,6-dihydro [2H] pyran units. Angew. Chem.-Int. Ed. 2005;44:2756–2760. doi: 10.1002/anie.200500029. PubMed DOI

Wender P.A., Hegde S.G., Hubbard R.D., Zhang L. Total synthesis of (−)-laulimalide. J. Am. Chem. Soc. 2002;124:4956–4957. doi: 10.1021/ja0258428. PubMed DOI

Williams D.R., Mi L., Mullins R.J., Stites R.E. Synthesis of (−)-laulimalide: An agent for microtubule stabilization. Tetrahedron Lett. 2002;43:4841–4844. doi: 10.1016/S0040-4039(02)00907-3. DOI

Bennett M.J., Chan G.K., Rattner J.B., Schriemer D.C. Low-dose laulimalide represents a novel molecular probe for investigating microtubule organization. Cell Cycle. 2012;11:3045–3054. doi: 10.4161/cc.21411. PubMed DOI PMC

Prota A.E., Bargsten K., Northcote P.T., Marsh M., Altmann K.H., Miller J.H., Fernando Díaz J., Steinmetz M.O. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew. Chem.-Int. Ed. 2014;53:1621–1625. doi: 10.1002/anie.201307749. PubMed DOI

West L.M., Northcote P.T., Battershill C.N. Peloruside A: A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J. Org. Chem. 2000;65:445–449. doi: 10.1021/jo991296y. PubMed DOI

Hood K.A., West L.M., Rouwé B., Northcote P.T., Berridge M.V., Wakefield J., Miller J.H. Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity. Cancer Res. 2002;62:3356–3360. PubMed

Meyer C.J., Krauth M., Wick M.J., Shay J.W., Gellert G., De Brabander J.K., Northcote P.T., Miller J.H. Peloruside A inhibits growth of human lung and breast tumor xenografts in an athymic nu/nu mouse model. Mol. Cancer Ther. 2015;14:1816–1823. doi: 10.1158/1535-7163.MCT-15-0167. PubMed DOI

Gewirtz D.A., Holt S.E., Elmore L.W. Accelerated senescence: An emerging role in tumor cell response to chemotherapy and radiation. Biochem. Pharmacol. 2008;76:947–957. doi: 10.1016/j.bcp.2008.06.024. PubMed DOI

Chan A., Gilfillan C., Templeton N., Paterson I., Northcote P.T., Miller J.H. Induction of accelerated senescence by the microtubule-stabilizing agent peloruside A. Investig. New Drugs. 2017;35:706–717. doi: 10.1007/s10637-017-0493-5. PubMed DOI

Chan A., Singh A.J., Northcote P.T., Miller J.H. Inhibition of human vascular endothelial cell migration and capillary-like tube formation by the microtubule-stabilizing agent peloruside A. Investig. New Drugs. 2015;33:564–574. doi: 10.1007/s10637-015-0232-8. PubMed DOI

Das V., Miller J.H. Microtubule stabilization by peloruside A and paclitaxel rescues degenerating neurons from okadaic acid-induced tau phosphorylation. Eur. J. Neurosci. 2012;35:1705–1717. doi: 10.1111/j.1460-9568.2012.08084.x. PubMed DOI

O’Sullivan D., Miller J.H., Northcote P.T., La Flamme A.C. Microtubule-stabilizing agents delay the onset of EAE through inhibition of migration. Immunol. Cell Biol. 2013;91:583–592. doi: 10.1038/icb.2013.47. PubMed DOI

Crume K.P., O’Sullivan D., Miller J.H., Northcote P.T., La Flamme A.C. Delaying the onset of experimental autoimmune encephalomyelitis with the microtubule-stabilizing compounds, paclitaxel and Peloruside A. J. Leukoc. Biol. 2009;86:949–958. doi: 10.1189/jlb.0908541. PubMed DOI

Singh A.J., Razzak M., Teesdale-Spittle P., Gaitanos T.N., Wilmes A., Paterson I., Goodman J.M., Miller J.H., Northcote P.T. Structure-activity studies of the pelorusides: New congeners and semi-synthetic analogues. Org. Biomol. Chem. 2011;9:4456–4466. doi: 10.1039/c0ob01127d. PubMed DOI

Chany A.C., Legros F., Haroun H., Kundu U.K., Biletskyi B., Torlak S., Mathé-Allainmat M., Lebreton J., Macé A., Carboni B., et al. Function-oriented synthesis toward peloruside A analogues. Org. Lett. 2019;21:2988–2992. doi: 10.1021/acs.orglett.9b00413. PubMed DOI

Ghosh A.K., Xu X., Kim J.H., Xu C.X. Enantioselective total synthesis of peloruside A: A potent microtubule stabilizer. Org. Lett. 2008;10:1001–1004. doi: 10.1021/ol703091b. PubMed DOI

Hoye T.R., Jeon J., Kopel L.C., Ryba T.D., Tennakoon M.A., Wang Y. Total synthesis of peloruside A through kinetic lactonization and relay ring-closing metathesis cyclization reactions. Angew. Chem. Int. Ed. 2010;49:6151–6155. doi: 10.1002/anie.201002293. PubMed DOI PMC

Jin M., Taylor R.E. Total synthesis of (+)-peloruside A. Org. Lett. 2005;7:1303–1305. doi: 10.1021/ol050070g. PubMed DOI

Liao X., Wu Y., De Brabander J.K. Total synthesis and absolute configuration of the novel microtubule-stabilizing agent peloruside A. Angew. Chem. Int. Ed. 2003;42:1648–1652. doi: 10.1002/anie.200351145. PubMed DOI

McGowan M.A., Stevenson C.P., Schiffler M.A., Jacobsen E.N. An enantioselective total synthesis of (+)-peloruside A. Angew. Chem. Int. Ed. 2010;49:6147–6150. doi: 10.1002/anie.201002177. PubMed DOI PMC

Evans D.A., Welch D.S., Speed A.W.H., Moniz G.A., Reichelt A., Ho S. An aldol-based synthesis of (+)-peloruside A, a potent microtubule stabilizing agent. J. Am. Chem. Soc. 2009;131:3840–3841. doi: 10.1021/ja900020a. PubMed DOI PMC

Brackovic A., Harvey J.E. Synthetic, semisynthetic and natural analogues of peloruside A. Chem. Commun. 2015;51:4750–4765. doi: 10.1039/C4CC09785H. PubMed DOI

Ranade A.R., Higgins L.A., Markowski T.W., Glaser N., Kashin D., Bai R., Hong K.H., Hamel E., Höfle G., Georg G.I. Characterizing the epothilone binding site on β-tubulin by photoaffinity labeling: Identification of β-tubulin peptides TARGSQQY and TSRGSQQY as targets of an epothilone photoprobe for polymerized tubulin. J. Med. Chem. 2016;59:3499–3514. doi: 10.1021/acs.jmedchem.6b00188. PubMed DOI PMC

Hardt I.H., Steinmetz H., Gerth K., Sasse F., Reichenbach H., Höfle G. New natural epothilones from Sorangium cellulosum, strains So ce90/B2 and So ce90/D13, Isolation, structure elucidation, and SAR studies. J. Nat. Prod. 2001;64:847–856. doi: 10.1021/np000629f. PubMed DOI

Gerth K., Steinmetz H., Höfle G., Reichenbach H. Studies on the biosynthesis of epothilones: The PKS and epothilone C/D monooxygenase. J. Antibiot. (Tokyo) 2001;54:144–148. doi: 10.7164/antibiotics.54.144. PubMed DOI

Höfle G., Bedorf N., Steinmetz H., Schomburg D., Gerth K., Reichenbach H. Epothilone A and B—novel 16-membered macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. Angew. Chem. Int. Ed. 1996;35:1567–1569. doi: 10.1002/anie.199615671. DOI

Kowalski R.J., Giannakakou P., Hamel E. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol(R)) J. Biol. Chem. 1997;272:2534–2541. doi: 10.1074/jbc.272.4.2534. PubMed DOI

Rogalska A., Marczak A. Therapeutic potential of patupilone in epithelial ovarian cancer and future directions. Life Sci. 2018;205:38–44. doi: 10.1016/j.lfs.2018.04.058. PubMed DOI

Shen S., Kepp O., Martins I., Vitale I., Souquère S., Castedo M., Pierron G., Kroemer G. Defective autophagy associated with LC3 puncta in epothilone-resistant cancer cells. Cell Cycle. 2010;9:377–383. doi: 10.4161/cc.9.2.10468. PubMed DOI

Rogalska A., Gajek A., Marczak A. Suppression of autophagy enhances preferential toxicity of epothilone A and epothilone B in ovarian cancer cells. Phytomedicine. 2019;61:152847. doi: 10.1016/j.phymed.2019.152847. PubMed DOI

Luu T., Kim K.P., Blanchard S., Anyang B., Hurria A., Yang L., Beumer J.H., Somlo G., Yen Y. Phase IB trial of ixabepilone and vorinostat in metastatic breast cancer. Breast Cancer Res. Treat. 2018;167:469–478. doi: 10.1007/s10549-017-4516-x. PubMed DOI

Rugo H.S., Roche H., Thomas E., Chung H.C., Lerzo G.L., Vasyutin I., Patel A., Vahdat L. Efficacy and safety of ixabepilone and capecitabine in patients with advanced triple-negative breast cancer: A pooled analysis from two large phase III, randomized clinical trials. Clin. Breast Cancer. 2018;18:489–497. doi: 10.1016/j.clbc.2018.07.024. PubMed DOI

Osborne C., Challagalla J.D., Eisenbeis C.F., Holmes F.A., Neubauer M.A., Koutrelakos N.W., Taboada C.A., Vukelja S.J., Wilks S.T., Allison M.A., et al. Ixabepilone and carboplatin for hormone receptor positive/HER2-neu negative and triple negative metastatic breast cancer. Clin. Breast Cancer. 2018;18:E89–E95. doi: 10.1016/j.clbc.2017.07.002. PubMed DOI

Peethambaram P.P., Hartmann L.C., Jonker D.J., de Jonge M., Plummer E.R., Martin L., Konner J., Marshall J., Goss G.D., Teslenko V., et al. A phase I pharmacokinetic and safety analysis of epothilone folate (BMS-753493), a folate receptor targeted chemotherapeutic agent in humans with advanced solid tumors. Investig. New Drugs. 2015;33:321–331. doi: 10.1007/s10637-014-0171-9. PubMed DOI

Gaugaz F.Z., Chicca A., Redondo-Horcajo M., Barasoain I., Fernando Díaz J., Altmann K.H. Synthesis, microtubule-binding affinity, and antiproliferative activity of new epothilone analogs and of an EGFR-targeted epothilone-peptide conjugate. Int. J. Mol. Sci. 2019;20:1113. doi: 10.3390/ijms20051113. PubMed DOI PMC

Brunden K.R., Zhang B., Carroll J., Yao Y., Potuzak J.S., Hogan A.M.L., Iba M., James M.J., Xie S.X., Ballatore C., et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J. Neurosci. 2010;30:13861–13866. doi: 10.1523/JNEUROSCI.3059-10.2010. PubMed DOI PMC

Ruschel J., Hellal F., Flynn K.C., Dupraz S., Elliott D.A., Tedeschi A., Bates M., Sliwinski C., Brook G., Dobrindt K., et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science. 2015;348:347–352. doi: 10.1126/science.aaa2958. PubMed DOI PMC

Ye W., Liu T., Zhu M., Zhang W., Huang Z., Li S., Li H., Kong Y., Chen Y. An easy and efficient strategy for the enhancement of epothilone production mediated by TALE-TF and CRISPR/dcas9 systems in Sorangium cellulosum. Front. Bioeng. Biotechnol. 2019;7:334. doi: 10.3389/fbioe.2019.00334. PubMed DOI PMC

Julien B., Shah S. Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob. Agents Chemother. 2002;46:2772–2778. doi: 10.1128/AAC.46.9.2772-2778.2002. PubMed DOI PMC

Tang L., Shah S., Chung L., Carney J., Katz L., Khosla C., Julien B. Cloning and heterologous expression of the epothilone gene cluster. Science. 2000;287:640–642. doi: 10.1126/science.287.5453.640. PubMed DOI

Mutka S.C., Carney J.R., Liu Y., Kennedy J. Heterologous production of epothilone C and D in Escherichia coli. Biochemistry. 2006;45:1321–1330. doi: 10.1021/bi052075r. PubMed DOI

Wenzel S.C., Müller R. Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr. Opin. Biotechnol. 2005;16:594–606. doi: 10.1016/j.copbio.2005.10.001. PubMed DOI

Lau J., Frykman S., Regentin R., Ou S., Tsuruta H., Licari P. Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotechnol. Bioeng. 2002;78:280–288. doi: 10.1002/bit.10202. PubMed DOI

Ye W., Zhang W., Chen Y., Li H., Li S., Pan Q., Tan G., Liu T. A new approach for improving epothilone B yield in Sorangium cellulosum by the introduction of VGB epoF genes. J. Ind. Microbiol. Biotechnol. 2016;43:641–650. doi: 10.1007/s10295-016-1735-9. PubMed DOI

Martino E., Casamassima G., Castiglione S., Cellupica E., Pantalone S., Papagni F., Rui M., Siciliano A.M., Collina S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett. 2018;28:2816–2826. doi: 10.1016/j.bmcl.2018.06.044. PubMed DOI

Gigant B., Wang C., Ravelli R.B.G., Roussi F., Steinmetz M.O., Curmi P.A., Sobel A., Knossow M. Structural basis for the regulation of tubulin by vinblastine. Nature. 2005;435:519–522. doi: 10.1038/nature03566. PubMed DOI

Himes R.H. Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol. Ther. 1991;51:257–267. doi: 10.1016/0163-7258(91)90081-V. PubMed DOI

Lu K., Yap H.Y., Loo T.L. Clinical pharmacokinetics of vinblastine by continuous intravenous infusion. Cancer Res. 1983;43:1405–1408. PubMed

Deyell R.J., Wu B., Rassekh S.R., Tu D., Samson Y., Fleming A., Bouffet E., Sun X., Powers J., Seymour L., et al. Phase I study of vinblastine and temsirolimus in pediatric patients with recurrent or refractory solid tumors: Canadian cancer trials group study IND.218. Pediatr. Blood Cancer. 2019;66:e27540. doi: 10.1002/pbc.27540. PubMed DOI

Coiffier B., Lepage E., Brière J., Herbrecht R., Tilly H., Bouabdallah R., Morel P., Van Den Neste E., Salles G., Gaulard P., et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002;346:235–242. doi: 10.1056/NEJMoa011795. PubMed DOI

Poeschel V., Held G., Ziepert M., Witzens-Harig M., Holte H., Thurner L., Borchmann P., Viardot A., Soekler M., Keller U., et al. Four versus six cycles of CHOP chemotherapy in combination with six applications of rituximab in patients with aggressive B-cell lymphoma with favourable prognosis (FLYER): A randomised, phase 3, non-inferiority trial. Lancet. 2020;394:2271–2281. doi: 10.1016/S0140-6736(19)33008-9. PubMed DOI

Meyer R.M., Gospodarowicz M.K., Connors J.M., Pearcey R.G., Wells W.A., Winter J.N., Horning S.J., Dar A.R., Shustik C., Stewart D.A., et al. ABVD Alone versus Radiation-Based Therapy in Limited-Stage Hodgkin’s Lymphoma. N. Engl. J. Med. 2012;366:399–408. doi: 10.1056/NEJMoa1111961. PubMed DOI PMC

Waters E., Dingle B., Rodrigues G., Vincent M., Ash R., Dar R., Inculet R., Kocha W., Malthaner R., Sanatani M., et al. Analysis of a novel protocol of combined induction chemotherapy and concurrent chemoradiation in unresected non-small-cell lung cancer: A ten-year experience with vinblastine, cisplatin, and radiation therapy. Clin. Lung Cancer. 2010;11:243–250. doi: 10.3816/CLC.2010.n.031. PubMed DOI

Zhigaltsev I.V., Maurer N., Akhong Q.F., Leone R., Leng E., Wang J., Semple S.C., Cullis P.R. Liposome-encapsulated vincristine, vinblastine and vinorelbine: A comparative study of drug loading and retention. J. Control. Release. 2005;104:103–111. doi: 10.1016/j.jconrel.2005.01.010. PubMed DOI

Ling G., Zhang P., Zhang W., Sun J., Meng X., Qin Y., Deng Y., He Z. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J. Control. Release. 2010;148:241–248. doi: 10.1016/j.jconrel.2010.08.010. PubMed DOI

Leggans E.K., Duncan K.K., Barker T.J., Schleicher K.D., Boger D.L. A remarkable series of vinblastine analogues displaying enhanced activity and an unprecedented tubulin binding steric tolerance: C20’ urea derivatives. J. Med. Chem. 2013;56:628–639. doi: 10.1021/jm3015684. PubMed DOI PMC

Saba N., Seal A. Identification of a less toxic vinca alkaloid derivative for use as a chemotherapeutic agent, based on in silico structural insights and metabolic interactions with CYP3A4 and CYP3A5. J. Mol. Model. 2018;24:82. doi: 10.1007/s00894-018-3611-1. PubMed DOI

Va P., Campbell E.L., Robertson W.M., Boger D.L. Total synthesis and evaluation of a key series of C5-substituted vinblastine derivatives. J. Am. Chem. Soc. 2010;132:8489–8495. doi: 10.1021/ja1027748. PubMed DOI PMC

Bánóczi Z., Gorka-Kereskényi A., Reményi J., Orbán E., Hazai L., Tökési N., Oláh J., Ovádi J., Béni Z., Háda V., et al. Synthesis and in vitro antitumor effect of vinblastine derivative-oligoarginine conjugates. Bioconjugate Chem. 2010;21:1948–1955. doi: 10.1021/bc100028z. PubMed DOI

Manzo E., van Soest R., Matainaho L., Roberge M., Andersen R.J. Ceratamines A and B, antimitotic heterocyclic alkaloids isolated from the marine Sponge Pseudoceratina sp. collected in Papua New Guinea. Org. Lett. 2003;5:4591–4594. doi: 10.1021/ol035721s. PubMed DOI

Tao L., Pan X., Ji M., Chen X., Liu Z. Efficient synthesis and cytotoxicity of novel microtubule-stabilizing agent ceratamine A analogues. Tetrahedron. 2017;73:2159–2171. doi: 10.1016/j.tet.2017.03.008. DOI

Pan X., Tao L., Ji M., Chen X., Liu Z. Synthesis and cytotoxicity of novel imidazo[4,5-d]azepine compounds derived from marine natural product ceratamine A. Bioorg. Med. Chem. Lett. 2018;28:866–868. doi: 10.1016/j.bmcl.2018.02.004. PubMed DOI

Nodwell M., Zimmerman C., Roberge M., Andersen R.J. Synthetic analogues of the microtubule-stabilizing sponge alkaloid ceratamine A are more active than the natural product. J. Med. Chem. 2010;53:7843–7851. doi: 10.1021/jm101012q. PubMed DOI

Kowalski R.J., Giannakakou P., Gunasekera S.P., Longley R.E., Day B.W., Hamel E. The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Mol. Pharmacol. 1997;52:613–622. doi: 10.1124/mol.52.4.613. PubMed DOI

Paterson I., Florence G.J. The chemical synthesis of discodermolide. In: Carlomagno T., editor. Tubulin-Binding Agents: Synthetic, Structural and Mechanistic Insights. Springer; Berlin, Germany: 2009. pp. 73–119. PubMed

Pettit G., Kamano Y., Herald C.L., Tuinman A.A., Boettner F.E., Kizu H., Schmidt J.M., Baczynskyj L., Tomer K.B., Bontems R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J. Am. Chem. Soc. 1987;109:6883–6885. doi: 10.1021/ja00256a070. DOI

Bai R., Petit G.R., Hamel E. Dolastatin 10, a powerful cytostatic peptide derived from a marine animal: Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem.Pharmacol. 1990;39:1941–1949. doi: 10.1016/0006-2952(90)90613-P. PubMed DOI

Garteiz D.A., Madden T., Beck D.E., Huie W.R., McManus K.T., Abbruzzese J.L., Chen W., Newman R.A. Quantitation of dolastatin-10 using HPLC/electrospray ionization mass spectrometry: Application in a phase I clinical trial. Cancer Chemother. Pharmacol. 1998;41:299–306. doi: 10.1007/s002800050743. PubMed DOI

Pitot H.C., McElroy E.A., Jr., Reid J.M., Windebank A.J., Sloan J.A., Erlichman C., Bagniewski P.G., Walker D.L., Rubin J., Goldberg R.M., et al. Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors. Clin. Cancer Res. 1999;5:525–531. PubMed

von Mehren M., Balcerzak S.P., Kraft A.S., Edmonson J.H., Okuno S.H., Davey M., McLaughlin S., Beard M.T., Rogatko A. Phase II trial of dolastatin-10, a novel anti-tubulin agent, in metastatic soft tissue sarcomas. Sarcoma. 2004;8:107–111. doi: 10.1155/2004/924913. PubMed DOI PMC

Margolin K., Longmate J., Synold T.W., Gandara D.R., Weber J., Gonzalez R., Johansen M.J., Newman R., Baratta T., Doroshow J.H. Dolastatin-10 in metastatic melanoma: A phase II and pharmokinetic trial of the california cancer consortium. Investig. New Drugs. 2001;19:335–340. doi: 10.1023/A:1010626230081. PubMed DOI

Hoffman M.A., Blessing J.A., Lentz S.S. A phase II trial of dolastatin-10 in recurrent platinum-sensitive ovarian carcinoma: A Gynecologic oncology group study. Gynecol. Oncol. 2003;89:95–98. doi: 10.1016/S0090-8258(03)00007-6. PubMed DOI

Kindler H.L., Tothy P.K., Wolff R., McCormack R.A., Abbruzzese J.L., Mani S., Wade-Oliver K.T., Vokes E.E. Phase II trials of dolastatin-10 in advanced pancreaticobiliary cancers. Investig. New Drugs. 2005;23:489–493. doi: 10.1007/s10637-005-2909-x. PubMed DOI

Perez E.A., Hillman D.W., Fishkin P.A., Krook J.E., Tan W.W., Kuriakose P.A., Alberts S.R., Dakhil S.R. Phase II trial of dolastatin-10 in patients with advanced breast cancer. Investig. New Drugs. 2005;23:257–261. doi: 10.1007/s10637-005-6735-y. PubMed DOI

Maderna A., Doroski M., Subramanyam C., Porte A., Leverett C.A., Vetelino B.C., Chen Z., Risley H., Parris K., Pandit J., et al. Discovery of cytotoxic dolastatin 10 analogues with N-terminal modifications. J. Med. Chem. 2014;57:10527–10543. doi: 10.1021/jm501649k. PubMed DOI

Doronina S.O., Toki B.E., Torgov M.Y., Mendelsohn B.A., Cerveny C.G., Chace D.F., DeBlanc R.L., Gearing R.P., Bovee T.D., Siegall C.B., et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 2003;21:778–784. doi: 10.1038/nbt832. PubMed DOI

van de Donk N.W.C.J., Dhimolea E. Brentuximab vedotin. MAbs. 2012;4:458–465. doi: 10.4161/mabs.20230. PubMed DOI PMC

Wagner S.M., Melchardt T., Egle A., Magnes T., Skrabs C., Staber P., Simonitsch-Klupp I., Panny M., Lehner B., Greil R., et al. Treatment with brentuximab vedotin plus bendamustine in unselected patients with CD30-positive aggressive lymphomas. Eur. J. Haem. 2020;104:251–258. doi: 10.1111/ejh.13368. PubMed DOI PMC

Fu J., Bian M., Jiang Q., Zhang C. Roles of aurora kinases in mitosis and tumorigenesis. Mol. Cancer Res. 2007;5:1–10. doi: 10.1158/1541-7786.MCR-06-0208. PubMed DOI

Magnaghi-Jaulin L., Eot-Houllier G., Gallaud E., Giet R. Aurora A protein kinase: To the centrosome and beyond. Biomolecules. 2019;9:28. doi: 10.3390/biom9010028. PubMed DOI PMC

Barr A.R., Gergely F. Aurora-A: The maker and breaker of spindle poles. J. Cell Sci. 2007;120:2987–2996. doi: 10.1242/jcs.013136. PubMed DOI

Krenn V., Musacchio A. The Aurora B kinase in chromosome bi-orientation and spindle checkpoint signaling. Front. Oncol. 2015;5:225. doi: 10.3389/fonc.2015.00225. PubMed DOI PMC

Yang K.T., Tang C.J.C., Tang T.K. Possible role of Aurora-C in meiosis. Front. Oncol. 2015;5:7. doi: 10.3389/fonc.2015.00178. PubMed DOI PMC

Liu Q., Kaneko S., Yang L., Feldman R.I., Nicosia S.V., Chen J., Cheng J.Q. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J. Biol. Chem. 2004;279:52175–52182. doi: 10.1074/jbc.M406802200. PubMed DOI

Borisa A.C., Bhatt H.G. A comprehensive review on Aurora kinase: Small molecule inhibitors and clinical trial studies. Eur. J. Med. Chem. 2017;140:1–19. doi: 10.1016/j.ejmech.2017.08.045. PubMed DOI

Sells T.B., Chau R., Ecsedy J.A., Gershman R.E., Hoar K., Huck J., Janowick D.A., Kadambi V.J., LeRoy P.J., Stirling M., et al. MLN8054 and alisertib (MLN8237): Discovery of selective oral aurora A inhibitors. ACS Med. Chem. Lett. 2015;6:630–634. doi: 10.1021/ml500409n. PubMed DOI PMC

Li J.P., Yang Y.X., Liu Q.L., Pan S.T., He Z.X., Zhang X., Yang T., Chen X.W., Wang D., Qiu J.X., et al. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G(2)/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells. Drug Des. Devel. Ther. 2015;9:1627–1652. PubMed PMC

Fu Y., Zhang Y., Gao M., Quan L., Gui R., Liu J. Alisertib induces apoptosis and autophagy through targeting the AKT/mTOR/AMPK/p38 pathway in leukemic cells. Mol. Med. Rep. 2016;14:394–398. doi: 10.3892/mmr.2016.5249. PubMed DOI

Ren B.J., Zhou Z.W., Zhu D.J., Ju Y.L., Wu J.H., Ouyang M.Z., Chen X.W., Zhou S.F. Alisertib induces cell cycle arrest, apoptosis, autophagy and suppresses EMT in HT29 and Caco-2 cells. Int. J. Mol. Sci. 2016;17:41. doi: 10.3390/ijms17010041. PubMed DOI PMC

Liu Z., Wang F., Zhou Z.W., Xia H.C., Wang X.Y., Yang Y.X., He Z.X., Sun T., Zhou S.F. Alisertib induces G(2)/M arrest, apoptosis, and autophagy via PI3K/Akt/mTOR- and p38 MAPK-mediated pathways in human glioblastoma cells. Am. J. Transl. Res. 2017;9:845–873. PubMed PMC

Shang Y.Y., Yao M., Zhou Z.W., Cui J., Xia L., Hu R.Y., Yu Y.Y., Gao Q., Yang B., Liu Y.X., et al. Alisertib promotes apoptosis and autophagy in melanoma through p38 MAPK-mediated aurora a signaling. Oncotarget. 2017;8:107076–107088. doi: 10.18632/oncotarget.22328. PubMed DOI PMC

Zhu Q., Yu X., Zhou Z.W., Zhou C., Chen X.W., Zhou S.F. Inhibition of aurora A kinase by alisertib induces autophagy and cell cycle arrest and increases chemosensitivity in human hepatocellular carcinoma HepG2 cells. Curr. Cancer Drug Targets. 2017;17:386–401. doi: 10.2174/1568009616666160630182344. PubMed DOI

Otto T., Horn S., Brockmann M., Eilers U., Schüttrumpf L., Popov N., Kenney A.M., Schulte J.H., Beijersbergen R., Christiansen H., et al. Stabilization of N-Myc is a critical function of aurora A in human neuroblastoma. Cancer Cell. 2009;15:67–78. doi: 10.1016/j.ccr.2008.12.005. PubMed DOI

Niu H., Manfredi M., Ecsedy J.A. Scientific rationale supporting the clinical development strategy for the investigational Aurora A kinase inhibitor alisertib in cancer. Front. Oncol. 2015;5:189. doi: 10.3389/fonc.2015.00189. PubMed DOI PMC

Yang H., Liu J., Huang Y., Gao R., Tang B., Li S., He J., Li H. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques. Sci. Rep. 2017;7:45514. doi: 10.1038/srep45514. PubMed DOI PMC

O’Connor O.A., Özcan M., Jacobsen E.D., Roncero J.M., Trotman J., Demeter J., Masszi T., Pereira J., Ramchandren R., Beaven A., et al. Randomized phase III study of alisertib or investigator’s choice (selected single agent) in patients with relapsed or refractory peripheral T-cell lymphoma. J. Clin. Oncol. 2019;37:613–623. doi: 10.1200/JCO.18.00899. PubMed DOI PMC

Shah H.A., Fischer J.H., Venepalli N.K., Danciu O.C., Christian S., Russell M.J., Liu L.C., Zacny J.P., Dudek A.Z. Phase I study of aurora A kinase inhibitor alisertib (MLN8237) in combination with selective VEGFR inhibitor pazopanib for therapy of advanced solid tumors. Am. J. Clin. Oncol. 2019;42:413–420. doi: 10.1097/COC.0000000000000543. PubMed DOI

DuBois S.G., Mosse Y.P., Fox E., Kudgus R.A., Reid J.M., McGovern R., Groshen S., Bagatell R., Maris J.M., Twist C.J., et al. Phase II trial of alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma. Clin. Cancer Res. 2018;24:6142–6149. doi: 10.1158/1078-0432.CCR-18-1381. PubMed DOI PMC

Currier M.A., Sprague L., Rizvi T.A., Nartker B., Chen C.Y., Wang P.Y., Hutzen B.J., Franczek M.R., Patel A.V., Chaney K.E., et al. Aurora A kinase inhibition enhances oncolytic herpes virotherapy through cytotoxic synergy and innate cellular immune modulation. Oncotarget. 2017;8:17412–17427. doi: 10.18632/oncotarget.14885. PubMed DOI PMC

Iankov I.D., Kurokawa C.B., D’Assoro A.B., Ingle J.N., Domingo-Musibay E., Allen C., Crosby C.M., Nair A.A., Liu M.C., Aderca I., et al. Inhibition of the aurora A kinase augments the anti-tumor efficacy of oncolytic measles virotherapy. Cancer Gene Ther. 2015;22:438–444. doi: 10.1038/cgt.2015.36. PubMed DOI PMC

Mortlock A.A., Foote K.M., Heron N.M., Jung F.H., Pasquet G., Lohmann J.J.M., Warin N., Renaud F., De Savi C., Roberts N.J., et al. Discovery, synthesis, and in vivo activity of a new class of pyrazoloquinazolines as selective inhibitors of aurora B kinase. J. Med. Chem. 2007;50:2213–2224. doi: 10.1021/jm061335f. PubMed DOI

Wilkinson R.W., Odedra R., Heaton S.P., Wedge S.R., Keen N.J., Crafter C., Foster J.R., Brady M.C., Bigley A., Brown E., et al. AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin. Cancer Res. 2007;13:3682–3688. doi: 10.1158/1078-0432.CCR-06-2979. PubMed DOI

Zekri A., Mesbahi Y., Ghanizadeh-Vesali S., Alimoghaddam K., Ghavamzadeh A., Ghaffari S.H. Reactive oxygen species generation and increase in mitochondrial copy number: New insight into the potential mechanism of cytotoxicity induced by aurora kinase inhibitor, AZD1152-HQPA. Anticancer Drugs. 2017;28:841–851. doi: 10.1097/CAD.0000000000000523. PubMed DOI

Zekri A., Mesbahi Y., Boustanipour E., Sadr Z., Ghaffari S.H. The potential contribution of microRNAs in anti-cancer effects of aurora kinase inhibitor (AZD1152-HQPA) J. Mol. Neurosci. 2018;65:444–455. doi: 10.1007/s12031-018-1118-y. PubMed DOI

Ashton S., Song Y.S., Nolan J., Cadogan E., Murray J., Odedra R., Foster J., Hall P.A., Low S., Taylor P., et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci. Transl. Med. 2016;8:325ra17. doi: 10.1126/scitranslmed.aad2355. PubMed DOI

Palmisiano N.D., Kasner M.T. Polo-like kinase and its inhibitors: Ready for the match to start? Am. J. Hematol. 2015;90:1071–1076. doi: 10.1002/ajh.24177. PubMed DOI

Asghar U., Witkiewicz A.K., Turner N.C., Knudsen E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015;14:130–146. doi: 10.1038/nrd4504. PubMed DOI PMC

Colicino E.G., Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1) Cytoskeleton. 2018;75:481–494. doi: 10.1002/cm.21504. PubMed DOI PMC

Yang X., Li H., Zhou Z., Wang W.H., Deng A., Andrisani O., Liu X. Plk1-mediated phosphorylation of topors regulates p53 stability. J. Biol. Chem. 2009;284:18588–18592. doi: 10.1074/jbc.C109.001560. PubMed DOI PMC

Goroshchuk O., Kolosenko I., Vidarsdottir L., Azimi A., Palm-Apergi C. Polo-like kinases and acute leukemia. Oncogene. 2019;38:1–16. doi: 10.1038/s41388-018-0443-5. PubMed DOI

López-Sánchez I., Sanz-García M., Lazo P.A. Plk3 interacts with and specifically phosphorylates VRK1 in Ser(342), a downstream target in a pathway that induces Golgi fragmentation. Mol. Cell. Biol. 2009;29:1189–1201. doi: 10.1128/MCB.01341-08. PubMed DOI PMC

Habedanck R., Stierhof Y.D., Wilkinson C.J., Nigg E.A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 2005;7:1140–1146. doi: 10.1038/ncb1320. PubMed DOI

Ottmann O.G., Müller-Tidow C., Krämer A., Schlenk R.F., Lübbert M., Bug G., Krug U., Bochtler T., Voss F., Taube T., et al. Phase I dose-escalation trial investigating volasertib as monotherapy or in combination with cytarabine in patients with relapsed/refractory acute myeloid leukaemia. Br. J. Haematol. 2019;184:1018–1021. doi: 10.1111/bjh.15204. PubMed DOI

Rudolph D., Steegmaier M., Hoffmann M., Grauert M., Baum A., Quant J., Haslinger C., Garin-Chesa P., Adolf G.R. BI 6727, A Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin. Cancer Res. 2009;15:3094–3102. doi: 10.1158/1078-0432.CCR-08-2445. PubMed DOI

Van den Bossche J., Deben C., de Pauw I., Lambrechts H., Hermans C., Deschoolmeester V., Jacobs J., Specenier P., Pauwels P., Vermorken J.B., et al. In vitro study of the Polo-like kinase 1 inhibitor volasertib in non-small-cell lung cancer reveals a role for the tumor suppressor p53. Mol. Oncol. 2019;13:1196–1213. doi: 10.1002/1878-0261.12477. PubMed DOI PMC

Solans B.P., Fleury A., Freiwald M., Fritsch H., Haug K., Trocóniz I.F. Population pharmacokinetics of volasertib administered in patients with acute myeloid leukaemia as a single agent or in combination with cytarabine. Clin. Pharm. 2018;57:379–392. doi: 10.1007/s40262-017-0566-9. PubMed DOI

Gumireddy K., Reddy M.V.R., Cosenza S.C., Boominathan R., Baker S.J., Papathi N., Jiang J., Holland J., Reddy E.P. 1ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell. 2005;7:275–286. doi: 10.1016/j.ccr.2005.02.009. PubMed DOI

Steegmaier M., Hoffmann M., Baum A., Lénárt P., Petronczki M., Krssák M., Gürtler U., Garin-Chesa P., Lieb S., Quant J., et al. BI 2536, a potent and selective inhibitor of Polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 2007;17:316–322. doi: 10.1016/j.cub.2006.12.037. PubMed DOI

Ma W.W., Messersmith W.A., Dy G.K., Weekes C.D., Whitworth A., Ren C., Maniar M., Wilhelm F., Eckhardt S.G., Adjei A.A., et al. Phase I study of rigosertib, an inhibitor of the phosphatidylinositol 3-kinase and Polo-like kinase 1 pathways, combined with gemcitabine in patients with solid tumors and pancreatic cancer. Clin. Cancer Res. 2012;18:2048–2055. doi: 10.1158/1078-0432.CCR-11-2813. PubMed DOI

Prasad A., Park I.W., Allen H., Zhang X., Reddy M.V.R., Boominathan R., Reddy E.P., Groopman J.E. Styryl sulfonyl compounds inhibit translation of cyclin D1 in mantle cell lymphoma cells. Oncogene. 2009;28:1518–1528. doi: 10.1038/onc.2008.502. PubMed DOI

Castellano E., Downward J. RAS interaction with PI3K: More than just another effector pathway. Genes Cancer. 2011;2:261–274. doi: 10.1177/1947601911408079. PubMed DOI PMC

Ritt D.A., Blanco M.A., Bindu L., Durrant D.E., Zhou M., Specht S.I., Stephen A.G., Holderfield M., Morrison D.K. Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit. Mol. Cell. 2016;64:875–887. doi: 10.1016/j.molcel.2016.10.029. PubMed DOI PMC

Jost M., Chen Y., Gilbert L.A., Horlbeck M.A., Krenning L., Menchon G., Rai A., Cho M.Y., Stern J.J., Prota A.E., et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubule-destabilizing agent. Mol. Cell. 2017;68:210–223. doi: 10.1016/j.molcel.2017.09.012. PubMed DOI PMC

Baker S.J., Cosenza S.C., Athuluri-Divakar S., Reddy M.V.R., Vasquez-Del Carpio R., Jain R., Aggarwal A.K., Reddy E.P. Mechanism of action of rigosertib does not involve tubulin binding. bioRxiv. 2019 doi: 10.1101/2019.12.12.874719. DOI

Garcia-Manero G., Fenaux P., Al-Kali A., Baer M.R., Sekeres M.A., Roboz G.J., Gaidano G., Scott B.L., Greenberg P., Platzbecker U., et al. Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME): A randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17:496–508. doi: 10.1016/S1470-2045(16)00009-7. PubMed DOI

Prasad A., Khudaynazar N., Tantravahi R.V., Gillum A.M., Hoffman B.S. ON 01910.Na (rigosertib) inhibits PI3K/Akt pathway and activates oxidative stress signals in head and neck cancer cell lines. Oncotarget. 2016;7:79388–79400. doi: 10.18632/oncotarget.12692. PubMed DOI PMC

Anderson R.T., Keysar S.B., Bowles D.B., Glogowska M.J., Astling D.P., Morton J.P., Le P., Umpierrez A., Eagles-Soukup J., Gan G.N., et al. The dual pathway inhibitor rigosertib is effective in direct-patient tumor xenografts of head and neck squamous cell carcinomas. Mol. Cancer Ther. 2013;12:1994–2005. doi: 10.1158/1535-7163.MCT-13-0206. PubMed DOI PMC

Rice S., Lin A.W., Safer D., Hart C.L., Naber N., Carragher B.O., Cain S.M., Pechatnikova E., Wilson-Kubalek E.M., Whittaker M., et al. A structural change in the kinesin motor protein that drives motility. Nature. 1999;402:778–784. doi: 10.1038/45483. PubMed DOI

Hepperla A.J., Willey P.T., Coombes C.E., Schuster B.M., Gerami-Nejad M., McClellan M., Mukherjee S., Fox J., Winey M., Odde D.J., et al. Minus-end-directed kinesin-14 motors align antiparallel microtubules to control metaphase spindle length. Dev. Cell. 2014;31:61–72. doi: 10.1016/j.devcel.2014.07.023. PubMed DOI PMC

Chen Y., Hancock W.O. Kinesin-5 is a microtubule polymerase. Nat. Commun. 2015;6:8160. doi: 10.1038/ncomms9160. PubMed DOI PMC

Trofimova D., Paydar M., Zara A., Talje L., Kwok B.H., Allingham J.S. Ternary complex of Kif2A-bound tandem tubulin heterodimers represents a kinesin-13-mediated microtubule depolymerization reaction intermediate. Nat. Commun. 2018;9:2628. doi: 10.1038/s41467-018-05025-7. PubMed DOI PMC

Rath O., Kozielski F. Kinesins and cancer. Nat. Rev. Cancer. 2012;12:527–539. doi: 10.1038/nrc3310. PubMed DOI

Huszar D., Theoclitou M.E., Skolnik J., Herbst R. Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev. 2009;28:197–208. doi: 10.1007/s10555-009-9185-8. PubMed DOI

Mayer T.U., Kapoor T.M., Haggarty S.J., King R.W., Schreiber S.L., Mitchison T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science. 1999;286:971–974. doi: 10.1126/science.286.5441.971. PubMed DOI

Abnous K., Barati B., Mehri S., Reza M., Farimani M.R.M., Alibolandi M., Mohammadpour F., Ghandadi M., Hadizadeh F. Synthesis and molecular modeling of six novel monastrol analogues: Evaluation of cytotoxicity and kinesin inhibitory activity against HeLa cell line. DARU. 2013;21:70. doi: 10.1186/2008-2231-21-70. PubMed DOI PMC

Kaan H.Y.K., Ulaganathan V., Rath O., Prokopcová H., Dallinger D., Kappe C.O., Kozielski F. Structural basis for inhibition of Eg5 by dihydropyrimidines: Stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. J. Med. Chem. 2010;53:5676–5683. doi: 10.1021/jm100421n. PubMed DOI

De Oliveira F.S., De Oliveira P.M., Farias L.M., Brinkerhoff R.C., Sobrinho R.C.M.A., Treptow T.M., D’Oca C.R.M., Marinho M.A.G., Hort M.A., Horn A.P., et al. Synthesis and antitumoral activity of novel analogues monastrol-fatty acids against glioma cells. Medchemcomm. 2018;9:1282–1288. doi: 10.1039/C8MD00169C. PubMed DOI PMC

Lee C.W., Bélanger K., Rao S.C., Petrella T.M., Tozer R.G., Wood L., Savage K.J., Eisenhauer E.A., Synold T.W., Wainman N., et al. A phase II study of ispinesib (SB-715992) in patients with metastatic or recurrent malignant melanoma: A National cancer institute of Canada clinical trials group trial. Investig. New Drugs. 2008;26:249–255. doi: 10.1007/s10637-007-9097-9. PubMed DOI

Tang P.A., Siu L.L., Chen E.X., Hotte S.J., Chia S., Schwarz J.K., Pond G.R., Johnson C., Colevas A.D., Synold T.W., et al. Phase II study of ispinesib in recurrent or metastatic squamous cell carcinoma of the head and neck. Investig. New Drugs. 2008;26:257–264. doi: 10.1007/s10637-007-9098-8. PubMed DOI

Beer T.M., Goldman B., Synold T.W., Ryan C.W., Vasist L.S., Van Veldhuizen P.J., Jr., Dakhil S.R., Lara P.N., Jr., Drelichman A., Hussain M.H.A., et al. Southwest oncology group phase II study of ispinesib in androgen-independent prostate cancer previously treated with taxanes. Clin. Genitourin. Cancer. 2008;6:103–109. doi: 10.3816/CGC.2008.n.016. PubMed DOI

Kantarjian H.M., Padmanabhan S., Stock W., Tallman M.S., Curt G.A., Li J., Osmukhina A., Wu K., Huszar D., Borthukar G., et al. Phase I/II multicenter study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of AZD4877 in patients with refractory acute myeloid leukemia. Investig. New Drugs. 2012;30:1107–1115. doi: 10.1007/s10637-011-9660-2. PubMed DOI PMC

LoRusso P.M., Goncalves P.H., Casetta L., Carter J.A., Litwiler K., Roseberry D., Rush S., Schreiber J., Simmons H.M., Ptaszynski M., et al. First-in-human phase 1 study of filanesib (ARRY-520), a kinesin spindle protein inhibitor, in patients with advanced solid tumors. Investig. New Drugs. 2015;33:440–449. doi: 10.1007/s10637-015-0211-0. PubMed DOI

Holen K.D., Belani C.P., Wilding G., Ramalingam S., Volkman J.L., Ramanathan R.K., Vasist L.S., Bowen C.J., Hodge J.P., Dar M.M., et al. A first in human study of SB-743921, a kinesin spindle protein inhibitor, to determine pharmacokinetics, biologic effects and establish a recommended phase II dose. Cancer Chemother. Pharmacol. 2011;67:447–454. doi: 10.1007/s00280-010-1346-5. PubMed DOI PMC

Wakui H., Yamamoto N., Kitazono S., Mizugaki H., Nakamichi S., Fujiwara Y., Nokihara H., Yamada Y., Suzuki K., Kanda H., et al. A phase 1 and dose-finding study of LY2523355 (litronesib), an Eg5 inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2014;74:15–23. doi: 10.1007/s00280-014-2467-z. PubMed DOI

Hollebecque A., Deutsch E., Massard C., Gomez-Roca C., Bahleda R., Ribrag V., Bourgier C., Lazar V., Lacroix L., Gazzah A., et al. A phase I, dose-escalation study of the Eg5-inhibitor EMD 534085 in patients with advanced solid tumors or lymphoma. Investig. New Drugs. 2013;31:1530–1538. doi: 10.1007/s10637-013-0026-9. PubMed DOI

Holen K., DiPaola R., Liu G., Tan A.R., Wilding G., Hsu K., Agrawal N., Chen C., Xue L., Rosenberg E., et al. A phase I trial of MK-0731, a Kinesin Spindle Protein (KSP) inhibitor, in patients with solid tumors. Investig. New Drugs. 2012;30:1088–1095. doi: 10.1007/s10637-011-9653-1. PubMed DOI PMC

Wood K.W., Lad L., Luo L., Qian X., Knight S.D., Nevins N., Brejc K., Sutton D., Gilmartin A.G., Chua P.R., et al. Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc. Natl. Acad. Sci. USA. 2010;107:5839–5844. doi: 10.1073/pnas.0915068107. PubMed DOI PMC

Chung V., Heath E.I., Schelman W.R., Johnson B.M., Kirby L.C., Lynch K.M., Botbyl J.D., Lampkin T.A., Holen K.D. First-time-in-human study of GSK923295, a novel antimitotic inhibitor of centromere-associated protein E (CENP-E), in patients with refractory cancer. Cancer Chemother. Pharmacol. 2012;69:733–741. doi: 10.1007/s00280-011-1756-z. PubMed DOI

Kung P.P., Martinez R., Zhu Z., Zager M., Blasina A., Rymer I., Hallin J., Xu M., Carroll C., Chionis J., et al. Chemogenetic evaluation of the mitotic kinesin CENP-E reveals a critical role in triple-negative breast cancer. Mol. Cancer Ther. 2014;13:2104–2115. doi: 10.1158/1535-7163.MCT-14-0083-T. PubMed DOI

Ohashi A., Ohori M., Iwai K., Nambu T., Miyamoto M., Kawamoto T., Okaniwa M. A novel time-dependent CENP-E inhibitor with potent antitumor activity. PLoS ONE. 2015;10:e0144675. doi: 10.1371/journal.pone.0144675. PubMed DOI PMC

Yamane M., Sawada J.I., Ogo N., Ohba M., Ando T., Asai A. Identification of benzo[d]pyrrolo[2,1-b]thiazole derivatives as CENP-E inhibitors. Biochem. Biophys. Res. Commun. 2019;519:505–511. doi: 10.1016/j.bbrc.2019.09.028. PubMed DOI

Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI

Jurášek M., Rimpelová S., Kmoníčková E., Drašar P., Ruml T. Tailor-made fluorescent trilobolide to study its biological relevance. J. Med. Chem. 2014;57:7947–7954. doi: 10.1021/jm500690j. PubMed DOI

Jurášek M., Černohorská M., Řehulka J., Spiwok V., Sulimenko T., Dráberová E., Darmostuk M., Gurská S., Frydrych I., Buriánová R., et al. Estradiol dimer inhibits tubulin polymerization and microtubule dynamics. J. Steroid. Biochem. Mol. Biol. 2018;183:68–79. doi: 10.1016/j.jsbmb.2018.05.008. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...