Current Perspectives on Taxanes: Focus on Their Bioactivity, Delivery and Combination Therapy

. 2021 Mar 17 ; 10 (3) : . [epub] 20210317

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33802861

Grantová podpora
A1_FPBT_2020_001 Ministry of Sport and Education, Czech Republic

Taxanes, mainly paclitaxel and docetaxel, the microtubule stabilizers, have been well known for being the first-line therapy for breast cancer for more than the last thirty years. Moreover, they have been also used for the treatment of ovarian, hormone-refractory prostate, head and neck, and non-small cell lung carcinomas. Even though paclitaxel and docetaxel significantly enhance the overall survival rate of cancer patients, there are some limitations of their use, such as very poor water solubility and the occurrence of severe side effects. However, this is what pushes the research on these microtubule-stabilizing agents further and yields novel taxane derivatives with significantly improved properties. Therefore, this review article brings recent advances reported in taxane research mainly in the last two years. We focused especially on recent methods of taxane isolation, their mechanism of action, development of their novel derivatives, formulations, and improved tumor-targeted drug delivery. Since cancer cell chemoresistance can be an unsurpassable hurdle in taxane administration, a significant part of this review article has been also devoted to combination therapy of taxanes in cancer treatment. Last but not least, we summarize ongoing clinical trials on these compounds and bring a perspective of advancements in this field.

Zobrazit více v PubMed

Wani M.C., Taylor H.L., Wall M.E., Coggon P., McPhail A.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971;93:2325–2327. doi: 10.1021/ja00738a045. PubMed DOI

Menzin A.W., King S.A., Aikins J.K., Mikuta J.J., Rubin S.C. Taxol (paclitaxel) was approved by FDA for the treatment of patients with recurrent ovarian cancer. Gynecol. Oncol. 1994;54:103. PubMed

Leo C.P., Hentschel B., Szucs T.D., Leo C. FDA and EMA Approvals of new breast cancer drugs—A comparative regulatory analysis. Cancers. 2020;12:437. doi: 10.3390/cancers12020437. PubMed DOI PMC

Paller C.J., Antonarakis E.S. Cabazitaxel: A novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des. Dev. Ther. 2011;5:117–124. doi: 10.2147/DDDT.S13029. PubMed DOI PMC

Cope E.A. Taxaceae: The genera and cultivated species. Bot. Rev. 1998;64:291–322. doi: 10.1007/BF02857621. DOI

World Botanical. [(accessed on 9 March 2021)]; Available online: http://www.worldbotanical.com/TAXNA.HTM.

Bui-Khac T., Potier M. Process for Isolation and Purification of Paclitaxel from Natural Sources. No 6,759,539. [(accessed on 22 January 2020)];U.S. Patent. 2004 Jul 6; Available online: https://patentimages.storage.googleapis.com/44/e6/98/decc6a00219616/us6759539.pdf.

Sadeghi-aliabadi H., Asghari G., Mostafavi S.A., Esmaeili A. Solvent optimization on Taxol extraction from Taxus baccata L., using HPLC and LC-MS. Daru. 2009;17:192–198.

Kim G.J., Kim J.H. Enhancement of extraction efficiency of paclitaxel from biomass using ionic liquid-methanol co-solvents under acidic conditions. Process Biochem. 2015;50:989–996. doi: 10.1016/j.procbio.2015.03.009. DOI

Kawamura F., Kikuchi Y., Ohira T., Yatagai M. Accelerated solvent extraction of paclitaxel and related compounds from the bark of Taxus cuspidata. J. Nat. Prod. 1999;62:244–247. doi: 10.1021/np980310j. PubMed DOI

Lee S.H., Kim J.H. Kinetic and thermodynamic characteristics of microwave-assisted extraction for the recovery of paclitaxel from Taxus chinensis. Process Biochem. 2019;76:187–193. doi: 10.1016/j.procbio.2018.11.010. DOI

Naik B.S. Developments in taxol production through endophytic fungal biotechnology: A review. Orient. Pharm. Exp. Med. 2019;19:1–13. doi: 10.1007/s13596-018-0352-8. DOI

El-Sayed E.R., Zaki A.G., Ahmed A.S., Ismaiel A.A. Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: Enhanced production by gamma irradiation mutagenesis and immobilization technique. Appl. Microbiol. Biotechnol. 2020;104:6991–7003. doi: 10.1007/s00253-020-10712-x. PubMed DOI

Kumar P., Singh B., Thakur V., Thakur A., Thakur N., Pandey D., Chanda D. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol. Rep. (Amst.) 2019;24:e00395. doi: 10.1016/j.btre.2019.e00395. PubMed DOI PMC

Badi H.N., Abdoosi V., Farzin N. New approach to improve taxol biosynthetic. Trakia J. Sci. 2015;2:115–124. doi: 10.15547/tjs.2015.02.002. DOI

Subban K., Subramani R., Srinivasan V.P.M., Johnpaul M., Chelliah J. Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS ONE. 2019;14:e0212736. doi: 10.1371/journal.pone.0212736. PubMed DOI PMC

Sabzehzari M., Zeinali M., Naghavia M.R. Alternative sources and metabolic engineering of Taxol: Advances and future perspectives. Biotech. Adv. 2020;43:107569. doi: 10.1016/j.biotechadv.2020.107569. PubMed DOI

Chakravarthi B.V.S.K., Singh S., Kamalraj S., Gupta V.K., Jayabaskaran C. Evaluation of spore inoculum and confirmation of pathway genetic blueprint of T13αH and DBAT from a Taxol-producing endophytic fungus. Sci. Rep. 2020;10:21139. doi: 10.1038/s41598-020-77605-x. PubMed DOI PMC

Page M., Landry N., Boissinot M., Helie M.C., Harvey M., Gagne M. Bacterial Mass Production of Taxanes and Paclitaxel. No 6,030,818. [(accessed on 22 January 2021)];U.S. Patent. 2000 Feb 29; Available online: https://patentimages.storage.googleapis.com/57/34/8c/542334a3e376bd/US6030818.pdf.

Bacterial Mass Production of Taxanes with Erwinia. [(accessed on 22 January 2021)]; Available online: https://patentimages.storage.googleapis.com/a5/51/6d/3488bf95fd1bf5/US5561055.pdf.

Ajikumar P.K., Xiao W.H., Tyo K.E.J., Wang Y., Simeon F., Leonard E., Mucha O., Phon T.H., Pfeifer B., Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor over-production in Escherichia coli. Science. 2010;330:70–74. doi: 10.1126/science.1191652. PubMed DOI PMC

Zhou K., Qiao K., Edgar S., Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 2015;33:377–383. doi: 10.1038/nbt.3095. PubMed DOI PMC

Subramanian M., Marudhamuthu M. Hitherto Unknown terpene synthase organization in taxol producing endophytic bacteria isolated from marine macroalgae. Curr. Microbiol. 2020;77:918–923. doi: 10.1007/s00284-020-01878-8. PubMed DOI

Patil R.A., Kolewe M.E., Normanly J., Walker E.L., Roberts S.C. Contribution of taxane biosynthetic pathway gene expression to observed variability in paclitaxel accumulation in Taxus suspension cultures. Biotechnol J. 2012;7:418–427. doi: 10.1002/biot.201100183. PubMed DOI PMC

Gallego A., Malik S., Yousefzadi M., Makhzoum A., Tremouillaux-Guiller J., Bonfill M. Taxol from Corylus avellana: Paving the way for a new source of this anti-cancer drug. Plant Cell Tissue Organ Cult. 2017;129:1–16. doi: 10.1007/s11240-016-1164-5. DOI

Qaderi A., Omidi M., Omidi M., Etminan A., Etminan A., Oladzad A., Ebrahimi C., Dehghani M., Mehrafarin A. Hazel (Corylus avellana L.) as a new source of taxol and taxanes. J. Med. Plants. 2012;11:66–67.

Salehi M., Moieni A., Safaie N., Farhadi S. Whole fungal elicitors boost paclitaxel biosynthesis induction in Corylus avellana cell culture. PLoS ONE. 2020;15:e0236191. doi: 10.1371/journal.pone.0236191. PubMed DOI PMC

McElroy C., Jennewein S. Taxol® Biosynthesis and production: From forests to fermenters. In: Schwab W., Lange B.M., Wüst M., editors. Biotechnology of Natural Products. Springer; Cham, Switzerland: 2018. pp. 145–185. DOI

Edgar S., Li F.S., Qiao K., Weng J.K., Stephanopoulos G. Engineering of taxadiene synthase for improved selectivity and yield of a key taxol biosynthetic intermediate. ACS Synth. Biol. 2017;6:201–205. doi: 10.1021/acssynbio.6b00206. PubMed DOI

Danishefsky S.J., Masters J.J., Young W.B., Link J.T., Snyder L.B., Magee T.V., Jung D.K., Isaacs R.C.A., Bornmann W.G., Alaimo C.A., et al. Total synthesis of baccatin III and taxol. J. Am. Chem. Soc. 1996;118:2843–2859. doi: 10.1021/ja952692a. DOI

Doi T., Fuse S., Miyamoto S., Nakai K., Sasuga D., Takahashi T. A formal total synthesis of taxol aided by an automated synthesizer. Chem. Asian J. 2006;1:370–383. doi: 10.1002/asia.200600156. PubMed DOI

Fukaya K., Kodama K., Tanaka Y., Yamazaki H., Sugai T., Yamaguchi Y., Watanabe A., Oishi T., Sato T., Chida N. Synthesis of paclitaxel. 2. Construction of the ABCD ring and formal synthesis. Org. Lett. 2015;17:2574–2577. doi: 10.1021/acs.orglett.5b01174. PubMed DOI

Fukaya K., Tanaka Y., Sato A.C., Kodama K., Yamazaki H., Ishimoto T., Nozaki Y., Iwaki Y.M., Yuki Y., Umei K., et al. Synthesis of paclitaxel. 1. Synthesis of the ABC ring of paclitaxel by SmI2-mediated cyclization. Org. Lett. 2015;17:2570–2573. doi: 10.1021/acs.orglett.5b01173. PubMed DOI

Hirai S., Utsugi M., Iwamoto M., Nakada M. Formal total synthesis of (−)-taxol through Pd-catalyzed eight-membered carbocyclic ring formation. Chem. Eur. J. 2015;21:355–359. doi: 10.1002/chem.201404295. PubMed DOI

Holton R.A., Somoza C., Kim H.B., Liang F., Biediger R.J., Boatman P.D., Shindo M., Smith C.C., Kim S., Nadizadeh H., et al. First total synthesis of taxol. 1. Functionalization of the B-ring. J. Am. Chem. Soc. 1994;116:1597–1598. doi: 10.1021/ja00083a066. DOI

Masters J.J., Link J.T., Snyder L.B., Young W.B., Danishefsky S.J. A total synthesis of taxol. Angew. Chem. Int. Ed. 1995;34:1723–1726. doi: 10.1002/anie.199517231. DOI

Morihira K., Hara R., Kawahara S., Nishimori T., Nakamura N., Kusama H., Kuwajima I. Enantioselective total synthesis of taxol. J. Am. Chem. Soc. 1998;120:12980–12981. doi: 10.1021/ja9824932. DOI

Mukaiyama T., Shiina I., Iwadare H., Saitoh M., Nishimura T., Ohkawa N., Sakoh H., Nishimura K., Tani Y.I., Hasegawa M., et al. Asymmetric total synthesis of taxol\R. Chem. Eur. J. 1999;5:121–161. doi: 10.1002/(SICI)1521-3765(19990104)5:1<121::AID-CHEM121>3.0.CO;2-O. DOI

Nicolaou K.C., Yang Z., Liu J.J., Ueno H., Nantermet P.G., Guy R.K., Claiborne C.F., Renaud J., Couladouros E.A., Paulvannan K., et al. Total synthesis of taxol. Nature. 1994;367:630–634. doi: 10.1038/367630a0. PubMed DOI

Wender P.A., Badham N.F., Conway S.P., Floreancig P.E., Glass T.E., Gränicher C., Houze J.B., Jänichen J., Lee D., Marquess D.G., et al. The pinene path to taxanes. 5. Stereocontrolled synthesis of a versatile taxane precursor. J. Am. Chem. Soc. 1997;119:2755–2756. doi: 10.1021/ja9635387. DOI

Wender P.A., Badham N.F., Conway S.P., Floreancig P.E., Glass T.E., Houze J.B., Krauss N.E., Lee D., Marquess D.G., McGrane P.L., et al. The pinene path to taxanes. 6. A concise stereocontrolled synthesis of taxol. J. Am. Chem. Soc. 1997;119:2757–2758. doi: 10.1021/ja963539z. DOI

Kanda Y., Nakamura H., Umemiya S., Puthukanoori R.K., Appala V.R.M., Gaddamanugu G.K., Paraselli B.R., Baran P.S. Two-phase synthesis of taxol. J. Am. Chem. Soc. 2020;142:10526–10533. doi: 10.1021/jacs.0c03592. PubMed DOI PMC

Alqahtani F.Y., Aleanizy F.S., El Tahir E., Alkahtani H.M., AlQuadeib B.T. Chapter three—Paclitaxel. In: Brittain H.G., editor. Profiles of Drug Substances, Excipients and Related Methodology. Volume 44. Academic Press; Cambridge, MA, USA: 2019. pp. 205–238. PubMed DOI

Patel R.N. Tour de paclitaxel: Biocatalysis for semisynthesis. Annu. Rev. Microbiol. 1998;52:361–395. doi: 10.1146/annurev.micro.52.1.361. PubMed DOI

Witherup K.M., Look S.A., Stasko M.W., Ghiorzi T.J., Muschik G.M., Cragg G.M. Taxus spp. needles contain amounts of taxol comparable to the bark of Taxus brevifolia: Analysis and isolation. J. Nat. Prod. 1990;53:1249–1255. doi: 10.1021/np50071a017. PubMed DOI

Schiff P.B., Fant J., Horwitz S.B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665–667. doi: 10.1038/277665a0. PubMed DOI

Parness J., Horwitz S.B. Taxol binds to polymerized tubulin in vitro. J. Cell Biol. 1981;91:479–487. doi: 10.1083/jcb.91.2.479. PubMed DOI PMC

Rao S., He L., Chakravarty S., Ojima I., Orr G.A., Horwitz S.B. Characterization of the taxol binding site on the microtubule. Identification of Arg(282) in beta-tubulin as the site of photoincorporation of a 7-benzophenone analogue of Taxol. J. Biol. Chem. 1999;274:37990–37994. doi: 10.1074/jbc.274.53.37990. PubMed DOI

Díaz J.F., Andreu J.M. Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: Reversibility, ligand stoichiometry, and competition. Biochemistry. 1993;32:2747–2755. doi: 10.1021/bi00062a003. PubMed DOI

Waters J.C., Chen R.H., Murray A.W., Salmon E.D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 1998;141:1181–1191. doi: 10.1083/jcb.141.5.1181. PubMed DOI PMC

Boudny V., Nakano S. Src tyrosine kinase augments taxotere-induced apoptosis through enhanced expression and phosphorylation of Bcl-2. Br. J. Cancer. 2002;86:463–469. doi: 10.1038/sj.bjc.6600080. PubMed DOI PMC

Héliez C., Baricault L., Barboule N., Valette A. Paclitaxel increases p21 synthesis and accumulation of its AKT-phosphorylated form in the cytoplasm of cancer cells. Oncogene. 2003;22:3260–3268. doi: 10.1038/sj.onc.1206409. PubMed DOI

Tanimukai H., Kanayama D., Omi T., Takeda M., Kudo T. Paclitaxel induces neurotoxicity through endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 2013;437:151–155. doi: 10.1016/j.bbrc.2013.06.057. PubMed DOI

Risinger A.L., Riffle S.M., Lopus M., Jordan M.A., Wilson L., Mooberry S.L. The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation. Mol. Cancer. 2014;13:41. doi: 10.1186/1476-4598-13-41. PubMed DOI PMC

Verde F., Berrez J.M., Antony C., Karsenti E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: Requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 1991;112:1177–1187. doi: 10.1083/jcb.112.6.1177. PubMed DOI PMC

Öztop S., Işik A., Güner G., Gürdal H., Karabulut E., Yilmaz E., Akyol A. Class III beta-tubulin expression in colorectal neoplasms is a potential predictive biomarker for paclitaxel response. Anticancer Res. 2019;39:655–662. doi: 10.21873/anticanres.13160. PubMed DOI

Tame M.A., Manjón A.G., Belokhvostova D., Raaijmakers J.A., Medema R.H. TUBB3 overexpression has a negligible effect on the sensitivity to taxol in cultured cell lines. Oncotarget. 2017;8:71536–71547. doi: 10.18632/oncotarget.17740. PubMed DOI PMC

Gelderblom H., Verweij J., Nooter K., Sparreboom A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer. 2001;37:1590–1598. doi: 10.1016/S0959-8049(01)00171-X. PubMed DOI

Mei L., Zhang Y., Zheng Y., Tian G., Song C., Yang D., Chen H., Sun H., Tian Y., Liu K., et al. A novel docetaxel-loaded poly (ε-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res. Lett. 2009;4:1530–1539. doi: 10.1007/s11671-009-9431-6. PubMed DOI PMC

Yuan H., Guo H., Luan X., He M., Li F., Burnett J., Truchan N., Sun D. Albumin nanoparticle of paclitaxel (abraxane) decreases while taxol increases breast cancer stem cells in treatment of triple negative breast cancer. Mol. Pharm. 2020;17:2275–2286. doi: 10.1021/acs.molpharmaceut.9b01221. PubMed DOI PMC

Wang X., Song L., Li N., Qiu Z., Zhou S., Li C., Zhao J., Song H., Chen X. Pharmacokinetics and biodistribution study of paclitaxel liposome in Sprague-Dawley rats and Beagle dogs by liquid chromatography-tandem mass spectrometry. Drug Res. 2013;63:603–606. doi: 10.1055/s-0033-1349126. PubMed DOI

Zhang Q., Huang X.E., Gao L.L. A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors. Biomed. Pharmacother. 2009;63:603–607. doi: 10.1016/j.biopha.2008.10.001. PubMed DOI

Orphan drug designation to LEP-ETU for ovarian cancer. Oncol. Times. 2015;37:25. doi: 10.1097/01.COT.0000462869.83090.9d. DOI

Zhang J.A., Anyarambhatla G., Ma L., Ugwu S., Xuan T., Sardone T., Ahmad I. Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm. 2005;59:177–187. doi: 10.1016/j.ejpb.2004.06.009. PubMed DOI

Fasol U., Frost A., Büchert M., Arends J., Fiedler U., Scharr D., Scheuenpflug J., Mross K. Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis. Ann. Oncol. 2012;23:1030–1036. doi: 10.1093/annonc/mdr300. PubMed DOI

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=lipusu&cntry=&state=&city=&dist=&Search=Search.

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=LEP-ETU&cntry=&state=&city=&dist=&Search=Search.

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=endotag&cntry=&state=&city=&dist=&Search=Search.

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=PTX-LDE&cntry=&state=&city=&dist=&Search=Search.

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=LE-DT&cntry=&state=&city=&dist=&Search=Search.

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=ATI-1123+&cntry=&state=&city=&dist=&Search=Search.

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=genexol-PM&cntry=&state=&city=&dist=&Search=Search.

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=NAnoxel&cntry=&state=&city=&dist=&Search=Search.

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=paclical&cntry=&state=&city=&dist=&Search=Search.

Deeken J.F., Slack R., Weiss G.J., Ramanathan R.K., Pishvaian M.J., Hwang J., Lewandowski K., Subramaniam D., He A.R., Cotarla I., et al. A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother. Pharmacol. 2013;71:627–633. doi: 10.1007/s00280-012-2048-y. PubMed DOI PMC

Mahalingam D., Nemunaitis J.J., Malik L., Sarantopoulos J., Weitman S., Sankhala K., Hart J., Kousba A., Gallegos N.S., Anderson G., et al. Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2014;74:1241–1250. doi: 10.1007/s00280-014-2602-x. PubMed DOI

Merrimack Discontinues Development of MM-310. [(accessed on 22 January 2021)]; Available online: https://investors.merrimack.com/news-releases/news-release-details/merrimack-discontinues-development-mm-310.

Trial to Study the Safety of Intravenous MNK-010 in Advanced Solid Tumors. [(accessed on 22 January 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02040558.

Zhang M., Li M., Du L., Zeng J., Yao T., Jin Y. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int. J. Pharm. 2020;578:119177. doi: 10.1016/j.ijpharm.2020.119177. PubMed DOI

Do V.Q., Park K.H., Park J.M., Lee M.Y. Comparative in vitro toxicity study of docetaxel and nanoxel, a docetaxel-loaded micellar formulation using cultured and blood cells. Toxicol. Res. 2019;35:201–207. doi: 10.5487/TR.2019.35.2.201. PubMed DOI PMC

Borga O., Lilienberg E., Bjermo H., Hansson F., Heldring N., Dediu R. Pharmacokinetics of total and unbound paclitaxel after administration of paclitaxel micellar or nab-paclitaxel: An open, randomized, cross-over, explorative study in breast cancer patients. Adv. Ther. 2019;36:2825–2837. doi: 10.1007/s12325-019-01058-6. PubMed DOI PMC

Van Tomme S.R., Storm G., Hennink W.E. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm. 2008;355:1–18. doi: 10.1016/j.ijpharm.2008.01.057. PubMed DOI

Ruel-Gariépy E., Shive M., Bichara A., Berrada M., Le Garrec D., Chenite A., Leroux J.C. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur. J. Pharm. Biopharm. 2004;57:53–63. doi: 10.1016/S0939-6411(03)00095-X. PubMed DOI

Li C., Ren S., Dai Y., Tian F., Wang X., Zhou S., Deng S., Liu Q., Zhao J., Chen X. Efficacy, pharmacokinetics, and biodistribution of thermosensitive chitosan/β -glycerophosphate hydrogel loaded with docetaxel. AAPS PharmSciTech. 2014;15:417–424. doi: 10.1208/s12249-014-0077-z. PubMed DOI PMC

Bajaj G., Kim M.R., Mohammed S.I., Yeo Y. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J. Control. Release. 2012;158:386–392. doi: 10.1016/j.jconrel.2011.12.001. PubMed DOI PMC

Mao Y., Li X., Chen G., Wang S. Thermosensitive hydrogel system with paclitaxel liposomes used in localized drug delivery system for in situ treatment of tumor: Better antitumor efficacy and lower toxicity. J. Pharm. Sci. 2016;105:194–204. doi: 10.1002/jps.24693. PubMed DOI

Ma P., Mumper R.J. Paclitaxel nano-delivery systems: A comprehensive review. J. Nanomed. Nanotechnol. 2013;4:1000164. doi: 10.4172/2157-7439.1000164. PubMed DOI PMC

Godara S., Lather V., Kirthanashri S.V., Awasthi R., Pandita D. Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation. Mater. Sci. Eng. 2020;109:110576. doi: 10.1016/j.msec.2019.110576. PubMed DOI

Houdaihed L., Evans J.C., Allen C. Dual-targeted delivery of nanoparticles encapsulating paclitaxel and everolimus: A novel strategy to overcome breast cancer receptor heterogeneity. Pharm. Res. 2020;37:39. doi: 10.1007/s11095-019-2684-6. PubMed DOI

Tang H., Chen J., Wang L., Li Q., Yang Y., Lv Z., Bao H., Li Y., Luan X., Li Y., et al. Co-delivery of epirubicin and paclitaxel using an estrone-targeted PEGylated liposomal nanoparticle for breast cancer. Int. J. Pharm. 2020;573:118806. doi: 10.1016/j.ijpharm.2019.118806. PubMed DOI

Duan T., Xu Z., Sun F., Wang Y., Zhang J., Luo C., Wang M. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed. Pharmacother. 2019;117:109121. doi: 10.1016/j.biopha.2019.109121. PubMed DOI

Cao X., Tan T., Zhu D., Yu H., Liu Y., Zhou H., Jin Y., Xia Q. Paclitaxel-loaded macrophage membrane camouflaged albumin nanoparticles for targeted cancer therapy. Int. J. Nanomed. 2020;15:1915–1928. doi: 10.2147/IJN.S244849. PubMed DOI PMC

Fang W.S., Liang X.T. Recent progress in structure activity relationship and mechanistic studies of taxol analogues. Mini. Rev. Med. Chem. 2005;5:1–12. doi: 10.2174/1389557053402837. PubMed DOI

Safavy A., Raisch K.P., Khazaeli M.B., Buchsbaum D.J., Bonner J.A. Paclitaxel derivatives for targeted therapy of cancer: Toward the development of smart taxanes. J. Med. Chem. 1999;42:4919–4924. doi: 10.1021/jm990355x. PubMed DOI

Ndungu J.M., Lu Y.J., Zhu S., Yang C., Wang X., Chen G., Shin D.M., Snyder J.P., Shoji M., Sun A. Targeted delivery of paclitaxel to tumor cells: Synthesis and in vitro evaluation. J. Med. Chem. 2010;53:3127–3132. doi: 10.1021/jm901763f. PubMed DOI PMC

Ojima I., Zuniga E.S., Berger W.T., Seitz J.D. Tumor-targeting drug delivery of new-generation taxoids. Future Med. Chem. 2012;4:33–50. doi: 10.4155/fmc.11.167. PubMed DOI PMC

Ojima I., Wang X., Jing Y., Wang C. Quest for efficacious next-generation taxoid anticancer agents and their tumor-targeted delivery. J. Nat. Prod. 2018;81:703–721. doi: 10.1021/acs.jnatprod.7b01012. PubMed DOI PMC

Vineberg J.G., Wang T., Zuniga E.S., Ojima I. Design, synthesis, and biological evaluation of theranostic vitamin-linker-taxoid conjugates. J. Med. Chem. 2015;58:2406–2416. doi: 10.1021/jm5019115. PubMed DOI PMC

Ojima I., Geng X., Wu X., Qu C., Borella C.P., Xie H., Wilhelm S.D., Leece B.A., Bartle L.M., Goldmacher V.S., et al. Tumor-specific novel taxoid-monoclonal antibody conjugates. J. Med. Chem. 2002;45:5620–5623. doi: 10.1021/jm025540g. PubMed DOI

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=oraxol&cntry=&state=&city=&dist=

Lee K.W., Lee K.H., Zang D.Y., Park Y.I., Shin D.B., Kim J.W., Im S.A., Koh S.A., Yu K.S., Cho J.Y., et al. Phase I/II study of weekly oraxol for the second-line treatment of patients with metastatic or recurrent gastric cancer. Oncologist. 2015;20:896–897. doi: 10.1634/theoncologist.2015-0202. PubMed DOI PMC

Ferlini C., Cicchillitti L., Raspaglio G., Bartollino S., Cimitan S., Bertucci C., Mozzetti S., Gallo D., Persico M., Fattorusso C., et al. Paclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77. Cancer Res. 2009;69:6906–6914. doi: 10.1158/0008-5472.CAN-09-0540. PubMed DOI

Wang X., Liow S.S., Wu Q., Li C., Owh C., Li Z., Loh X.J., Wu Y.L. Codelivery for paclitaxel and Bcl-2 conversion gene by PHB-PDMAEMA amphiphilic cationic copolymer for effective drug resistant cancer therapy. Macromol. Biosci. 2017;17:1700186. doi: 10.1002/mabi.201700186. PubMed DOI

Whitaker R.H., Placzek W.J. Regulating the BCL2 family to improve sensitivity to microtubule targeting agents. Cells. 2019;8:346. doi: 10.3390/cells8040346. PubMed DOI PMC

Pires M.M., Emmert D., Hrycyna C.A., Chmielewski J. Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers. Mol. Pharmacol. 2009;75:92–100. doi: 10.1124/mol.108.050492. PubMed DOI PMC

Sandhu P.S., Beg S., Mehta F., Singh B., Trivedi P. Novel dietary lipid-based self-nanoemulsifying drug delivery systems of paclitaxel with P-gp inhibitor: Implications on cytotoxicity and biopharmaceutical performance. Expert Opin. Drug Deliv. 2015;12:1809–1822. doi: 10.1517/17425247.2015.1060219. PubMed DOI

Wang F., Zhang D., Zhang Q., Chen Y., Zheng D., Hao L., Duan C., Jia L., Liu G., Liu Y. Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance. Biomaterials. 2011;32:9444–9456. doi: 10.1016/j.biomaterials.2011.08.041. PubMed DOI

Zhong J., Guo Z., Fan L., Zhao X., Zhao B., Cao Z., Cheng L., Shi Y., Li X., Zhang Y., et al. ABCB1 polymorphism predicts the toxicity and clinical outcome of lung cancer patients with taxane-based chemotherapy. Thorac. Cancer. 2019;10:2088–2095. doi: 10.1111/1759-7714.13184. PubMed DOI PMC

Muley H., Fadó R., Rodríguez-Rodríguez R., Casals N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem. Pharmacol. 2020;177:113959. doi: 10.1016/j.bcp.2020.113959. PubMed DOI

Dong X.L., Xu P.F., Miao C., Fu Z.Y., Li Q.P., Tang P.Y., Wang T. Hypoxia decreased chemosensitivity of breast cancer cell line MCF-7 to paclitaxel through cyclin B1. Biomed. Pharmacother. 2012;66:70–75. doi: 10.1016/j.biopha.2011.11.016. PubMed DOI

Ricker J.L., Chen Z., Yang X.P., Pribluda V.S., Swartz G.M., Van Waes C. 2-Methoxyestradiol inhibits hypoxia-inducible factor 1α, tumor growth, and angiogenesis and augments paclitaxel efficacy in head and neck squamous cell carcinoma. Clin. Cancer Res. 2004;10:8665–8673. doi: 10.1158/1078-0432.CCR-04-1393. PubMed DOI

Zeng L., Kizaka-Kondoh S., Itasaka S., Xie X., Inoue M., Tanimoto K., Shibuya K., Hiraoka M. Hypoxia inducible factor-1 influences sensitivity to paclitaxel of human lung cancer cell lines under normoxic conditions. Cancer Sci. 2007;98:1394–1401. doi: 10.1111/j.1349-7006.2007.00537.x. PubMed DOI PMC

Chen D., Bao C., Zhao F., Yu H., Zhong G., Xu L., Yan S. Exploring specific miRNA-mRNA axes with relationship to taxanes-resistance in breast cancer. Front. Oncol. 2020;10:1397. doi: 10.3389/fonc.2020.01397. PubMed DOI PMC

Bomane A., Gonçalves A., Ballester P.J. Paclitaxel response can be predicted with interpretable multi-variate classifiers exploiting DNA-methylation and miRNA data. Front. Genet. 2019;10:1041. doi: 10.3389/fgene.2019.01041. PubMed DOI PMC

Liskova A., Samec M., Koklesova L., Giordano F.A., Kubatka P., Golubnitschaja O. Liquid biopsy is instrumental for 3PM dimensional solutions in cancer management. J. Clin. Med. 2020;9:2749. doi: 10.3390/jcm9092749. PubMed DOI PMC

Farrar M.C., Jacobs T.F. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2020. Paclitaxel.

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=Cancer+&term=carboplatin+paclitaxel&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.

Safra T., Waissengrin B., Levy T., Leidner E., Merose R., Matceyevsky D., Grisaru D., Laskov I., Mishaan N., Shayzaf R., et al. Weekly carboplatin and paclitaxel: A retrospective comparison with the three-weekly schedule in first-line treatment of ovarian cancer. Oncologist. 2021;26:30–39. doi: 10.1634/theoncologist.2020-0196. PubMed DOI PMC

Cohen M.H., Gootenberg J., Keegan P., Pazdur R. FDA drug approval summary: Bevacizumab (Avastin) plus carboplatin and paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist. 2007;12:713–718. doi: 10.1634/theoncologist.12-6-713. PubMed DOI

Secord A.A., Burdett K.B., Owzar K., Tritchler D., Sibley A.B., Liu Y., Starr M.D., Brady J.C., Lankes H.A., Hurwitz H.I., et al. Predictive blood-based biomarkers in patients with epithelial ovarian cancer treated with carboplatin and paclitaxel with or without bevacizumab: Results from GOG-0218. Clin. Cancer Res. 2020;26:1288–1296. doi: 10.1158/1078-0432.CCR-19-0226. PubMed DOI PMC

Battaglia A., Buzzonetti A., Fossati M., Scambia G., Fattorossi A., Madiyalakan M.R., Mahnke Y.D., Nicodemus C. Translational immune correlates of indirect antibody immunization in a randomized phase II study using scheduled combination therapy with carboplatin/paclitaxel plus oregovomab in ovarian cancer patients. Cancer Immunol. Immunother. 2020;69:383–397. doi: 10.1007/s00262-019-02456-z. PubMed DOI PMC

Cejalvo J.M., Jacob W., Kanonnikoff T.F., Felip E., Mendivil A.N., Garcia M.M., Garcia A.T., Leighl N., Lassen U., Mau-Soerensen M., et al. A phase Ib/II study of HER3-targeting lumretuzumab in combination with carboplatin and paclitaxel as first-line treatment in patients with advanced or metastatic squamous non-small cell lung cancer. ESMO Open. 2019;4:e000532. doi: 10.1136/esmoopen-2019-000532. PubMed DOI PMC

Wu J.J., Atkinson E.C., Leichman L.P., Patel H., Iqbal S., Du K.L., Bizekis C., Goldberg J.D., Thomas C.R., Cohen D.J., et al. A phase I/II multisite study of nivolumab and carboplatin/paclitaxel with radiation therapy (RT) in patients with locally advanced esophageal squamous cell carcinoma (ESCC) J. Clin. Oncol. 2020;38:372. doi: 10.1200/JCO.2020.38.4_suppl.372. PubMed DOI

Goldman J.W., Waterhouse D.M., George B., O’Dwyer P.J., Bhore R., Banerjee S., Lyons L., Louis C.U., Ong T.J., Kelly K. Safety and efficacy results of a phase I, open-label study of concurrent and delayed nivolumab in combination with nab-paclitaxel and carboplatin in advanced non-small cell lung cancer. Front. Oncol. 2019;9:1256. doi: 10.3389/fonc.2019.01256. PubMed DOI PMC

Jotte R., Cappuzzo F., Vynnychenko I., Stroyakovskiy D., Rodríguez-Abreu D., Hussein M., Soo R., Conter H.J., Kozuki T., Huang K.C., et al. Atezolizumab in combination with carboplatin and nab-paclitaxel in advanced squamous NSCLC: Results from a randomized phase III trial. J. Thorac. Oncol. 2020;15:1351–1360. doi: 10.1016/j.jtho.2020.03.028. PubMed DOI

Lopresti M.L., Bian J.J., Sakr B.J., Strenger R.S., Legare R.D., Fenton M.A., Witherby S.M., Dizon D.S., Pandya S.V., Stuckey A.R., et al. Neoadjuvant weekly paclitaxel (wP) and carboplatin (Cb) with trastuzumab (T) and pertuzumab (P) in HER2-positive breast cancer (H+BC): A Brown University oncology group (BrUOG) study. Cancer Res. 2020;80 doi: 10.1158/1538-7445.SABCS19-P2-16-19. PubMed DOI

Shirasu H., Yokota T., Kawakami T., Hamauchi S., Onozawa Y., Ogawa H., Onoe T., Mori K., Onitsuka T. Efficacy and feasibility of induction chemotherapy with paclitaxel, carboplatin and cetuximab for locally advanced unresectable head and neck cancer patients ineligible for combination treatment with docetaxel, cisplatin, and 5-fluorouracil. Int. J. Clin. Oncol. 2020;25:1914–1920. doi: 10.1007/s10147-020-01742-6. PubMed DOI

Villaruz L.C., Cobo M., Syrigos K., Mavroudis D., Zhang W., Kim J.S., Socinski M.A. A phase II study of nab-paclitaxel and carboplatin chemotherapy plus necitumumab in the first-line treatment of patients with stage IV squamous non-small cell lung cancer. Lung Cancer. 2019;136:52–56. doi: 10.1016/j.lungcan.2019.08.009. PubMed DOI

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/home.

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=monoclonal+antibody+AND+paclitaxel&cntry=&state=&city=&dist=

ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=monoclonal+antibody+AND+docetaxel&cntry=&state=&city=&dist=&Search=Search.

Casak S.J., Fashoyin-Aje I., Lemery S.J., Zhang L., Jin R., Li H., Zhao L., Zhao H., Zhang H., Chen H., et al. FDA approval summary: Ramucirumab for gastric cancer. Clin. Cancer Res. 2015;21:3372–3376. doi: 10.1158/1078-0432.CCR-15-0600. PubMed DOI

Wilke H., Muro K., Van Cutsem E., Oh S.C., Bodoky G., Shimada Y., Hironaka S., Sugimoto N., Lipatov O., Kim T.Y., et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15:1224–1235. doi: 10.1016/S1470-2045(14)70420-6. PubMed DOI

Rakusic Z., Krpan A.M., Sjekavica I. Fulminant Fournier’s gangrene in a patient with gastric cancer treated with ramucirumab and paclitaxel. Ther. Adv. Drug Saf. 2020;11:1–4. doi: 10.1177/2042098620946556. PubMed DOI PMC

ClinicalTrials.gov NCT04136782. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04136782?term=NCT04136782&draw=2&rank=1.

ClinicalTrials.gov NCT04194203. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04194203?term=NCT04194203&draw=2&rank=1.

Clinicaltrials.gov NCT04325698. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04325698?term=NCT04325698&draw=2&rank=1.

ClinicalTrials.gov NCT04416035. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04416035?term=NCT04416035&draw=2&rank=1.

ClinicalTrials.gov NCT03991403. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03991403?term=NCT03991403&draw=2&rank=1.

ClinicalTrials.gov NCT04489888. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04489888?term=NCT04489888&draw=2&rank=1.

ClinicalTrials.gov NCT03794778. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03794778?term=NCT03794778&draw=2&rank=1.

ClinicalTrials.gov NCT04499924. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04499924?term=NCT04499924&draw=2&rank=1.

ClinicalTrials.gov NCT04278092. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04278092?term=NCT04278092&draw=2&rank=1.

ClinicalTrials.gov NCT03941093. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03941093?term=NCT03941093&draw=2&rank=1.

ClinicalTrials.gov NCT03401827. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03401827?term=NCT03401827&draw=2&rank=1.

Di Bartolomeo M., Niger M., Morano F., Corallo S., Antista M., Tamberi S., Lonardi S., Di Donato S., Berardi R., Scartozzi M., et al. Assessment of ramucirumab plus paclitaxel as switch maintenance versus continuation of first-line chemotherapy in patients with advanced HER-2 negative gastric or gastroesophageal junction cancers: The ARMANI phase III trial. BMC Cancer. 2019;19:283. doi: 10.1186/s12885-019-5498-3. PubMed DOI PMC

Refolo M.G., Lotesoriere C., Lolli I.R., Messa C., D’Alessandro R. Molecular mechanisms of synergistic action of ramucirumab and paclitaxel in gastric cancers cell lines. Sci. Rep. 2020;10:7162. doi: 10.1038/s41598-020-64195-x. PubMed DOI PMC

Sawatani Y., Komiyama Y., Nakashiro K.I., Uchida D., Fukumoto C., Shimura M., Hasegawa T., Kamimura R., Hitomi-Koide M., Hyodo T., et al. Paclitaxel potentiates the anticancer effect of cetuximab by enhancing antibody-dependent cellular cytotoxicity on oral squamous cell carcinoma cells in vitro. Int. J. Mol. Sci. 2020;21:6292. doi: 10.3390/ijms21176292. PubMed DOI PMC

Adkins D., Ley J., Trinkaus K., Thorstad W., Lewis J., Wildes T., Siegel B.A., Dehdashti F., Gay H., Mehan P., et al. A phase 2 trial of induction nab-paclitaxel and cetuximab given with cisplatin and 5-fluorouracil followed by concurrent cisplatin and radiation for locally advanced squamous cell carcinoma of the head and neck. Cancer. 2013;119:766–773. doi: 10.1002/cncr.27741. PubMed DOI PMC

Borghaei H., Langer C.J., Millenson M., Tuttle H., Seldomridge J., Rovito M., Mintzer D., Treat J. Phase II trial of cetuximab (C225) in combination with monthly carboplatin (Cb) and weekly paclitaxel (Pac) in patients with advanced NSCLC: Promising early results. J. Clin. Oncol. 2008;26:8104. doi: 10.1200/jco.2008.26.15_suppl.8104. DOI

Enokida T., Ogawa T., Homma A., Okami K., Minami S., Nakanome A., Shimizu Y., Maki D., Ueda Y., Fujisawa T., et al. A multicenter phase II trial of paclitaxel, carboplatin, and cetuximab followed by chemoradiotherapy in patients with unresectable locally advanced squamous cell carcinoma of the head and neck. Cancer Med. 2020;9:1671–1682. doi: 10.1002/cam4.2852. PubMed DOI PMC

Hitt R., Irigoyen A., Nuñez J., Grau J., Saenz J.G., Pastor M., Jara C., Giron C.G., Hidalgo M., Hernandez J.C. Phase II study of combination cetuximab and weekly paclitaxel in patients with metastatic/recurrent squamous cell carcinoma of head and neck (SCCHN): Spanish head and neck cancer group (TTCC) J. Clin. Oncol. 2007;25:6012. doi: 10.1200/jco.2007.25.18_suppl.6012. DOI

Hussain M., Theodorescu D. Re: Phase II trial of cetuximab with or without paclitaxel in patients with advanced urothelial tract carcinoma. Eur. Urol. 2014;65:501. doi: 10.1016/j.eururo.2013.10.054. PubMed DOI

Kim E.S., Moon J., Herbst R.S., Redman M.W., Dakhil S.R., Velasco M.R., Hirsch F.R., Mack P.C., Kelly K., Heymach J.V., et al. Phase II trial of carboplatin, paclitaxel, cetuximab, and bevacizumab followed by cetuximab and bevacizumab in advanced nonsquamous non-small-cell lung cancer SWOG S0536. J. Thorac. Oncol. 2013;8:1519–1528. doi: 10.1097/JTO.0000000000000009. PubMed DOI PMC

Langer C.J., Ruth K., Borghaei H., Treat J.A., Shafer D., Millenson M., Tuttle H., Rovito M., Mintzer D. Phase II trial of cetuximab (C225) in combination with monthly carboplatin (Cb) and weekly paclitaxel (Pac) in patients with advanced NSCLC: Promising early results. J. Thorac. Oncol. 2007;2:S465–S466. doi: 10.1097/01.JTO.0000283410.30744.4f. DOI

Modi S., D’Andrea G., Norton L., Yao T.J., Caravelli J., Rosen P.P., Hudis C., Seidman A.D. A phase I study of cetuximab/paclitaxel in patients with advanced-stage breast cancer. Clin. Breast Cancer. 2006;7:270–277. doi: 10.3816/CBC.2006.n.040. PubMed DOI

Pignata S., Scambia G., Lorusso D., De Giorgi U., Nicoletto M.O., Lauria R., Mosconi A.M., Sacco C., Omarini C., Tagliaferri P., et al. The MITO CERV-2 trial: A randomized phase II study of cetuximab plus carboplatin and paclitaxel, in advanced or recurrent cervical cancer. Gynecol. Oncol. 2019;153:535–540. doi: 10.1016/j.ygyno.2019.03.260. PubMed DOI

Socinski M.A., Saleh M.N., Trent D.F., Dobbs T.W., Zehngebot L.M., Levine M.A., Bordoni R., Stella P.J. Randomized phase II trial of two dose schedules of carboplatin/paclitaxel/cetuximab in stage IIIB/IV non-small-cell lung cancer (NSCLC) Ann. Oncol. 2009;20:1068–1073. doi: 10.1093/annonc/mdn745. PubMed DOI

Suntharalingam M., Winter K., Ilson D., Dicker A.P., Kachnic L., Konski A., Chakravarthy A.B., Anker C.J., Thakrar H., Horiba N., et al. Effect of the addition of cetuximab to paclitaxel, cisplatin, and radiation therapy for patients with esophageal cancer: The NRG Oncology RTOG 0436 phase 3 randomized clinical trial. JAMA Oncol. 2017;3:1520–1528. doi: 10.1001/jamaoncol.2017.1598. PubMed DOI PMC

Tahara M., Kiyota N., Yokota T., Hasegawa Y., Muro K., Takahashi S., Onoe T., Homma A., Taguchi J., Suzuki M., et al. Phase II trial of combination treatment with paclitaxel, carboplatin and cetuximab (PCE) as first-line treatment in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck (CSPOR-HN02) Ann. Oncol. 2018;29:1004–1009. doi: 10.1093/annonc/mdy040. PubMed DOI

Bossi P., Miceli R., Locati L.D., Ferrari D., Vecchio S., Moretti G., Denaro N., Caponigro F., Airoldi M., Moro C., et al. A randomized, phase 2 study of cetuximab plus cisplatin with or without paclitaxel for the first-line treatment of patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Ann. Oncol. 2017;28:2820–2826. doi: 10.1093/annonc/mdx439. PubMed DOI

Wanebo H.J., Lee J., Burtness B.A., Ridge J.A., Ghebremichael M., Spencer S.A., Psyrri D., Pectasides E., Rimm D., Rosen F.R., et al. Induction cetuximab, paclitaxel, and carboplatin followed by chemoradiation with cetuximab, paclitaxel, and carboplatin for stage III/IV head and neck squamous cancer: A phase II ECOG-ACRIN trial (E2303) Ann. Oncol. 2014;25:2036–2041. doi: 10.1093/annonc/mdu248. PubMed DOI PMC

Wong Y.N., Litwin S., Vaughn D., Cohen S., Plimack E.R., Lee J., Song W., Dabrow M., Brody M., Tuttle H., et al. Phase II trial of cetuximab with or without paclitaxel in patients with advanced urothelial tract carcinoma. J. Clin. Oncol. 2012;30:3545–3551. doi: 10.1200/JCO.2012.41.9572. PubMed DOI PMC

Picozzi V., Alseidi A., Winter J., Pishvaian M., Mody K., Glaspy J., Larson T., Matrana M., Carney M., Porter S., et al. Gemcitabine/nab-paclitaxel with pamrevlumab: A novel drug combination and trial design for the treatment of locally advanced pancreatic cancer. ESMO Open. 2020;5:e000668. doi: 10.1136/esmoopen-2019-000668. PubMed DOI PMC

Staff N.P., Fehrenbacher J.C., Caillaud M., Damaj M.I., Segal R.A., Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp. Neurol. 2020;324:113121. doi: 10.1016/j.expneurol.2019.113121. PubMed DOI PMC

Tonello R., Lee S.H., Berta T. Monoclonal antibody targeting the matrix metalloproteinase 9 prevents and reverses paclitaxel-induced peripheral neuropathy in mice. J. Pain. 2019;20:515–527. doi: 10.1016/j.jpain.2018.11.003. PubMed DOI PMC

Huehnchen P., Muenzfeld H., Boehmerle W., Endres M. Blockade of IL-6 signaling prevents paclitaxel-induced neuropathy in C57Bl/6 mice. Cell Death Dis. 2020;11:45. doi: 10.1038/s41419-020-2239-0. PubMed DOI PMC

Chen L.H., Yeh Y.M., Chen Y.F., Hsu Y.H., Wang H.H., Lin P.C., Chang L.Y., Lin C.C.K., Chang M.S., Shen M.R. Targeting interleukin-20 alleviates paclitaxel-induced peripheral neuropathy. Pain. 2020;161:1237–1254. doi: 10.1097/j.pain.0000000000001831. PubMed DOI

Matsuoka A., Maeda O., Mizutani T., Nakano Y., Tsunoda N., Kikumori T., Goto H., Ando Y. Bevacizumab exacerbates paclitaxel-induced neuropathy: A retrospective cohort study. PLoS ONE. 2016;11:e0168707. doi: 10.1371/journal.pone.0168707. PubMed DOI PMC

Moreno-Aspitia A., Dueck A., Patel T., Hillman D., Tenner K., Dakhil S., Rowland K., McLaughlin S., Perez E. Paclitaxel-related peripheral neuropathy associated with improved outcome of patients with early stage HER2+ breast cancer who did not receive trastuzumab in the N9831 clinical trial. Cancer Res. 2009;69:2100. doi: 10.1158/0008-5472.SABCS-09-2100. PubMed DOI

Sierecki M.R., Rugo H.S., McArthur H.L., Traina T.A., Paulson M., Rourke M., Norton L., Seidman A.D., Hudis C.A., Dickler M.N. Incidence and severity of sensory neuropathy (SN) with bevacizumab (B) added to dose-dense (dd) doxorubicin/cyclophosphamide (AC) followed by nanoparticle albumin-bound (nab) paclitaxel (P) in patients (pts) with early stage breast cancer (BC) J. Clin. Oncol. 2008;26 doi: 10.1200/jco.2008.26.15_suppl.589. DOI

Kazandjian D., Blumenthal G.M., Yuan W., He K., Keegan P., Pazdur R. FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation–positive non–small cell lung cancer. Clin. Cancer Res. 2016;22:1307–1312. doi: 10.1158/1078-0432.CCR-15-2266. PubMed DOI

Herbst R.S., Prager D., Hermann R., Fehrenbacher L., Johnson B.E., Sandler A., Kris M.G., Tran H.T., Klein P., Li X., et al. TRIBUTE investigator group. TRIBUTE: A phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J. Clin. Oncol. 2005;23:5892–5899. doi: 10.1200/JCO.2005.02.840. PubMed DOI

Hu Z., Zheng B., Xu J., Gao S., Lu W. An albumin-bound drug conjugate of paclitaxel and indoleamine-2,3-dioxygenase inhibitor for enhanced cancer chemo-immunotherapy. Nanotechnology. 2020;31:295101. doi: 10.1088/1361-6528/ab824d. PubMed DOI

White P.T., Cohen M.S. The discovery and development of sorafenib for the treatment of thyroid cancer. Expert Opin. Drug Discov. 2015;10:427–439. doi: 10.1517/17460441.2015.1006194. PubMed DOI PMC

Nawara H.M., Afify S.M., Hassan G., Zahra M.H., Atallah M.N., Mansour H., Abu Quora H.A., Alam M.J., Osman A., Kakuta H., et al. Paclitaxel and sorafenib: The effective combination of suppressing the self-renewal of cancer stem cells. Cancers. 2020;12:1360. doi: 10.3390/cancers12061360. PubMed DOI PMC

De Jesus-Acosta A., Sugar E.A., O’Dwyer P.J., Ramanathan R.K., Von Hoff D.D., Rasheed Z., Zheng L., Begum A., Anders R., Maitra A., et al. Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma. Br. J. Cancer. 2020;122:498–505. doi: 10.1038/s41416-019-0683-3. PubMed DOI PMC

Lorenzen S., Knorrenschild J.R., Pauligk C., Hegewisch-Becker S., Seraphin J., Thuss-Patience P., Kopp H.G., Dechow T., Vogel A., Luley K.B., et al. Phase III randomized, double-blind study of paclitaxel with and without everolimus in patients with advanced gastric or esophagogastric junction carcinoma who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen (RADPAC) Int. J. Cancer. 2020;147:2493–2502. doi: 10.1002/ijc.33025. PubMed DOI

Alvarellos M.L., Lamba J., Sangkuhl K., Thorn C.F., Wang L., Klein D.J., Altman R.B., Klein T.E. PharmGKB summary: Gemcitabine pathway. Pharmacogenet. Genomics. 2014;24:564–574. doi: 10.1097/FPC.0000000000000086. PubMed DOI PMC

Von Hoff D.D., Ervin T., Arena F.P., Chiorean E.G., Infante J., Moore M., Seay T., Tjulandin S.A., Ma W.W., Saleh M.N., et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013;369:1691–1703. doi: 10.1056/NEJMoa1304369. PubMed DOI PMC

Wainberg Z.A., Hochster H.S., Kim E.J., George B., Kaylan A., Chiorean E.G., Waterhouse D.M., Guiterrez M., Parikh A., Jain R., et al. Open-label, phase I study of nivolumab combined with nab-paclitaxel plus gemcitabine in advanced pancreatic cancer. Clin. Cancer Res. 2020;26:4814–4822. doi: 10.1158/1078-0432.CCR-20-0099. PubMed DOI

ClinicalTrials.gov. [(accessed on 22 January 2020)]; Available online: https://www.clinicaltrials.gov/ct2/results?term=paclitaxel+gemcitabine+nivolumab&Search=Apply&recrs=b&recrs=a&recrs=f&recrs=d&age_v=&gndr=&type=&rslt=

Yu J., Wang Y., Zhou S., Li J., Wang J., Chi D., Wang X., Lin G., He Z., Wang Y. Remote loading paclitaxel–doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharm. Sin. B. 2020;10:1730–1740. doi: 10.1016/j.apsb.2020.04.011. PubMed DOI PMC

Kaur P., Mishra V., Shunmugaperumal T., Goyal A.K., Ghosh G., Rath G. Inhalable spray dried lipidnanoparticles for the co-delivery of paclitaxel and doxorubicin in lung cancer. J. Drug Deliv. Sci. Technol. 2020;56:101502. doi: 10.1016/j.jddst.2020.101502. DOI

Fraguas-Sanchez A.I., Fernández-Carballido A., Simancas-Herbada R., Martin-Sabroso C., Torres-Suárez A.I. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int. J. Pharm. 2020;574:118916. doi: 10.1016/j.ijpharm.2019.118916. PubMed DOI

Zhu C., Jung S., Luo S., Meng F., Zhu X., Park T.G., Zhong Z. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials. 2010;31:2408–2416. doi: 10.1016/j.biomaterials.2009.11.077. PubMed DOI

Sun T.M., Du J.Z., Yao Y.D., Mao C.Q., Dou S., Huang S.Y., Zhang P.Z., Leong K.W., Song E.W., Wang J. Simultaneous Delivery of siRNA and paclitaxel via a "two-in-one" micelleplex promotes synergistic tumor suppression. ACS Nano. 2011;5:1483–1494. doi: 10.1021/nn103349h. PubMed DOI

Yin T., Wang L., Yin L., Zhou J., Huo M. Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer. Biomaterials. 2015;61:10–25. doi: 10.1016/j.biomaterials.2015.05.022. PubMed DOI

Yu Y.H., Kim E., Park D.E., Shim G., Lee S., Kim Y.B., Kim C.W., Oh Y.K. Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur. J. Pharm. Biopharm. 2012;80:268–273. doi: 10.1016/j.ejpb.2011.11.002. PubMed DOI

Salzano G., Navarro G., Trivedi M.S., De Rosa G., Torchilin V.P. Multifunctional polymeric micelles co-loaded with anti-survivin siRNA and paclitaxel overcome drug resistance in an animal model of ovarian cancer. Mol. Cancer Ther. 2015;14:1075–1084. doi: 10.1158/1535-7163.MCT-14-0556. PubMed DOI PMC

Škubník J., Rimpelová S., Jurášek M., Ruml T. Mitotic poisons in research and medicine. Molecules. 2020;25:4632. doi: 10.3390/molecules25204632. PubMed DOI PMC

Falchook G., Coleman R.L., Roszak A., Behbakht K., Matulonis U., Ray-Coquard I., Sawrycki P., Duska L.R., Tew W., Ghamande S., et al. Alisertib in combination with weekly paclitaxel in patients with advanced breast cancer or recurrent ovarian cancer: A randomized clinical trial. JAMA Oncol. 2019;5:e183773. doi: 10.1001/jamaoncol.2018.3773. PubMed DOI PMC

Yasuhira S., Shibazaki M., Nishiya M., Maesawa C. Paclitaxel-induced aberrant mitosis and mitotic slippage efficiently lead to proliferative death irrespective of canonical apoptosis and p53. Cell Cycle. 2016;15:3268–3277. doi: 10.1080/15384101.2016.1242537. PubMed DOI PMC

Bombuwala K., Kinstle T., Popik V., Uppal S.O., Olesen J.B., Viña J., Heckman C.A. Colchitaxel, a coupled compound made from microtubule inhibitors colchicine and paclitaxel. Beilstein J. Org. Chem. 2006;2:13. doi: 10.1186/1860-5397-2-13. PubMed DOI PMC

Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI

Ashrafizadeh M., Zarrabi A., Hashemi F., Moghadam E.R., Hashemi F., Entezari M., Hushmandi K., Mohammadinejad R., Najafi M. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci. 2020;256:117984. doi: 10.1016/j.lfs.2020.117984. PubMed DOI

Shen L., Liu C.C., An C.Y., Ji H.F. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci. Rep. 2016;6:20872. doi: 10.1038/srep20872. PubMed DOI PMC

Nelson K.M., Dahlin J.L., Bisson J., Graham J., Pauli G.F., Walters M.A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017;60:1620–1637. doi: 10.1021/acs.jmedchem.6b00975. PubMed DOI PMC

Garofalo M., Saari H., Somersalo P., Crescenti D., Kuryk L., Aksela L., Capasso C., Madetoja M., Koskinen K., Oksanen T., et al. Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J. Control. Release. 2018;283:223–234. doi: 10.1016/j.jconrel.2018.05.015. PubMed DOI

Lal G., Rajala M.S. Combination of oncolytic measles virus armed with BNiP3, a pro-apoptotic gene and paclitaxel induces breast cancer cell death. Front. Oncol. 2019;8:676. doi: 10.3389/fonc.2018.00676. PubMed DOI PMC

ClinicalTrials.gov. [(accessed on 1 November 2020)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=docetaxel+combination&cntry=&state=&city=&dist=

Bishop R.T., Marino S., Carrasco G., Li B., Allen R.J., Sparatore A., Ottewell P.D., Mollat P., Sims A.H., Capulli M., et al. Combined administration of a small-molecule inhibitor of TRAF6 and Docetaxel reduces breast cancer skeletal metastasis and osteolysis. Cancer Lett. 2020;488:27–39. doi: 10.1016/j.canlet.2020.05.021. PubMed DOI

Hasegawa H., Kaneko T., Kanno C., Endo M., Yamazaki M., Kitabatake T., Monma T., Takeishi E., Sato E., Kano M. Preoperative intra-arterial chemotherapy with docetaxel, cisplatin, and peplomycin combined with intravenous chemotherapy using 5-fluorouracil for oral squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 2020;49:984–992. doi: 10.1016/j.ijom.2020.01.024. PubMed DOI

Rodallec A., Franco C., Robert S., Sicard G., Giacometti S., Lacarelle B., Bouquet F., Savina A., Lacroix R., Dignat-George F., et al. Prototyping trastuzumab docetaxel immunoliposomes with a new FCM-based method to quantify optimal antibody density on nanoparticles. Sci. Rep. 2020;10:4147. doi: 10.1038/s41598-020-60856-z. PubMed DOI PMC

Laber D.A., Eatrides J., Jaglal M.V., Haider M., Visweshwar N., Patel A. A phase I/II study of docetaxel in combination with pegylated liposomal doxorubicin in metastatic castration-resistant prostate cancer. Med. Oncol. 2020;37:95. doi: 10.1007/s12032-020-01420-7. PubMed DOI

Zhao Z., Li Y., Liu H., Jain A., Patel P.V., Cheng K. Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer. Sci. Adv. 2020;6:eabb0616. doi: 10.1126/sciadv.abb0616. PubMed DOI PMC

Chen Y., Deng Y., Zhu C., Xiang C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed. Pharmacother. 2020;127:110181. doi: 10.1016/j.biopha.2020.110181. PubMed DOI

Wheeler N.C., Jech K., Masters S., Brobst S.W., Alvarado A.B., Hoover A.J., Snader K.M. Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. J. Nat. Prod. 1992;55:432–440. doi: 10.1021/np50082a005. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cardiac Glycosides as Immune System Modulators

. 2021 Apr 29 ; 11 (5) : . [epub] 20210429

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...