Mitotic Poisons in Research and Medicine
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33053667
PubMed Central
PMC7587177
DOI
10.3390/molecules25204632
PII: molecules25204632
Knihovny.cz E-zdroje
- Klíčová slova
- Taxol, cancer treatment, clinical trials, colchicine, cytotoxicity, docetaxel, mitotic poisons, paclitaxel,
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- docetaxel chemie farmakologie MeSH
- kolchicin chemie farmakologie MeSH
- lidé MeSH
- mitóza účinky léků MeSH
- paclitaxel chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- docetaxel MeSH
- kolchicin MeSH
- paclitaxel MeSH
Cancer is one of the greatest challenges of the modern medicine. Although much effort has been made in the development of novel cancer therapeutics, it still remains one of the most common causes of human death in the world, mainly in low and middle-income countries. According to the World Health Organization (WHO), cancer treatment services are not available in more then 70% of low-income countries (90% of high-income countries have them available), and also approximately 70% of cancer deaths are reported in low-income countries. Various approaches on how to combat cancer diseases have since been described, targeting cell division being among them. The so-called mitotic poisons are one of the cornerstones in cancer therapies. The idea that cancer cells usually divide almost uncontrolled and far more rapidly than normal cells have led us to think about such compounds that would take advantage of this difference and target the division of such cells. Many groups of such compounds with different modes of action have been reported so far. In this review article, the main approaches on how to target cancer cell mitosis are described, involving microtubule inhibition, targeting aurora and polo-like kinases and kinesins inhibition. The main representatives of all groups of compounds are discussed and attention has also been paid to the presence and future of the clinical use of these compounds as well as their novel derivatives, reviewing the finished and ongoing clinical trials.
Zobrazit více v PubMed
WHO. [(accessed on 7 October 2020)]; Available online: https://www.who.int/news-room/fact-sheets/detail/cancer.
Dumbrava E.I., Meric-Bernstam F. Personalized cancer therapy-leveraging a knowledge base for clinical decision-making. Cold Spring Harb. Mol. Case Stud. 2018;4:a001578. doi: 10.1101/mcs.a001578. PubMed DOI PMC
WHO. [(accessed on 7 October 2020)]; Available online: https://www.who.int/medicines/publications/essentialmedicines/en/
Cahill D.P., Lengauer C., Yu J., Riggins G.J., Willson J.K., Markowitz S.D., Kinzler K.W., Vogelstein B. Mutations of mitotic checkpoint genes in human cancers. Nature. 1998;392:300–303. doi: 10.1038/32688. PubMed DOI
Chen X., Widmer L.A., Stangier M.M., Steinmetz M.O., Stelling J., Barral Y. Remote control of microtubule plus-end dynamics and function from the minus-end. eLife. 2019;8:e48627. doi: 10.7554/eLife.48627. PubMed DOI PMC
Li C., Li J., Goodson H.V., Alber M.S. Microtubule dynamic instability: The role of cracks between protofilaments. Soft Matter. 2014;10:2069–2080. doi: 10.1039/C3SM52892H. PubMed DOI
Strothman C., Farmer V., Arpağ G., Rodgers N., Podolski M., Norris S., Ohi R., Zanic M. Microtubule minus-end stability is dictated by the tubulin off-rate. J. Cell Biol. 2019;218:2841–2853. doi: 10.1083/jcb.201905019. PubMed DOI PMC
Ferro L.S., Can S., Turner M.A., ElShenawy M.M., Yildiz A. Kinesin and dynein use distinct mechanisms to bypass obstacles. eLife. 2019;8:e48629. doi: 10.7554/eLife.48629. PubMed DOI PMC
Stearns T., Evans L., Kirschner M. γ-Tubulin is a highly conserved component of the centrosome. Cell. 1991;65:825–836. doi: 10.1016/0092-8674(91)90390-K. PubMed DOI
Findeisen P., Mühlhausen S., Dempewolf S., Hertzog J., Zietlow A., Carlomagno T., Kollmar M. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol. Evol. 2014;6:2274–2288. doi: 10.1093/gbe/evu187. PubMed DOI PMC
Ross I., Clarissa C., Giddings T.H., Jr., Winey M. ε-tubulin is essential in Tetrahymena thermophila for the assembly and stability of basal bodies. J. Cell Sci. 2013;126:3441–3451. doi: 10.1242/jcs.128694. PubMed DOI PMC
Garreau de Loubresse N., Ruiz F., Beisson J., Klotz C. Role of delta-tubulin and the C-tubule in assembly of Paramecium basal bodies. BMC Cell Biol. 2001;2:4. doi: 10.1186/1471-2121-2-4. PubMed DOI PMC
Song Y., Brady S.T. Post-translational modifications of tubulin: Pathways to functional diversity of microtubules. Trends Cell Biol. 2015;25:125–136. doi: 10.1016/j.tcb.2014.10.004. PubMed DOI PMC
Clinical Trials. [(accessed on 13 July 2020)]; Available online: http://clinicaltrials.gov.
Hartung E.F. History of the use of colchicum and related medicaments in gout; with suggestions for further research. Ann. Rheum. Dis. 1954;13:190–200. doi: 10.1136/ard.13.3.190. PubMed DOI PMC
Graham W., Roberts J.B. Intravenous colchicine in the management of gouty arthritis. Ann. Rheum. Dis. 1953;12:16–19. doi: 10.1136/ard.12.1.16. PubMed DOI PMC
Eigsti O.J., Dustin P., Jr., Gay-winn N. On the discovery of the action of colchicine on mitosis in 1889. Science. 1949;110:692. doi: 10.1126/science.110.2869.692. PubMed DOI
Spasevska I., Ayoub A.T., Winter P., Preto J., Wong G.K.-S., Dumontet C., Tuszynski J.A. Modeling the Colchicum autumnale tubulin and a comparison of its interaction with colchicine to human tubulin. Int. J. Mol. Sci. 2017;18:1676. doi: 10.3390/ijms18081676. PubMed DOI PMC
Bhattacharyya B., Panda D., Gupta S., Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med. Res. Rev. 2008;28:155–183. doi: 10.1002/med.20097. PubMed DOI
Ateş F.B., Özmen N., Sezginer E.K., Kurt E.E. Effects of colchicine on cell cycle arrest and MMP-2 mRNA expression in MCF 7 breast adenocarcinoma cells. Turk. Bull. Hyg. Exp. Biol. 2018;75:239–244. doi: 10.5505/TurkHijyen.2018.22755. DOI
McCarty D.J. Urate crystals, inflammation, and colchicine. Arthritis Rheum. 2008;58:S20–S24. doi: 10.1002/art.23069. PubMed DOI
Paschke S., Weidner A.F., Paust T., Marti O., Beil M., Ben-Chetrit E. Technical advance: Inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. J. Leukoc. Biol. 2013;94:1091–1096. doi: 10.1189/jlb.1012510. PubMed DOI
Dinarello C.A., Wolff S.M., Goldfinger S.E., Dale D.C., Alling D.W. Colchicine therapy for familial mediterranean fever. A double-blind trial. N. Engl. J. Med. 1974;291:934–937. doi: 10.1056/NEJM197410312911804. PubMed DOI
Filkenstein Y., Aks S.E., Hutson J.R., Juurlink D.N., Nguyen P., Dubnov-Raz G., Pollak U., Koren G., Bentur Y. Colchicine poisoning: The dark side of an ancient drug. Clin. Toxicol. 2010;48:407–414. PubMed
Bhattacharya S., Das A., Datta S., Ganguli A., Chakrabarti G. Colchicine induces autophagy and senescence in lung cancer cells at clinically admissible concentration: Potential use of colchicine in combination with autophagy inhibitor in cancer therapy. Tumor Biol. 2016;37:10653–10664. doi: 10.1007/s13277-016-4972-7. PubMed DOI
Majcher U., Klejborowska G., Kaik M., Maj E., Wietrzyk J., Moshari M., Preto J., Tuszynski J.A., Huczyński A. Synthesis and biological evaluation of novel triple-modified colchicine derivatives as potent tubulin-targeting anticancer agents. Cells. 2018;7:216. doi: 10.3390/cells7110216. PubMed DOI PMC
Kang G.J., Getahun Z., Muzaffar A., Brossi A., Hamel E. N-acetylcolchinol O-methyl ether and thiocolchicine, potent analogs of colchicine modified in the C ring. Evaluation of the mechanistic basis for their enhanced biological properties. J. Biol. Chem. 1990;265:10255–10259. PubMed
Yasobu N., Kitajima M., Kogure N., Shishido Y., Matsuzaki T., Nagaoka M., Takayama H. Design, synthesis, and antitumor activity of 4-halocolchicines and their pro-drugs activated by cathepsin B. ACS Med. Chem. Lett. 2011;2:348–352. doi: 10.1021/ml100287y. PubMed DOI PMC
Larocque K., Ovadje P., Djurdjevic S., Mehdi M., Green J., Pandey S. Novel analogue of colchicine induces selective pro-death autophagy and necrosis in human cancer cells. PLoS ONE. 2014;9:e87064. doi: 10.1371/journal.pone.0087064. PubMed DOI PMC
Davis P.D., Dougherty G.J., Blakey D.C., Galbraith S.M., Tozer G.M., Holder A.L., Naylor M.A., Nolan J., Stratford M.R.L., Chaplin D.J., et al. ZD6126, A novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res. 2002;62:7247–7253. PubMed
Gracheva I.A., Svirshchevskaya E.V., Faerman V.I., Beletskaya I.P., Fedorov A.Y. Synthesis and antiproliferative properties of bifunctional allocolchicine derivatives. Synthesis. 2018;50:2753–2760.
Lippert J.W., 3rd Vascular disrupting agents. Bioorg. Med. Chem. 2007;15:605–615. doi: 10.1016/j.bmc.2006.10.020. PubMed DOI
Marzo-Mas A., Falomir E., Murga J., Carda M., Marco J.A. Effects on tubulin polymerization and down-regulation of c-Myc, hTERT and VEGF genes by colchicine haloacetyl and haloaroyl derivatives. Eur. J. Med. Chem. 2018;150:591–600. doi: 10.1016/j.ejmech.2018.03.019. PubMed DOI
Cortese M., Goellner S., Acosta E.G., Neufeldt C.J., Oleksiuk O., Lampe M., Haselmann U., Funaya C., Schieber N., Ronchi P., et al. Ultrastructural characterization of zika virus replication factories. Cell Rep. 2017;18:2113–2123. doi: 10.1016/j.celrep.2017.02.014. PubMed DOI PMC
Richter M., Boldescu V., Graf D., Streicher F., Dimoglo A., Bartenschlager R., Klein C.D. Synthesis, biological evaluation, and molecular docking of combretastatin and colchicine derivatives and their hCE1-activated prodrugs as antiviral agents. ChemMedChem. 2019;14:469–483. doi: 10.1002/cmdc.201800641. PubMed DOI
Choi M.Y., Wee Y.M., Kim Y.H., Shin S., Yoo S.E., Han D.J. Novel colchicine derivatives enhance graft survival after transplantation via suppression of T-cell differentiation and activity. J. Cell Biochem. 2019;120:12436–12449. doi: 10.1002/jcb.28510. PubMed DOI
Van Tamelen E.E., Spencer T.A., Jr., Allen D.S., Jr., Orvis R.L. The total synthesis of colchicine. J. Am. Chem. Soc. 1959;81:6341–6342. doi: 10.1021/ja01532a070. DOI
Schreiber J., Leimgruber W., Pesaro M., Schudel P., Eschenmoser A. Synthese des colchicins. Angew. Chem. 1959;71:637–640. doi: 10.1002/ange.19590712002. DOI
Chen B., Liu X., Hu Y.J., Zhang D.M., Deng L., Lu J., Min L., Ye W.C., Li C.C. Enantioselective total synthesis of (−)-colchicine, (+)-demecolcinone and metacolchicine: Determination of the absolute configurations of the latter two alkaloids. Chem. Sci. 2017;8:4961–4966. doi: 10.1039/C7SC01341H. PubMed DOI PMC
Pandey D.K., Banik R.M. Optimization of extraction conditions for colchicine from Gloriosa superba tubers using response surface methodology. J. Agric. Technol. 2012;8:1301–1315.
Kefi S. A novel approach for production of colchicine as a plant secondary metabolite by in vitro plant cell and tissue cultures. J. Agric. Sci. Technol. A. 2018;8:121–128.
Sivakumar G., Alba K., Phillips G.C. Biorhizome: A biosynthetic platform for colchicine biomanufacturing. Front. Plant Sci. 2017;8:1137. doi: 10.3389/fpls.2017.01137. PubMed DOI PMC
Wani M.C., Taylor H.L., Wall M.E., Coggon P., McPhail A.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971;93:2325–2327. doi: 10.1021/ja00738a045. PubMed DOI
Parness J., Horwitz S.B. Taxol binds to polymerized tubulin in vitro. J. Cell Biol. 1981;91:479–487. doi: 10.1083/jcb.91.2.479. PubMed DOI PMC
Jordan M.A., Toso R.J., Thrower D., Wilson L. Mechanism of mitotic block and inhibition of cell-proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. USA. 1993;90:9552–9556. doi: 10.1073/pnas.90.20.9552. PubMed DOI PMC
Ozols R.F., Bundy B.N., Greer B.E., Fowler J.M., Clarke-Pearson D., Burger R.A., Mannel R.S., DeGeest K., Hartenbach E.M., Baergen R., et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A gynecologic oncology group study. J. Clin. Oncol. 2003;21:3194–3200. doi: 10.1200/JCO.2003.02.153. PubMed DOI
Weiss R.B., Donehower R.C., Wiernik P.H., Ohnuma T., Gralla R.J., Trump D.L., Baker J.R., Jr., Van Echo D.A., Von Hoff D.D., Leyland-Jones B. Hypersensitivity reactions from taxol. J. Clin. Oncol. 1990;8:1263–1268. doi: 10.1200/JCO.1990.8.7.1263. PubMed DOI
Miele E., Spinelli G.P., Miele E., Tomao F., Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine. 2009;4:99–105. PubMed PMC
Du X., Yin S., Xu L., Ma J., Yu H., Wang G., Li J. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr. Polym. 2020;229:115484. doi: 10.1016/j.carbpol.2019.115484. PubMed DOI
Zhao M., Li H., Fan L., Ma Y., Gong H., Lai W., Fang Q., Hu Z. Quantitative proteomic analysis to the first commercialized liposomal paclitaxel nano-platform Lipusu revealed the molecular mechanism of the enhanced anti-tumor effect. Artif. Cells Nanomed. Biotechnol. 2018;46:S147–S155. doi: 10.1080/21691401.2018.1489822. PubMed DOI
Ranade A.A., Joshi D.A., Phadke G.K., Patil P.P., Kasbekar R.B., Apte T.G., Dasare R.R., Mengde S.D., Parikh P.M., Bhattacharyya G.S., et al. Clinical and economic implications of the use of nanoparticle paclitaxel (Nanoxel) in India. Ann. Oncol. 2013;24:v6–v12. doi: 10.1093/annonc/mdt322. PubMed DOI
Galletti E., Magnani M., Renzulli M.L., Botta M. Paclitaxel and docetaxel resistance: Molecular mechanisms and development of new generation taxanes. ChemMedChem. 2007;2:920–942. doi: 10.1002/cmdc.200600308. PubMed DOI
Clarke S.J., Rivory L.P. Clinical pharmacokinetics of docetaxel. Clin. Pharmacokinet. 1999;36:99–114. doi: 10.2165/00003088-199936020-00002. PubMed DOI
Valero V., Jones S.E., Von Hoff D.D., Booser D.J., Mennel R.G., Ravdin P.M., Holmes F.A., Rahman Z., Schottstaedt M.W., Erban J.K., et al. A phase II study of docetaxel in patients with paclitaxel-resistant metastatic breast cancer. J. Clin. Oncol. 1998;16:3362–3368. doi: 10.1200/JCO.1998.16.10.3362. PubMed DOI
Leonelli F., La Bella A., Migneco L.M., Bettolo R.M. Design, synthesis and applications of hyaluronic acid-paclitaxel bioconjugates. Molecules. 2008;13:360–378. doi: 10.3390/molecules13020360. PubMed DOI PMC
Safavy A., Raisch K.P., Khazaeli M.B., Buchsbaum D.J., Bonner J.A. Paclitaxel derivatives for targeted therapy of cancer: Toward the development of smart taxanes. J. Med. Chem. 1999;42:4919–4924. doi: 10.1021/jm990355x. PubMed DOI
Nakamura J., Nakajima N., Matsumura K., Hyon S.H. Water-soluble taxol conjugates with dextran and targets tumor cells by folic acid immobilization. Anticancer Res. 2010;30:903–909. PubMed
Darmostuk M., Rimpelova S., Gbelcova H., Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol. Adv. 2015;33:1141–1161. doi: 10.1016/j.biotechadv.2015.02.008. PubMed DOI
Li F., Lu J., Liu J., Liang C., Wang M., Wang L., Li D., Yao H., Zhang Q., Wen J., et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat. Commun. 2017;8:1390. doi: 10.1038/s41467-017-01565-6. PubMed DOI PMC
Zhang C., Zhang S., Zhi D., Zhao Y., Cui S., Cui J. Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy. Colloid Surf. A-Physicochem. Eng. Asp. 2020;585:124054. doi: 10.1016/j.colsurfa.2019.124054. DOI
Lee J., Chae S.W., Ma L.J., Lim S.Y., Alnajjar S., Choo H.Y.P., Lee H.J., Rhie S.J. Pharmacokinetic alteration of paclitaxel by ferulic acid derivative. Pharmaceutics. 2019;11:593. doi: 10.3390/pharmaceutics11110593. PubMed DOI PMC
Kubo T., Nogami N., Bessho A., Morita A., Ikeo S., Yokoyama T., Ishihara M., Honda T., Fujimoto N., Murakami S., et al. Phase II trial of carboplatin, nab-paclitaxel and bevacizumab for advanced non-squamous non-small cell lung cancer (CARNAVAL study; TORG1424/OLCSG1402) Ann. Oncol. 2019;30:ix172–ix173. doi: 10.1093/annonc/mdz437.037. DOI
Redondo A., Colombo N., Dreosti L.M., McCormack M., Nogeira Rodrigues A., Scambia G., Roszak A., Donica M., Ulker B., González Martín A. Primary results from CECILIA, a global single-arm phase II study evaluating bevacizumab (BEV), carboplatin (C) and paclitaxel (P) for advanced cervical cancer (aCC) Ann. Oncol. 2019;30:v403–v434. doi: 10.1093/annonc/mdz250.061. PubMed DOI
González Martín A., Oza A.M., Embleton A.C., Pfisterer J., Ledermann J.A., Pujade-Lauraine E., Kristensen G., Bertrand M.A., Beale P., Cervantes A., et al. ICON7 investigators. Exploratory outcome analyses according to stage and/or residual disease in the ICON7 trial of carboplatin and paclitaxel with or without bevacizumab for newly diagnosed ovarian cancer. Gynecol. Oncol. 2019;152:53–60. doi: 10.1016/j.ygyno.2018.08.036. PubMed DOI PMC
El-Sayed E.R., Ahmed A.S., Hassan I.A., Ismaiel A.A., El-Din A.A.K. Strain improvement and immobilization technique for enhanced production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima. Appl. Microbiol. Biotechnol. 2019;103:8923–8935. doi: 10.1007/s00253-019-10129-1. PubMed DOI
Holton R.A., Somoza C., Kim H.B., Liang F., Biediger R.J., Boatman D., Shindo M., Smith C.C., Kim S., Nadizadeh H., et al. First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc. 1994;116:1597–1598. doi: 10.1021/ja00083a066. DOI
Nicolaou K.C., Yang Z., Liu J.J., Ueno H., Nantermet P.G., Guy R.K., Claiborne C.F., Renaud J., Couladouros E.A., Paulvannan K., et al. Total synthesis of taxol. Nature. 1994;367:630–634. doi: 10.1038/367630a0. PubMed DOI
Danishefsky S.J., Masters J.J., Young W.B., Link J.T., Snyder L.B., Magee T.V., Jung D.K., Isaacs R.C.A., Bornmann W.G., Alaimo C.A., et al. Total synthesis of baccatin III and taxol. J. Am. Chem. Soc. 1996;118:2843–2859. doi: 10.1021/ja952692a. DOI
Wender P.A., Badham N.F., Conway S.P., Floreancig P.E., Glass T.E., Gränicher C., Houze J.B., Jänichen J., Lee D., Marquess D.G., et al. The pinene path to taxanes. 5. Stereocontrolled synthesis of a versatile taxane precursor. J. Am. Chem. Soc. 1997;119:2755–2756. doi: 10.1021/ja9635387. DOI
Morihira K., Hara R., Kawahara S., Nishimori T., Nakamura N., Kusama H., Kuwajima I. Enantioselective total synthesis of taxol. J. Am. Chem. Soc. 1998;120:12980–12981. doi: 10.1021/ja9824932. DOI
Isamu S., Hayato I., Hiroki S., Masatoshi H., Yu-ichirou T., Teruaki M. A new method for the synthesis of baccatin III. Chem. Lett. 1998;27:1–2.
Doi T., Fuse S., Miyamoto S., Nakai K., Sasuga D., Takahashi T. A formal total synthesis of taxol aided by an automated synthesizer. Chem. Asian J. 2006;1:370–383. doi: 10.1002/asia.200600156. PubMed DOI
Fukaya K., Kodama K., Tanaka Y., Yamazaki H., Sugai T., Yamaguchi Y., Watanabe A., Oishi T., Sato T., Chida N. Synthesis of paclitaxel. 2. Construction of the ABCD ring and formal synthesis. Org. Lett. 2015;17:2574–2577. doi: 10.1021/acs.orglett.5b01174. PubMed DOI
Hirai S., Utsugi M., Iwamoto M., Nakada M. Formal total synthesis of (−)-taxol through Pd-catalyzed eight-membered carbocyclic ring formation. Chem. Eur. J. 2015;21:355–359. doi: 10.1002/chem.201404295. PubMed DOI
Patel R.N. Tour de paclitaxel: Biocatalysis for semisynthesis. Annu. Rev. Microbiol. 1998;52:361–395. doi: 10.1146/annurev.micro.52.1.361. PubMed DOI
Ganem B., Franke R.R. Paclitaxel from primary taxanes: A perspective on creative invention in organozirconium chemistry. J. Org. Chem. 2007;72:3981–3987. doi: 10.1021/jo070129s. PubMed DOI
Kumar P., Singh B., Thakur V., Thakur A., Thakur N., Pandey D., Chand D. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol. Rep. 2019;24:e00395. doi: 10.1016/j.btre.2019.e00395. PubMed DOI PMC
Soliman S.S.M., Raizada M.N. Darkness: A crucial factor in fungal taxol production. Front. Microbiol. 2018;9:353. doi: 10.3389/fmicb.2018.00353. PubMed DOI PMC
Mooberry S.L., Tien G., Hernandez A.H., Plubrukarn A., Davidson B.S. Laulimalide and isolaulimalide, new paclitaxel-like microtubule stabilizing agents. Cancer Res. 1999;59:653–660. PubMed
Churchill C.D.M., Klobukowski M., Tuszynski J.A. The unique binding mode of laulimalide to two tubulin protofilaments. Chem. Biol. Drug Des. 2015;86:190–199. doi: 10.1111/cbdd.12475. PubMed DOI
Castro-Alvarez A., Pineda O., Vilarrasa J. Further insight into the interactions of the cytotoxic macrolides laulimalide and peloruside A with their common binding site. ACS Omega. 2018;3:1770–1782. doi: 10.1021/acsomega.7b01723. PubMed DOI PMC
Pryor D.E., O’Brate A., Bilcer G., Díaz J.F., Wang Y., Wang Y., Kabaki M., Jung M.K., Andreu J.M., Ghosh A.K., et al. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry. 2002;41:9109–9115. doi: 10.1021/bi020211b. PubMed DOI
Clark E.A., Hills P.M., Davidson B.S., Wender P.A., Mooberry S.L. Laulimalide and synthetic laulimalide analogues are synergistic with paclitaxel and 2-methoxyestradiol. Mol. Pharm. 2006;3:457–467. doi: 10.1021/mp060016h. PubMed DOI
Liu J., Towle M.J., Cheng H., Saxton P., Reardon C., Wu J., Murphy E.A., Kuznetsov G., Johannes C.W., Tremblay M.R., et al. In vitro and in vivo anticancer activities of synthetic (−)-laulimalide, a marine natural product microtubule stabilizing agent. Anticancer Res. 2007;27:1509–1518. PubMed
Paterson I., Menche D., Håkansson A.E., Longstaff A., Wong D., Barasoain I., Buey R.M., Díaz J.F. Design, synthesis and biological evaluation of novel, simplified analogues of laulimalide: Modification of the side chain. Bioorg. Med. Chem. Lett. 2005;15:2243–2247. doi: 10.1016/j.bmcl.2005.03.018. PubMed DOI
Paterson I., Bergmann H., Menche D., Berkessel A. Synthesis of novel 11-desmethyl analogues of laulimalide by Nozaki-Kishi coupling. Org. Lett. 2004;6:1293–1295. doi: 10.1021/ol049791q. PubMed DOI
Mooberry S.L., Randall-Hlubek D.A., Leal R.M., Hegde S.G., Hubbard R.D., Zhang L., Wender P.A. Microtubule-stabilizing agents based on designed laulimalide analogues. Proc. Natl. Acad. Sci. USA. 2004;101:8803–8808. doi: 10.1073/pnas.0402759101. PubMed DOI PMC
Wender P.A., Hegde S.G., Hubbard R.D., Zhang L., Mooberry S.L. Synthesis and biological evaluation of (−)-laulimalide analogues. Org. Lett. 2003;5:3507–3509. doi: 10.1021/ol035339f. PubMed DOI
Gallagher B.M., Jr., Fang F.G., Johannes C.W., Pesant M., Tremblay M.R., Zhao H., Akasaka K., Li X., Liu J., Littlefield B.A. Synthesis and biological evaluation of (−)-laulimalide analogues. Bioorg. Med. Chem. Lett. 2004;14:575–579. doi: 10.1016/j.bmcl.2003.12.001. PubMed DOI
Ahmed A., Hoegenauer E.K., Enev V.S., Hanbauer M., Kaehlig H., Öhler E., Mulzer J. Total synthesis of the microtubule stabilizing antitumor agent laulimalide and some nonnatural analogues: The power of sharpless’ asymmetric epoxidation. J. Org. Chem. 2003;68:3026–3042. doi: 10.1021/jo026743f. PubMed DOI
Crimmins M.T., Stanton M.G., Allwein S.P. Asymmetric total synthesis of (−)-laulimalide: Exploiting the asymmetric glycolate alkylation reaction. J. Am. Chem. Soc. 2002;124:5958–5959. doi: 10.1021/ja026269v. PubMed DOI
Enev V.S., Kaehlig H., Mulzer J. Macrocyclization via allyl transfer: Total synthesis of laulimalide. J. Am. Chem. Soc. 2001;123:10764–10765. doi: 10.1021/ja016752q. PubMed DOI
Ghosh A.K., Wang Y. Total synthesis of (−)-laulimalide. J. Am. Chem. Soc. 2000;122:11027–11028. doi: 10.1021/ja0027416. PubMed DOI PMC
Mulzer J., Hanbauer M. Total synthesis of the antitumor agent (−)-laulimalide. Tetrahedron Lett. 2002;43:3381–3383. doi: 10.1016/S0040-4039(02)00472-0. DOI
Nelson S.G., Cheung W.S., Kassick A.J., Hilfiker M.A. A de novo enantioselective total synthesis of (−)-laulimalide. J. Am. Chem. Soc. 2002;124:13654–13655. doi: 10.1021/ja028019k. PubMed DOI
Paterson I., De Savi C., Tudge M. Total synthesis of the microtubule-stabilizing agent (−)-laulimalide. Org. Lett. 2001;3:3149–3152. doi: 10.1021/ol010150u. PubMed DOI
Trost B.M., Seganish W.M., Chung C.K., Amans D. Total synthesis of laulimalide: Synthesis of the Northern and Southern fragments. Chem. Eur. J. 2012;18:2948–2960. doi: 10.1002/chem.201102898. PubMed DOI PMC
Uenishi J., Ohmi M. Total synthesis of (−)-laulimalide: Pd-catalyzed stereospecific ring construction of the substituted 3,6-dihydro [2H] pyran units. Angew. Chem.-Int. Ed. 2005;44:2756–2760. doi: 10.1002/anie.200500029. PubMed DOI
Wender P.A., Hegde S.G., Hubbard R.D., Zhang L. Total synthesis of (−)-laulimalide. J. Am. Chem. Soc. 2002;124:4956–4957. doi: 10.1021/ja0258428. PubMed DOI
Williams D.R., Mi L., Mullins R.J., Stites R.E. Synthesis of (−)-laulimalide: An agent for microtubule stabilization. Tetrahedron Lett. 2002;43:4841–4844. doi: 10.1016/S0040-4039(02)00907-3. DOI
Bennett M.J., Chan G.K., Rattner J.B., Schriemer D.C. Low-dose laulimalide represents a novel molecular probe for investigating microtubule organization. Cell Cycle. 2012;11:3045–3054. doi: 10.4161/cc.21411. PubMed DOI PMC
Prota A.E., Bargsten K., Northcote P.T., Marsh M., Altmann K.H., Miller J.H., Fernando Díaz J., Steinmetz M.O. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew. Chem.-Int. Ed. 2014;53:1621–1625. doi: 10.1002/anie.201307749. PubMed DOI
West L.M., Northcote P.T., Battershill C.N. Peloruside A: A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J. Org. Chem. 2000;65:445–449. doi: 10.1021/jo991296y. PubMed DOI
Hood K.A., West L.M., Rouwé B., Northcote P.T., Berridge M.V., Wakefield J., Miller J.H. Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity. Cancer Res. 2002;62:3356–3360. PubMed
Meyer C.J., Krauth M., Wick M.J., Shay J.W., Gellert G., De Brabander J.K., Northcote P.T., Miller J.H. Peloruside A inhibits growth of human lung and breast tumor xenografts in an athymic nu/nu mouse model. Mol. Cancer Ther. 2015;14:1816–1823. doi: 10.1158/1535-7163.MCT-15-0167. PubMed DOI
Gewirtz D.A., Holt S.E., Elmore L.W. Accelerated senescence: An emerging role in tumor cell response to chemotherapy and radiation. Biochem. Pharmacol. 2008;76:947–957. doi: 10.1016/j.bcp.2008.06.024. PubMed DOI
Chan A., Gilfillan C., Templeton N., Paterson I., Northcote P.T., Miller J.H. Induction of accelerated senescence by the microtubule-stabilizing agent peloruside A. Investig. New Drugs. 2017;35:706–717. doi: 10.1007/s10637-017-0493-5. PubMed DOI
Chan A., Singh A.J., Northcote P.T., Miller J.H. Inhibition of human vascular endothelial cell migration and capillary-like tube formation by the microtubule-stabilizing agent peloruside A. Investig. New Drugs. 2015;33:564–574. doi: 10.1007/s10637-015-0232-8. PubMed DOI
Das V., Miller J.H. Microtubule stabilization by peloruside A and paclitaxel rescues degenerating neurons from okadaic acid-induced tau phosphorylation. Eur. J. Neurosci. 2012;35:1705–1717. doi: 10.1111/j.1460-9568.2012.08084.x. PubMed DOI
O’Sullivan D., Miller J.H., Northcote P.T., La Flamme A.C. Microtubule-stabilizing agents delay the onset of EAE through inhibition of migration. Immunol. Cell Biol. 2013;91:583–592. doi: 10.1038/icb.2013.47. PubMed DOI
Crume K.P., O’Sullivan D., Miller J.H., Northcote P.T., La Flamme A.C. Delaying the onset of experimental autoimmune encephalomyelitis with the microtubule-stabilizing compounds, paclitaxel and Peloruside A. J. Leukoc. Biol. 2009;86:949–958. doi: 10.1189/jlb.0908541. PubMed DOI
Singh A.J., Razzak M., Teesdale-Spittle P., Gaitanos T.N., Wilmes A., Paterson I., Goodman J.M., Miller J.H., Northcote P.T. Structure-activity studies of the pelorusides: New congeners and semi-synthetic analogues. Org. Biomol. Chem. 2011;9:4456–4466. doi: 10.1039/c0ob01127d. PubMed DOI
Chany A.C., Legros F., Haroun H., Kundu U.K., Biletskyi B., Torlak S., Mathé-Allainmat M., Lebreton J., Macé A., Carboni B., et al. Function-oriented synthesis toward peloruside A analogues. Org. Lett. 2019;21:2988–2992. doi: 10.1021/acs.orglett.9b00413. PubMed DOI
Ghosh A.K., Xu X., Kim J.H., Xu C.X. Enantioselective total synthesis of peloruside A: A potent microtubule stabilizer. Org. Lett. 2008;10:1001–1004. doi: 10.1021/ol703091b. PubMed DOI
Hoye T.R., Jeon J., Kopel L.C., Ryba T.D., Tennakoon M.A., Wang Y. Total synthesis of peloruside A through kinetic lactonization and relay ring-closing metathesis cyclization reactions. Angew. Chem. Int. Ed. 2010;49:6151–6155. doi: 10.1002/anie.201002293. PubMed DOI PMC
Jin M., Taylor R.E. Total synthesis of (+)-peloruside A. Org. Lett. 2005;7:1303–1305. doi: 10.1021/ol050070g. PubMed DOI
Liao X., Wu Y., De Brabander J.K. Total synthesis and absolute configuration of the novel microtubule-stabilizing agent peloruside A. Angew. Chem. Int. Ed. 2003;42:1648–1652. doi: 10.1002/anie.200351145. PubMed DOI
McGowan M.A., Stevenson C.P., Schiffler M.A., Jacobsen E.N. An enantioselective total synthesis of (+)-peloruside A. Angew. Chem. Int. Ed. 2010;49:6147–6150. doi: 10.1002/anie.201002177. PubMed DOI PMC
Evans D.A., Welch D.S., Speed A.W.H., Moniz G.A., Reichelt A., Ho S. An aldol-based synthesis of (+)-peloruside A, a potent microtubule stabilizing agent. J. Am. Chem. Soc. 2009;131:3840–3841. doi: 10.1021/ja900020a. PubMed DOI PMC
Brackovic A., Harvey J.E. Synthetic, semisynthetic and natural analogues of peloruside A. Chem. Commun. 2015;51:4750–4765. doi: 10.1039/C4CC09785H. PubMed DOI
Ranade A.R., Higgins L.A., Markowski T.W., Glaser N., Kashin D., Bai R., Hong K.H., Hamel E., Höfle G., Georg G.I. Characterizing the epothilone binding site on β-tubulin by photoaffinity labeling: Identification of β-tubulin peptides TARGSQQY and TSRGSQQY as targets of an epothilone photoprobe for polymerized tubulin. J. Med. Chem. 2016;59:3499–3514. doi: 10.1021/acs.jmedchem.6b00188. PubMed DOI PMC
Hardt I.H., Steinmetz H., Gerth K., Sasse F., Reichenbach H., Höfle G. New natural epothilones from Sorangium cellulosum, strains So ce90/B2 and So ce90/D13, Isolation, structure elucidation, and SAR studies. J. Nat. Prod. 2001;64:847–856. doi: 10.1021/np000629f. PubMed DOI
Gerth K., Steinmetz H., Höfle G., Reichenbach H. Studies on the biosynthesis of epothilones: The PKS and epothilone C/D monooxygenase. J. Antibiot. (Tokyo) 2001;54:144–148. doi: 10.7164/antibiotics.54.144. PubMed DOI
Höfle G., Bedorf N., Steinmetz H., Schomburg D., Gerth K., Reichenbach H. Epothilone A and B—novel 16-membered macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. Angew. Chem. Int. Ed. 1996;35:1567–1569. doi: 10.1002/anie.199615671. DOI
Kowalski R.J., Giannakakou P., Hamel E. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol(R)) J. Biol. Chem. 1997;272:2534–2541. doi: 10.1074/jbc.272.4.2534. PubMed DOI
Rogalska A., Marczak A. Therapeutic potential of patupilone in epithelial ovarian cancer and future directions. Life Sci. 2018;205:38–44. doi: 10.1016/j.lfs.2018.04.058. PubMed DOI
Shen S., Kepp O., Martins I., Vitale I., Souquère S., Castedo M., Pierron G., Kroemer G. Defective autophagy associated with LC3 puncta in epothilone-resistant cancer cells. Cell Cycle. 2010;9:377–383. doi: 10.4161/cc.9.2.10468. PubMed DOI
Rogalska A., Gajek A., Marczak A. Suppression of autophagy enhances preferential toxicity of epothilone A and epothilone B in ovarian cancer cells. Phytomedicine. 2019;61:152847. doi: 10.1016/j.phymed.2019.152847. PubMed DOI
Luu T., Kim K.P., Blanchard S., Anyang B., Hurria A., Yang L., Beumer J.H., Somlo G., Yen Y. Phase IB trial of ixabepilone and vorinostat in metastatic breast cancer. Breast Cancer Res. Treat. 2018;167:469–478. doi: 10.1007/s10549-017-4516-x. PubMed DOI
Rugo H.S., Roche H., Thomas E., Chung H.C., Lerzo G.L., Vasyutin I., Patel A., Vahdat L. Efficacy and safety of ixabepilone and capecitabine in patients with advanced triple-negative breast cancer: A pooled analysis from two large phase III, randomized clinical trials. Clin. Breast Cancer. 2018;18:489–497. doi: 10.1016/j.clbc.2018.07.024. PubMed DOI
Osborne C., Challagalla J.D., Eisenbeis C.F., Holmes F.A., Neubauer M.A., Koutrelakos N.W., Taboada C.A., Vukelja S.J., Wilks S.T., Allison M.A., et al. Ixabepilone and carboplatin for hormone receptor positive/HER2-neu negative and triple negative metastatic breast cancer. Clin. Breast Cancer. 2018;18:E89–E95. doi: 10.1016/j.clbc.2017.07.002. PubMed DOI
Peethambaram P.P., Hartmann L.C., Jonker D.J., de Jonge M., Plummer E.R., Martin L., Konner J., Marshall J., Goss G.D., Teslenko V., et al. A phase I pharmacokinetic and safety analysis of epothilone folate (BMS-753493), a folate receptor targeted chemotherapeutic agent in humans with advanced solid tumors. Investig. New Drugs. 2015;33:321–331. doi: 10.1007/s10637-014-0171-9. PubMed DOI
Gaugaz F.Z., Chicca A., Redondo-Horcajo M., Barasoain I., Fernando Díaz J., Altmann K.H. Synthesis, microtubule-binding affinity, and antiproliferative activity of new epothilone analogs and of an EGFR-targeted epothilone-peptide conjugate. Int. J. Mol. Sci. 2019;20:1113. doi: 10.3390/ijms20051113. PubMed DOI PMC
Brunden K.R., Zhang B., Carroll J., Yao Y., Potuzak J.S., Hogan A.M.L., Iba M., James M.J., Xie S.X., Ballatore C., et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J. Neurosci. 2010;30:13861–13866. doi: 10.1523/JNEUROSCI.3059-10.2010. PubMed DOI PMC
Ruschel J., Hellal F., Flynn K.C., Dupraz S., Elliott D.A., Tedeschi A., Bates M., Sliwinski C., Brook G., Dobrindt K., et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science. 2015;348:347–352. doi: 10.1126/science.aaa2958. PubMed DOI PMC
Ye W., Liu T., Zhu M., Zhang W., Huang Z., Li S., Li H., Kong Y., Chen Y. An easy and efficient strategy for the enhancement of epothilone production mediated by TALE-TF and CRISPR/dcas9 systems in Sorangium cellulosum. Front. Bioeng. Biotechnol. 2019;7:334. doi: 10.3389/fbioe.2019.00334. PubMed DOI PMC
Julien B., Shah S. Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob. Agents Chemother. 2002;46:2772–2778. doi: 10.1128/AAC.46.9.2772-2778.2002. PubMed DOI PMC
Tang L., Shah S., Chung L., Carney J., Katz L., Khosla C., Julien B. Cloning and heterologous expression of the epothilone gene cluster. Science. 2000;287:640–642. doi: 10.1126/science.287.5453.640. PubMed DOI
Mutka S.C., Carney J.R., Liu Y., Kennedy J. Heterologous production of epothilone C and D in Escherichia coli. Biochemistry. 2006;45:1321–1330. doi: 10.1021/bi052075r. PubMed DOI
Wenzel S.C., Müller R. Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr. Opin. Biotechnol. 2005;16:594–606. doi: 10.1016/j.copbio.2005.10.001. PubMed DOI
Lau J., Frykman S., Regentin R., Ou S., Tsuruta H., Licari P. Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotechnol. Bioeng. 2002;78:280–288. doi: 10.1002/bit.10202. PubMed DOI
Ye W., Zhang W., Chen Y., Li H., Li S., Pan Q., Tan G., Liu T. A new approach for improving epothilone B yield in Sorangium cellulosum by the introduction of VGB epoF genes. J. Ind. Microbiol. Biotechnol. 2016;43:641–650. doi: 10.1007/s10295-016-1735-9. PubMed DOI
Martino E., Casamassima G., Castiglione S., Cellupica E., Pantalone S., Papagni F., Rui M., Siciliano A.M., Collina S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett. 2018;28:2816–2826. doi: 10.1016/j.bmcl.2018.06.044. PubMed DOI
Gigant B., Wang C., Ravelli R.B.G., Roussi F., Steinmetz M.O., Curmi P.A., Sobel A., Knossow M. Structural basis for the regulation of tubulin by vinblastine. Nature. 2005;435:519–522. doi: 10.1038/nature03566. PubMed DOI
Himes R.H. Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol. Ther. 1991;51:257–267. doi: 10.1016/0163-7258(91)90081-V. PubMed DOI
Lu K., Yap H.Y., Loo T.L. Clinical pharmacokinetics of vinblastine by continuous intravenous infusion. Cancer Res. 1983;43:1405–1408. PubMed
Deyell R.J., Wu B., Rassekh S.R., Tu D., Samson Y., Fleming A., Bouffet E., Sun X., Powers J., Seymour L., et al. Phase I study of vinblastine and temsirolimus in pediatric patients with recurrent or refractory solid tumors: Canadian cancer trials group study IND.218. Pediatr. Blood Cancer. 2019;66:e27540. doi: 10.1002/pbc.27540. PubMed DOI
Coiffier B., Lepage E., Brière J., Herbrecht R., Tilly H., Bouabdallah R., Morel P., Van Den Neste E., Salles G., Gaulard P., et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002;346:235–242. doi: 10.1056/NEJMoa011795. PubMed DOI
Poeschel V., Held G., Ziepert M., Witzens-Harig M., Holte H., Thurner L., Borchmann P., Viardot A., Soekler M., Keller U., et al. Four versus six cycles of CHOP chemotherapy in combination with six applications of rituximab in patients with aggressive B-cell lymphoma with favourable prognosis (FLYER): A randomised, phase 3, non-inferiority trial. Lancet. 2020;394:2271–2281. doi: 10.1016/S0140-6736(19)33008-9. PubMed DOI
Meyer R.M., Gospodarowicz M.K., Connors J.M., Pearcey R.G., Wells W.A., Winter J.N., Horning S.J., Dar A.R., Shustik C., Stewart D.A., et al. ABVD Alone versus Radiation-Based Therapy in Limited-Stage Hodgkin’s Lymphoma. N. Engl. J. Med. 2012;366:399–408. doi: 10.1056/NEJMoa1111961. PubMed DOI PMC
Waters E., Dingle B., Rodrigues G., Vincent M., Ash R., Dar R., Inculet R., Kocha W., Malthaner R., Sanatani M., et al. Analysis of a novel protocol of combined induction chemotherapy and concurrent chemoradiation in unresected non-small-cell lung cancer: A ten-year experience with vinblastine, cisplatin, and radiation therapy. Clin. Lung Cancer. 2010;11:243–250. doi: 10.3816/CLC.2010.n.031. PubMed DOI
Zhigaltsev I.V., Maurer N., Akhong Q.F., Leone R., Leng E., Wang J., Semple S.C., Cullis P.R. Liposome-encapsulated vincristine, vinblastine and vinorelbine: A comparative study of drug loading and retention. J. Control. Release. 2005;104:103–111. doi: 10.1016/j.jconrel.2005.01.010. PubMed DOI
Ling G., Zhang P., Zhang W., Sun J., Meng X., Qin Y., Deng Y., He Z. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J. Control. Release. 2010;148:241–248. doi: 10.1016/j.jconrel.2010.08.010. PubMed DOI
Leggans E.K., Duncan K.K., Barker T.J., Schleicher K.D., Boger D.L. A remarkable series of vinblastine analogues displaying enhanced activity and an unprecedented tubulin binding steric tolerance: C20’ urea derivatives. J. Med. Chem. 2013;56:628–639. doi: 10.1021/jm3015684. PubMed DOI PMC
Saba N., Seal A. Identification of a less toxic vinca alkaloid derivative for use as a chemotherapeutic agent, based on in silico structural insights and metabolic interactions with CYP3A4 and CYP3A5. J. Mol. Model. 2018;24:82. doi: 10.1007/s00894-018-3611-1. PubMed DOI
Va P., Campbell E.L., Robertson W.M., Boger D.L. Total synthesis and evaluation of a key series of C5-substituted vinblastine derivatives. J. Am. Chem. Soc. 2010;132:8489–8495. doi: 10.1021/ja1027748. PubMed DOI PMC
Bánóczi Z., Gorka-Kereskényi A., Reményi J., Orbán E., Hazai L., Tökési N., Oláh J., Ovádi J., Béni Z., Háda V., et al. Synthesis and in vitro antitumor effect of vinblastine derivative-oligoarginine conjugates. Bioconjugate Chem. 2010;21:1948–1955. doi: 10.1021/bc100028z. PubMed DOI
Manzo E., van Soest R., Matainaho L., Roberge M., Andersen R.J. Ceratamines A and B, antimitotic heterocyclic alkaloids isolated from the marine Sponge Pseudoceratina sp. collected in Papua New Guinea. Org. Lett. 2003;5:4591–4594. doi: 10.1021/ol035721s. PubMed DOI
Tao L., Pan X., Ji M., Chen X., Liu Z. Efficient synthesis and cytotoxicity of novel microtubule-stabilizing agent ceratamine A analogues. Tetrahedron. 2017;73:2159–2171. doi: 10.1016/j.tet.2017.03.008. DOI
Pan X., Tao L., Ji M., Chen X., Liu Z. Synthesis and cytotoxicity of novel imidazo[4,5-d]azepine compounds derived from marine natural product ceratamine A. Bioorg. Med. Chem. Lett. 2018;28:866–868. doi: 10.1016/j.bmcl.2018.02.004. PubMed DOI
Nodwell M., Zimmerman C., Roberge M., Andersen R.J. Synthetic analogues of the microtubule-stabilizing sponge alkaloid ceratamine A are more active than the natural product. J. Med. Chem. 2010;53:7843–7851. doi: 10.1021/jm101012q. PubMed DOI
Kowalski R.J., Giannakakou P., Gunasekera S.P., Longley R.E., Day B.W., Hamel E. The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Mol. Pharmacol. 1997;52:613–622. doi: 10.1124/mol.52.4.613. PubMed DOI
Paterson I., Florence G.J. The chemical synthesis of discodermolide. In: Carlomagno T., editor. Tubulin-Binding Agents: Synthetic, Structural and Mechanistic Insights. Springer; Berlin, Germany: 2009. pp. 73–119. PubMed
Pettit G., Kamano Y., Herald C.L., Tuinman A.A., Boettner F.E., Kizu H., Schmidt J.M., Baczynskyj L., Tomer K.B., Bontems R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J. Am. Chem. Soc. 1987;109:6883–6885. doi: 10.1021/ja00256a070. DOI
Bai R., Petit G.R., Hamel E. Dolastatin 10, a powerful cytostatic peptide derived from a marine animal: Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem.Pharmacol. 1990;39:1941–1949. doi: 10.1016/0006-2952(90)90613-P. PubMed DOI
Garteiz D.A., Madden T., Beck D.E., Huie W.R., McManus K.T., Abbruzzese J.L., Chen W., Newman R.A. Quantitation of dolastatin-10 using HPLC/electrospray ionization mass spectrometry: Application in a phase I clinical trial. Cancer Chemother. Pharmacol. 1998;41:299–306. doi: 10.1007/s002800050743. PubMed DOI
Pitot H.C., McElroy E.A., Jr., Reid J.M., Windebank A.J., Sloan J.A., Erlichman C., Bagniewski P.G., Walker D.L., Rubin J., Goldberg R.M., et al. Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors. Clin. Cancer Res. 1999;5:525–531. PubMed
von Mehren M., Balcerzak S.P., Kraft A.S., Edmonson J.H., Okuno S.H., Davey M., McLaughlin S., Beard M.T., Rogatko A. Phase II trial of dolastatin-10, a novel anti-tubulin agent, in metastatic soft tissue sarcomas. Sarcoma. 2004;8:107–111. doi: 10.1155/2004/924913. PubMed DOI PMC
Margolin K., Longmate J., Synold T.W., Gandara D.R., Weber J., Gonzalez R., Johansen M.J., Newman R., Baratta T., Doroshow J.H. Dolastatin-10 in metastatic melanoma: A phase II and pharmokinetic trial of the california cancer consortium. Investig. New Drugs. 2001;19:335–340. doi: 10.1023/A:1010626230081. PubMed DOI
Hoffman M.A., Blessing J.A., Lentz S.S. A phase II trial of dolastatin-10 in recurrent platinum-sensitive ovarian carcinoma: A Gynecologic oncology group study. Gynecol. Oncol. 2003;89:95–98. doi: 10.1016/S0090-8258(03)00007-6. PubMed DOI
Kindler H.L., Tothy P.K., Wolff R., McCormack R.A., Abbruzzese J.L., Mani S., Wade-Oliver K.T., Vokes E.E. Phase II trials of dolastatin-10 in advanced pancreaticobiliary cancers. Investig. New Drugs. 2005;23:489–493. doi: 10.1007/s10637-005-2909-x. PubMed DOI
Perez E.A., Hillman D.W., Fishkin P.A., Krook J.E., Tan W.W., Kuriakose P.A., Alberts S.R., Dakhil S.R. Phase II trial of dolastatin-10 in patients with advanced breast cancer. Investig. New Drugs. 2005;23:257–261. doi: 10.1007/s10637-005-6735-y. PubMed DOI
Maderna A., Doroski M., Subramanyam C., Porte A., Leverett C.A., Vetelino B.C., Chen Z., Risley H., Parris K., Pandit J., et al. Discovery of cytotoxic dolastatin 10 analogues with N-terminal modifications. J. Med. Chem. 2014;57:10527–10543. doi: 10.1021/jm501649k. PubMed DOI
Doronina S.O., Toki B.E., Torgov M.Y., Mendelsohn B.A., Cerveny C.G., Chace D.F., DeBlanc R.L., Gearing R.P., Bovee T.D., Siegall C.B., et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 2003;21:778–784. doi: 10.1038/nbt832. PubMed DOI
van de Donk N.W.C.J., Dhimolea E. Brentuximab vedotin. MAbs. 2012;4:458–465. doi: 10.4161/mabs.20230. PubMed DOI PMC
Wagner S.M., Melchardt T., Egle A., Magnes T., Skrabs C., Staber P., Simonitsch-Klupp I., Panny M., Lehner B., Greil R., et al. Treatment with brentuximab vedotin plus bendamustine in unselected patients with CD30-positive aggressive lymphomas. Eur. J. Haem. 2020;104:251–258. doi: 10.1111/ejh.13368. PubMed DOI PMC
Fu J., Bian M., Jiang Q., Zhang C. Roles of aurora kinases in mitosis and tumorigenesis. Mol. Cancer Res. 2007;5:1–10. doi: 10.1158/1541-7786.MCR-06-0208. PubMed DOI
Magnaghi-Jaulin L., Eot-Houllier G., Gallaud E., Giet R. Aurora A protein kinase: To the centrosome and beyond. Biomolecules. 2019;9:28. doi: 10.3390/biom9010028. PubMed DOI PMC
Barr A.R., Gergely F. Aurora-A: The maker and breaker of spindle poles. J. Cell Sci. 2007;120:2987–2996. doi: 10.1242/jcs.013136. PubMed DOI
Krenn V., Musacchio A. The Aurora B kinase in chromosome bi-orientation and spindle checkpoint signaling. Front. Oncol. 2015;5:225. doi: 10.3389/fonc.2015.00225. PubMed DOI PMC
Yang K.T., Tang C.J.C., Tang T.K. Possible role of Aurora-C in meiosis. Front. Oncol. 2015;5:7. doi: 10.3389/fonc.2015.00178. PubMed DOI PMC
Liu Q., Kaneko S., Yang L., Feldman R.I., Nicosia S.V., Chen J., Cheng J.Q. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J. Biol. Chem. 2004;279:52175–52182. doi: 10.1074/jbc.M406802200. PubMed DOI
Borisa A.C., Bhatt H.G. A comprehensive review on Aurora kinase: Small molecule inhibitors and clinical trial studies. Eur. J. Med. Chem. 2017;140:1–19. doi: 10.1016/j.ejmech.2017.08.045. PubMed DOI
Sells T.B., Chau R., Ecsedy J.A., Gershman R.E., Hoar K., Huck J., Janowick D.A., Kadambi V.J., LeRoy P.J., Stirling M., et al. MLN8054 and alisertib (MLN8237): Discovery of selective oral aurora A inhibitors. ACS Med. Chem. Lett. 2015;6:630–634. doi: 10.1021/ml500409n. PubMed DOI PMC
Li J.P., Yang Y.X., Liu Q.L., Pan S.T., He Z.X., Zhang X., Yang T., Chen X.W., Wang D., Qiu J.X., et al. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G(2)/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells. Drug Des. Devel. Ther. 2015;9:1627–1652. PubMed PMC
Fu Y., Zhang Y., Gao M., Quan L., Gui R., Liu J. Alisertib induces apoptosis and autophagy through targeting the AKT/mTOR/AMPK/p38 pathway in leukemic cells. Mol. Med. Rep. 2016;14:394–398. doi: 10.3892/mmr.2016.5249. PubMed DOI
Ren B.J., Zhou Z.W., Zhu D.J., Ju Y.L., Wu J.H., Ouyang M.Z., Chen X.W., Zhou S.F. Alisertib induces cell cycle arrest, apoptosis, autophagy and suppresses EMT in HT29 and Caco-2 cells. Int. J. Mol. Sci. 2016;17:41. doi: 10.3390/ijms17010041. PubMed DOI PMC
Liu Z., Wang F., Zhou Z.W., Xia H.C., Wang X.Y., Yang Y.X., He Z.X., Sun T., Zhou S.F. Alisertib induces G(2)/M arrest, apoptosis, and autophagy via PI3K/Akt/mTOR- and p38 MAPK-mediated pathways in human glioblastoma cells. Am. J. Transl. Res. 2017;9:845–873. PubMed PMC
Shang Y.Y., Yao M., Zhou Z.W., Cui J., Xia L., Hu R.Y., Yu Y.Y., Gao Q., Yang B., Liu Y.X., et al. Alisertib promotes apoptosis and autophagy in melanoma through p38 MAPK-mediated aurora a signaling. Oncotarget. 2017;8:107076–107088. doi: 10.18632/oncotarget.22328. PubMed DOI PMC
Zhu Q., Yu X., Zhou Z.W., Zhou C., Chen X.W., Zhou S.F. Inhibition of aurora A kinase by alisertib induces autophagy and cell cycle arrest and increases chemosensitivity in human hepatocellular carcinoma HepG2 cells. Curr. Cancer Drug Targets. 2017;17:386–401. doi: 10.2174/1568009616666160630182344. PubMed DOI
Otto T., Horn S., Brockmann M., Eilers U., Schüttrumpf L., Popov N., Kenney A.M., Schulte J.H., Beijersbergen R., Christiansen H., et al. Stabilization of N-Myc is a critical function of aurora A in human neuroblastoma. Cancer Cell. 2009;15:67–78. doi: 10.1016/j.ccr.2008.12.005. PubMed DOI
Niu H., Manfredi M., Ecsedy J.A. Scientific rationale supporting the clinical development strategy for the investigational Aurora A kinase inhibitor alisertib in cancer. Front. Oncol. 2015;5:189. doi: 10.3389/fonc.2015.00189. PubMed DOI PMC
Yang H., Liu J., Huang Y., Gao R., Tang B., Li S., He J., Li H. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques. Sci. Rep. 2017;7:45514. doi: 10.1038/srep45514. PubMed DOI PMC
O’Connor O.A., Özcan M., Jacobsen E.D., Roncero J.M., Trotman J., Demeter J., Masszi T., Pereira J., Ramchandren R., Beaven A., et al. Randomized phase III study of alisertib or investigator’s choice (selected single agent) in patients with relapsed or refractory peripheral T-cell lymphoma. J. Clin. Oncol. 2019;37:613–623. doi: 10.1200/JCO.18.00899. PubMed DOI PMC
Shah H.A., Fischer J.H., Venepalli N.K., Danciu O.C., Christian S., Russell M.J., Liu L.C., Zacny J.P., Dudek A.Z. Phase I study of aurora A kinase inhibitor alisertib (MLN8237) in combination with selective VEGFR inhibitor pazopanib for therapy of advanced solid tumors. Am. J. Clin. Oncol. 2019;42:413–420. doi: 10.1097/COC.0000000000000543. PubMed DOI
DuBois S.G., Mosse Y.P., Fox E., Kudgus R.A., Reid J.M., McGovern R., Groshen S., Bagatell R., Maris J.M., Twist C.J., et al. Phase II trial of alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma. Clin. Cancer Res. 2018;24:6142–6149. doi: 10.1158/1078-0432.CCR-18-1381. PubMed DOI PMC
Currier M.A., Sprague L., Rizvi T.A., Nartker B., Chen C.Y., Wang P.Y., Hutzen B.J., Franczek M.R., Patel A.V., Chaney K.E., et al. Aurora A kinase inhibition enhances oncolytic herpes virotherapy through cytotoxic synergy and innate cellular immune modulation. Oncotarget. 2017;8:17412–17427. doi: 10.18632/oncotarget.14885. PubMed DOI PMC
Iankov I.D., Kurokawa C.B., D’Assoro A.B., Ingle J.N., Domingo-Musibay E., Allen C., Crosby C.M., Nair A.A., Liu M.C., Aderca I., et al. Inhibition of the aurora A kinase augments the anti-tumor efficacy of oncolytic measles virotherapy. Cancer Gene Ther. 2015;22:438–444. doi: 10.1038/cgt.2015.36. PubMed DOI PMC
Mortlock A.A., Foote K.M., Heron N.M., Jung F.H., Pasquet G., Lohmann J.J.M., Warin N., Renaud F., De Savi C., Roberts N.J., et al. Discovery, synthesis, and in vivo activity of a new class of pyrazoloquinazolines as selective inhibitors of aurora B kinase. J. Med. Chem. 2007;50:2213–2224. doi: 10.1021/jm061335f. PubMed DOI
Wilkinson R.W., Odedra R., Heaton S.P., Wedge S.R., Keen N.J., Crafter C., Foster J.R., Brady M.C., Bigley A., Brown E., et al. AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin. Cancer Res. 2007;13:3682–3688. doi: 10.1158/1078-0432.CCR-06-2979. PubMed DOI
Zekri A., Mesbahi Y., Ghanizadeh-Vesali S., Alimoghaddam K., Ghavamzadeh A., Ghaffari S.H. Reactive oxygen species generation and increase in mitochondrial copy number: New insight into the potential mechanism of cytotoxicity induced by aurora kinase inhibitor, AZD1152-HQPA. Anticancer Drugs. 2017;28:841–851. doi: 10.1097/CAD.0000000000000523. PubMed DOI
Zekri A., Mesbahi Y., Boustanipour E., Sadr Z., Ghaffari S.H. The potential contribution of microRNAs in anti-cancer effects of aurora kinase inhibitor (AZD1152-HQPA) J. Mol. Neurosci. 2018;65:444–455. doi: 10.1007/s12031-018-1118-y. PubMed DOI
Ashton S., Song Y.S., Nolan J., Cadogan E., Murray J., Odedra R., Foster J., Hall P.A., Low S., Taylor P., et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci. Transl. Med. 2016;8:325ra17. doi: 10.1126/scitranslmed.aad2355. PubMed DOI
Palmisiano N.D., Kasner M.T. Polo-like kinase and its inhibitors: Ready for the match to start? Am. J. Hematol. 2015;90:1071–1076. doi: 10.1002/ajh.24177. PubMed DOI
Asghar U., Witkiewicz A.K., Turner N.C., Knudsen E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015;14:130–146. doi: 10.1038/nrd4504. PubMed DOI PMC
Colicino E.G., Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1) Cytoskeleton. 2018;75:481–494. doi: 10.1002/cm.21504. PubMed DOI PMC
Yang X., Li H., Zhou Z., Wang W.H., Deng A., Andrisani O., Liu X. Plk1-mediated phosphorylation of topors regulates p53 stability. J. Biol. Chem. 2009;284:18588–18592. doi: 10.1074/jbc.C109.001560. PubMed DOI PMC
Goroshchuk O., Kolosenko I., Vidarsdottir L., Azimi A., Palm-Apergi C. Polo-like kinases and acute leukemia. Oncogene. 2019;38:1–16. doi: 10.1038/s41388-018-0443-5. PubMed DOI
López-Sánchez I., Sanz-García M., Lazo P.A. Plk3 interacts with and specifically phosphorylates VRK1 in Ser(342), a downstream target in a pathway that induces Golgi fragmentation. Mol. Cell. Biol. 2009;29:1189–1201. doi: 10.1128/MCB.01341-08. PubMed DOI PMC
Habedanck R., Stierhof Y.D., Wilkinson C.J., Nigg E.A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 2005;7:1140–1146. doi: 10.1038/ncb1320. PubMed DOI
Ottmann O.G., Müller-Tidow C., Krämer A., Schlenk R.F., Lübbert M., Bug G., Krug U., Bochtler T., Voss F., Taube T., et al. Phase I dose-escalation trial investigating volasertib as monotherapy or in combination with cytarabine in patients with relapsed/refractory acute myeloid leukaemia. Br. J. Haematol. 2019;184:1018–1021. doi: 10.1111/bjh.15204. PubMed DOI
Rudolph D., Steegmaier M., Hoffmann M., Grauert M., Baum A., Quant J., Haslinger C., Garin-Chesa P., Adolf G.R. BI 6727, A Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin. Cancer Res. 2009;15:3094–3102. doi: 10.1158/1078-0432.CCR-08-2445. PubMed DOI
Van den Bossche J., Deben C., de Pauw I., Lambrechts H., Hermans C., Deschoolmeester V., Jacobs J., Specenier P., Pauwels P., Vermorken J.B., et al. In vitro study of the Polo-like kinase 1 inhibitor volasertib in non-small-cell lung cancer reveals a role for the tumor suppressor p53. Mol. Oncol. 2019;13:1196–1213. doi: 10.1002/1878-0261.12477. PubMed DOI PMC
Solans B.P., Fleury A., Freiwald M., Fritsch H., Haug K., Trocóniz I.F. Population pharmacokinetics of volasertib administered in patients with acute myeloid leukaemia as a single agent or in combination with cytarabine. Clin. Pharm. 2018;57:379–392. doi: 10.1007/s40262-017-0566-9. PubMed DOI
Gumireddy K., Reddy M.V.R., Cosenza S.C., Boominathan R., Baker S.J., Papathi N., Jiang J., Holland J., Reddy E.P. 1ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell. 2005;7:275–286. doi: 10.1016/j.ccr.2005.02.009. PubMed DOI
Steegmaier M., Hoffmann M., Baum A., Lénárt P., Petronczki M., Krssák M., Gürtler U., Garin-Chesa P., Lieb S., Quant J., et al. BI 2536, a potent and selective inhibitor of Polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 2007;17:316–322. doi: 10.1016/j.cub.2006.12.037. PubMed DOI
Ma W.W., Messersmith W.A., Dy G.K., Weekes C.D., Whitworth A., Ren C., Maniar M., Wilhelm F., Eckhardt S.G., Adjei A.A., et al. Phase I study of rigosertib, an inhibitor of the phosphatidylinositol 3-kinase and Polo-like kinase 1 pathways, combined with gemcitabine in patients with solid tumors and pancreatic cancer. Clin. Cancer Res. 2012;18:2048–2055. doi: 10.1158/1078-0432.CCR-11-2813. PubMed DOI
Prasad A., Park I.W., Allen H., Zhang X., Reddy M.V.R., Boominathan R., Reddy E.P., Groopman J.E. Styryl sulfonyl compounds inhibit translation of cyclin D1 in mantle cell lymphoma cells. Oncogene. 2009;28:1518–1528. doi: 10.1038/onc.2008.502. PubMed DOI
Castellano E., Downward J. RAS interaction with PI3K: More than just another effector pathway. Genes Cancer. 2011;2:261–274. doi: 10.1177/1947601911408079. PubMed DOI PMC
Ritt D.A., Blanco M.A., Bindu L., Durrant D.E., Zhou M., Specht S.I., Stephen A.G., Holderfield M., Morrison D.K. Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit. Mol. Cell. 2016;64:875–887. doi: 10.1016/j.molcel.2016.10.029. PubMed DOI PMC
Jost M., Chen Y., Gilbert L.A., Horlbeck M.A., Krenning L., Menchon G., Rai A., Cho M.Y., Stern J.J., Prota A.E., et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubule-destabilizing agent. Mol. Cell. 2017;68:210–223. doi: 10.1016/j.molcel.2017.09.012. PubMed DOI PMC
Baker S.J., Cosenza S.C., Athuluri-Divakar S., Reddy M.V.R., Vasquez-Del Carpio R., Jain R., Aggarwal A.K., Reddy E.P. Mechanism of action of rigosertib does not involve tubulin binding. bioRxiv. 2019 doi: 10.1101/2019.12.12.874719. DOI
Garcia-Manero G., Fenaux P., Al-Kali A., Baer M.R., Sekeres M.A., Roboz G.J., Gaidano G., Scott B.L., Greenberg P., Platzbecker U., et al. Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME): A randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17:496–508. doi: 10.1016/S1470-2045(16)00009-7. PubMed DOI
Prasad A., Khudaynazar N., Tantravahi R.V., Gillum A.M., Hoffman B.S. ON 01910.Na (rigosertib) inhibits PI3K/Akt pathway and activates oxidative stress signals in head and neck cancer cell lines. Oncotarget. 2016;7:79388–79400. doi: 10.18632/oncotarget.12692. PubMed DOI PMC
Anderson R.T., Keysar S.B., Bowles D.B., Glogowska M.J., Astling D.P., Morton J.P., Le P., Umpierrez A., Eagles-Soukup J., Gan G.N., et al. The dual pathway inhibitor rigosertib is effective in direct-patient tumor xenografts of head and neck squamous cell carcinomas. Mol. Cancer Ther. 2013;12:1994–2005. doi: 10.1158/1535-7163.MCT-13-0206. PubMed DOI PMC
Rice S., Lin A.W., Safer D., Hart C.L., Naber N., Carragher B.O., Cain S.M., Pechatnikova E., Wilson-Kubalek E.M., Whittaker M., et al. A structural change in the kinesin motor protein that drives motility. Nature. 1999;402:778–784. doi: 10.1038/45483. PubMed DOI
Hepperla A.J., Willey P.T., Coombes C.E., Schuster B.M., Gerami-Nejad M., McClellan M., Mukherjee S., Fox J., Winey M., Odde D.J., et al. Minus-end-directed kinesin-14 motors align antiparallel microtubules to control metaphase spindle length. Dev. Cell. 2014;31:61–72. doi: 10.1016/j.devcel.2014.07.023. PubMed DOI PMC
Chen Y., Hancock W.O. Kinesin-5 is a microtubule polymerase. Nat. Commun. 2015;6:8160. doi: 10.1038/ncomms9160. PubMed DOI PMC
Trofimova D., Paydar M., Zara A., Talje L., Kwok B.H., Allingham J.S. Ternary complex of Kif2A-bound tandem tubulin heterodimers represents a kinesin-13-mediated microtubule depolymerization reaction intermediate. Nat. Commun. 2018;9:2628. doi: 10.1038/s41467-018-05025-7. PubMed DOI PMC
Rath O., Kozielski F. Kinesins and cancer. Nat. Rev. Cancer. 2012;12:527–539. doi: 10.1038/nrc3310. PubMed DOI
Huszar D., Theoclitou M.E., Skolnik J., Herbst R. Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev. 2009;28:197–208. doi: 10.1007/s10555-009-9185-8. PubMed DOI
Mayer T.U., Kapoor T.M., Haggarty S.J., King R.W., Schreiber S.L., Mitchison T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science. 1999;286:971–974. doi: 10.1126/science.286.5441.971. PubMed DOI
Abnous K., Barati B., Mehri S., Reza M., Farimani M.R.M., Alibolandi M., Mohammadpour F., Ghandadi M., Hadizadeh F. Synthesis and molecular modeling of six novel monastrol analogues: Evaluation of cytotoxicity and kinesin inhibitory activity against HeLa cell line. DARU. 2013;21:70. doi: 10.1186/2008-2231-21-70. PubMed DOI PMC
Kaan H.Y.K., Ulaganathan V., Rath O., Prokopcová H., Dallinger D., Kappe C.O., Kozielski F. Structural basis for inhibition of Eg5 by dihydropyrimidines: Stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. J. Med. Chem. 2010;53:5676–5683. doi: 10.1021/jm100421n. PubMed DOI
De Oliveira F.S., De Oliveira P.M., Farias L.M., Brinkerhoff R.C., Sobrinho R.C.M.A., Treptow T.M., D’Oca C.R.M., Marinho M.A.G., Hort M.A., Horn A.P., et al. Synthesis and antitumoral activity of novel analogues monastrol-fatty acids against glioma cells. Medchemcomm. 2018;9:1282–1288. doi: 10.1039/C8MD00169C. PubMed DOI PMC
Lee C.W., Bélanger K., Rao S.C., Petrella T.M., Tozer R.G., Wood L., Savage K.J., Eisenhauer E.A., Synold T.W., Wainman N., et al. A phase II study of ispinesib (SB-715992) in patients with metastatic or recurrent malignant melanoma: A National cancer institute of Canada clinical trials group trial. Investig. New Drugs. 2008;26:249–255. doi: 10.1007/s10637-007-9097-9. PubMed DOI
Tang P.A., Siu L.L., Chen E.X., Hotte S.J., Chia S., Schwarz J.K., Pond G.R., Johnson C., Colevas A.D., Synold T.W., et al. Phase II study of ispinesib in recurrent or metastatic squamous cell carcinoma of the head and neck. Investig. New Drugs. 2008;26:257–264. doi: 10.1007/s10637-007-9098-8. PubMed DOI
Beer T.M., Goldman B., Synold T.W., Ryan C.W., Vasist L.S., Van Veldhuizen P.J., Jr., Dakhil S.R., Lara P.N., Jr., Drelichman A., Hussain M.H.A., et al. Southwest oncology group phase II study of ispinesib in androgen-independent prostate cancer previously treated with taxanes. Clin. Genitourin. Cancer. 2008;6:103–109. doi: 10.3816/CGC.2008.n.016. PubMed DOI
Kantarjian H.M., Padmanabhan S., Stock W., Tallman M.S., Curt G.A., Li J., Osmukhina A., Wu K., Huszar D., Borthukar G., et al. Phase I/II multicenter study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of AZD4877 in patients with refractory acute myeloid leukemia. Investig. New Drugs. 2012;30:1107–1115. doi: 10.1007/s10637-011-9660-2. PubMed DOI PMC
LoRusso P.M., Goncalves P.H., Casetta L., Carter J.A., Litwiler K., Roseberry D., Rush S., Schreiber J., Simmons H.M., Ptaszynski M., et al. First-in-human phase 1 study of filanesib (ARRY-520), a kinesin spindle protein inhibitor, in patients with advanced solid tumors. Investig. New Drugs. 2015;33:440–449. doi: 10.1007/s10637-015-0211-0. PubMed DOI
Holen K.D., Belani C.P., Wilding G., Ramalingam S., Volkman J.L., Ramanathan R.K., Vasist L.S., Bowen C.J., Hodge J.P., Dar M.M., et al. A first in human study of SB-743921, a kinesin spindle protein inhibitor, to determine pharmacokinetics, biologic effects and establish a recommended phase II dose. Cancer Chemother. Pharmacol. 2011;67:447–454. doi: 10.1007/s00280-010-1346-5. PubMed DOI PMC
Wakui H., Yamamoto N., Kitazono S., Mizugaki H., Nakamichi S., Fujiwara Y., Nokihara H., Yamada Y., Suzuki K., Kanda H., et al. A phase 1 and dose-finding study of LY2523355 (litronesib), an Eg5 inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2014;74:15–23. doi: 10.1007/s00280-014-2467-z. PubMed DOI
Hollebecque A., Deutsch E., Massard C., Gomez-Roca C., Bahleda R., Ribrag V., Bourgier C., Lazar V., Lacroix L., Gazzah A., et al. A phase I, dose-escalation study of the Eg5-inhibitor EMD 534085 in patients with advanced solid tumors or lymphoma. Investig. New Drugs. 2013;31:1530–1538. doi: 10.1007/s10637-013-0026-9. PubMed DOI
Holen K., DiPaola R., Liu G., Tan A.R., Wilding G., Hsu K., Agrawal N., Chen C., Xue L., Rosenberg E., et al. A phase I trial of MK-0731, a Kinesin Spindle Protein (KSP) inhibitor, in patients with solid tumors. Investig. New Drugs. 2012;30:1088–1095. doi: 10.1007/s10637-011-9653-1. PubMed DOI PMC
Wood K.W., Lad L., Luo L., Qian X., Knight S.D., Nevins N., Brejc K., Sutton D., Gilmartin A.G., Chua P.R., et al. Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc. Natl. Acad. Sci. USA. 2010;107:5839–5844. doi: 10.1073/pnas.0915068107. PubMed DOI PMC
Chung V., Heath E.I., Schelman W.R., Johnson B.M., Kirby L.C., Lynch K.M., Botbyl J.D., Lampkin T.A., Holen K.D. First-time-in-human study of GSK923295, a novel antimitotic inhibitor of centromere-associated protein E (CENP-E), in patients with refractory cancer. Cancer Chemother. Pharmacol. 2012;69:733–741. doi: 10.1007/s00280-011-1756-z. PubMed DOI
Kung P.P., Martinez R., Zhu Z., Zager M., Blasina A., Rymer I., Hallin J., Xu M., Carroll C., Chionis J., et al. Chemogenetic evaluation of the mitotic kinesin CENP-E reveals a critical role in triple-negative breast cancer. Mol. Cancer Ther. 2014;13:2104–2115. doi: 10.1158/1535-7163.MCT-14-0083-T. PubMed DOI
Ohashi A., Ohori M., Iwai K., Nambu T., Miyamoto M., Kawamoto T., Okaniwa M. A novel time-dependent CENP-E inhibitor with potent antitumor activity. PLoS ONE. 2015;10:e0144675. doi: 10.1371/journal.pone.0144675. PubMed DOI PMC
Yamane M., Sawada J.I., Ogo N., Ohba M., Ando T., Asai A. Identification of benzo[d]pyrrolo[2,1-b]thiazole derivatives as CENP-E inhibitors. Biochem. Biophys. Res. Commun. 2019;519:505–511. doi: 10.1016/j.bbrc.2019.09.028. PubMed DOI
Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI
Jurášek M., Rimpelová S., Kmoníčková E., Drašar P., Ruml T. Tailor-made fluorescent trilobolide to study its biological relevance. J. Med. Chem. 2014;57:7947–7954. doi: 10.1021/jm500690j. PubMed DOI
Jurášek M., Černohorská M., Řehulka J., Spiwok V., Sulimenko T., Dráberová E., Darmostuk M., Gurská S., Frydrych I., Buriánová R., et al. Estradiol dimer inhibits tubulin polymerization and microtubule dynamics. J. Steroid. Biochem. Mol. Biol. 2018;183:68–79. doi: 10.1016/j.jsbmb.2018.05.008. PubMed DOI
The emerging role of microtubules in invasion plasticity
Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics
Cardiac Glycosides as Immune System Modulators
Current Perspectives on Taxanes: Focus on Their Bioactivity, Delivery and Combination Therapy