Current Perspectives on Taxanes: Focus on Their Bioactivity, Delivery and Combination Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
A1_FPBT_2020_001
Ministry of Sport and Education, Czech Republic
PubMed
33802861
PubMed Central
PMC8002726
DOI
10.3390/plants10030569
PII: plants10030569
Knihovny.cz E-zdroje
- Klíčová slova
- anticancer effect, antimitotic agents, cancer treatment, combination therapy, docetaxel, microtubule-stabilizing agents, natural products, paclitaxel, targeted drug delivery, taxanes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Taxanes, mainly paclitaxel and docetaxel, the microtubule stabilizers, have been well known for being the first-line therapy for breast cancer for more than the last thirty years. Moreover, they have been also used for the treatment of ovarian, hormone-refractory prostate, head and neck, and non-small cell lung carcinomas. Even though paclitaxel and docetaxel significantly enhance the overall survival rate of cancer patients, there are some limitations of their use, such as very poor water solubility and the occurrence of severe side effects. However, this is what pushes the research on these microtubule-stabilizing agents further and yields novel taxane derivatives with significantly improved properties. Therefore, this review article brings recent advances reported in taxane research mainly in the last two years. We focused especially on recent methods of taxane isolation, their mechanism of action, development of their novel derivatives, formulations, and improved tumor-targeted drug delivery. Since cancer cell chemoresistance can be an unsurpassable hurdle in taxane administration, a significant part of this review article has been also devoted to combination therapy of taxanes in cancer treatment. Last but not least, we summarize ongoing clinical trials on these compounds and bring a perspective of advancements in this field.
Zobrazit více v PubMed
Wani M.C., Taylor H.L., Wall M.E., Coggon P., McPhail A.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971;93:2325–2327. doi: 10.1021/ja00738a045. PubMed DOI
Menzin A.W., King S.A., Aikins J.K., Mikuta J.J., Rubin S.C. Taxol (paclitaxel) was approved by FDA for the treatment of patients with recurrent ovarian cancer. Gynecol. Oncol. 1994;54:103. PubMed
Leo C.P., Hentschel B., Szucs T.D., Leo C. FDA and EMA Approvals of new breast cancer drugs—A comparative regulatory analysis. Cancers. 2020;12:437. doi: 10.3390/cancers12020437. PubMed DOI PMC
Paller C.J., Antonarakis E.S. Cabazitaxel: A novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des. Dev. Ther. 2011;5:117–124. doi: 10.2147/DDDT.S13029. PubMed DOI PMC
Cope E.A. Taxaceae: The genera and cultivated species. Bot. Rev. 1998;64:291–322. doi: 10.1007/BF02857621. DOI
World Botanical. [(accessed on 9 March 2021)]; Available online: http://www.worldbotanical.com/TAXNA.HTM.
Bui-Khac T., Potier M. Process for Isolation and Purification of Paclitaxel from Natural Sources. No 6,759,539. [(accessed on 22 January 2020)];U.S. Patent. 2004 Jul 6; Available online: https://patentimages.storage.googleapis.com/44/e6/98/decc6a00219616/us6759539.pdf.
Sadeghi-aliabadi H., Asghari G., Mostafavi S.A., Esmaeili A. Solvent optimization on Taxol extraction from Taxus baccata L., using HPLC and LC-MS. Daru. 2009;17:192–198.
Kim G.J., Kim J.H. Enhancement of extraction efficiency of paclitaxel from biomass using ionic liquid-methanol co-solvents under acidic conditions. Process Biochem. 2015;50:989–996. doi: 10.1016/j.procbio.2015.03.009. DOI
Kawamura F., Kikuchi Y., Ohira T., Yatagai M. Accelerated solvent extraction of paclitaxel and related compounds from the bark of Taxus cuspidata. J. Nat. Prod. 1999;62:244–247. doi: 10.1021/np980310j. PubMed DOI
Lee S.H., Kim J.H. Kinetic and thermodynamic characteristics of microwave-assisted extraction for the recovery of paclitaxel from Taxus chinensis. Process Biochem. 2019;76:187–193. doi: 10.1016/j.procbio.2018.11.010. DOI
Naik B.S. Developments in taxol production through endophytic fungal biotechnology: A review. Orient. Pharm. Exp. Med. 2019;19:1–13. doi: 10.1007/s13596-018-0352-8. DOI
El-Sayed E.R., Zaki A.G., Ahmed A.S., Ismaiel A.A. Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: Enhanced production by gamma irradiation mutagenesis and immobilization technique. Appl. Microbiol. Biotechnol. 2020;104:6991–7003. doi: 10.1007/s00253-020-10712-x. PubMed DOI
Kumar P., Singh B., Thakur V., Thakur A., Thakur N., Pandey D., Chanda D. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol. Rep. (Amst.) 2019;24:e00395. doi: 10.1016/j.btre.2019.e00395. PubMed DOI PMC
Badi H.N., Abdoosi V., Farzin N. New approach to improve taxol biosynthetic. Trakia J. Sci. 2015;2:115–124. doi: 10.15547/tjs.2015.02.002. DOI
Subban K., Subramani R., Srinivasan V.P.M., Johnpaul M., Chelliah J. Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS ONE. 2019;14:e0212736. doi: 10.1371/journal.pone.0212736. PubMed DOI PMC
Sabzehzari M., Zeinali M., Naghavia M.R. Alternative sources and metabolic engineering of Taxol: Advances and future perspectives. Biotech. Adv. 2020;43:107569. doi: 10.1016/j.biotechadv.2020.107569. PubMed DOI
Chakravarthi B.V.S.K., Singh S., Kamalraj S., Gupta V.K., Jayabaskaran C. Evaluation of spore inoculum and confirmation of pathway genetic blueprint of T13αH and DBAT from a Taxol-producing endophytic fungus. Sci. Rep. 2020;10:21139. doi: 10.1038/s41598-020-77605-x. PubMed DOI PMC
Page M., Landry N., Boissinot M., Helie M.C., Harvey M., Gagne M. Bacterial Mass Production of Taxanes and Paclitaxel. No 6,030,818. [(accessed on 22 January 2021)];U.S. Patent. 2000 Feb 29; Available online: https://patentimages.storage.googleapis.com/57/34/8c/542334a3e376bd/US6030818.pdf.
Bacterial Mass Production of Taxanes with Erwinia. [(accessed on 22 January 2021)]; Available online: https://patentimages.storage.googleapis.com/a5/51/6d/3488bf95fd1bf5/US5561055.pdf.
Ajikumar P.K., Xiao W.H., Tyo K.E.J., Wang Y., Simeon F., Leonard E., Mucha O., Phon T.H., Pfeifer B., Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor over-production in Escherichia coli. Science. 2010;330:70–74. doi: 10.1126/science.1191652. PubMed DOI PMC
Zhou K., Qiao K., Edgar S., Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 2015;33:377–383. doi: 10.1038/nbt.3095. PubMed DOI PMC
Subramanian M., Marudhamuthu M. Hitherto Unknown terpene synthase organization in taxol producing endophytic bacteria isolated from marine macroalgae. Curr. Microbiol. 2020;77:918–923. doi: 10.1007/s00284-020-01878-8. PubMed DOI
Patil R.A., Kolewe M.E., Normanly J., Walker E.L., Roberts S.C. Contribution of taxane biosynthetic pathway gene expression to observed variability in paclitaxel accumulation in Taxus suspension cultures. Biotechnol J. 2012;7:418–427. doi: 10.1002/biot.201100183. PubMed DOI PMC
Gallego A., Malik S., Yousefzadi M., Makhzoum A., Tremouillaux-Guiller J., Bonfill M. Taxol from Corylus avellana: Paving the way for a new source of this anti-cancer drug. Plant Cell Tissue Organ Cult. 2017;129:1–16. doi: 10.1007/s11240-016-1164-5. DOI
Qaderi A., Omidi M., Omidi M., Etminan A., Etminan A., Oladzad A., Ebrahimi C., Dehghani M., Mehrafarin A. Hazel (Corylus avellana L.) as a new source of taxol and taxanes. J. Med. Plants. 2012;11:66–67.
Salehi M., Moieni A., Safaie N., Farhadi S. Whole fungal elicitors boost paclitaxel biosynthesis induction in Corylus avellana cell culture. PLoS ONE. 2020;15:e0236191. doi: 10.1371/journal.pone.0236191. PubMed DOI PMC
McElroy C., Jennewein S. Taxol® Biosynthesis and production: From forests to fermenters. In: Schwab W., Lange B.M., Wüst M., editors. Biotechnology of Natural Products. Springer; Cham, Switzerland: 2018. pp. 145–185. DOI
Edgar S., Li F.S., Qiao K., Weng J.K., Stephanopoulos G. Engineering of taxadiene synthase for improved selectivity and yield of a key taxol biosynthetic intermediate. ACS Synth. Biol. 2017;6:201–205. doi: 10.1021/acssynbio.6b00206. PubMed DOI
Danishefsky S.J., Masters J.J., Young W.B., Link J.T., Snyder L.B., Magee T.V., Jung D.K., Isaacs R.C.A., Bornmann W.G., Alaimo C.A., et al. Total synthesis of baccatin III and taxol. J. Am. Chem. Soc. 1996;118:2843–2859. doi: 10.1021/ja952692a. DOI
Doi T., Fuse S., Miyamoto S., Nakai K., Sasuga D., Takahashi T. A formal total synthesis of taxol aided by an automated synthesizer. Chem. Asian J. 2006;1:370–383. doi: 10.1002/asia.200600156. PubMed DOI
Fukaya K., Kodama K., Tanaka Y., Yamazaki H., Sugai T., Yamaguchi Y., Watanabe A., Oishi T., Sato T., Chida N. Synthesis of paclitaxel. 2. Construction of the ABCD ring and formal synthesis. Org. Lett. 2015;17:2574–2577. doi: 10.1021/acs.orglett.5b01174. PubMed DOI
Fukaya K., Tanaka Y., Sato A.C., Kodama K., Yamazaki H., Ishimoto T., Nozaki Y., Iwaki Y.M., Yuki Y., Umei K., et al. Synthesis of paclitaxel. 1. Synthesis of the ABC ring of paclitaxel by SmI2-mediated cyclization. Org. Lett. 2015;17:2570–2573. doi: 10.1021/acs.orglett.5b01173. PubMed DOI
Hirai S., Utsugi M., Iwamoto M., Nakada M. Formal total synthesis of (−)-taxol through Pd-catalyzed eight-membered carbocyclic ring formation. Chem. Eur. J. 2015;21:355–359. doi: 10.1002/chem.201404295. PubMed DOI
Holton R.A., Somoza C., Kim H.B., Liang F., Biediger R.J., Boatman P.D., Shindo M., Smith C.C., Kim S., Nadizadeh H., et al. First total synthesis of taxol. 1. Functionalization of the B-ring. J. Am. Chem. Soc. 1994;116:1597–1598. doi: 10.1021/ja00083a066. DOI
Masters J.J., Link J.T., Snyder L.B., Young W.B., Danishefsky S.J. A total synthesis of taxol. Angew. Chem. Int. Ed. 1995;34:1723–1726. doi: 10.1002/anie.199517231. DOI
Morihira K., Hara R., Kawahara S., Nishimori T., Nakamura N., Kusama H., Kuwajima I. Enantioselective total synthesis of taxol. J. Am. Chem. Soc. 1998;120:12980–12981. doi: 10.1021/ja9824932. DOI
Mukaiyama T., Shiina I., Iwadare H., Saitoh M., Nishimura T., Ohkawa N., Sakoh H., Nishimura K., Tani Y.I., Hasegawa M., et al. Asymmetric total synthesis of taxol\R. Chem. Eur. J. 1999;5:121–161. doi: 10.1002/(SICI)1521-3765(19990104)5:1<121::AID-CHEM121>3.0.CO;2-O. DOI
Nicolaou K.C., Yang Z., Liu J.J., Ueno H., Nantermet P.G., Guy R.K., Claiborne C.F., Renaud J., Couladouros E.A., Paulvannan K., et al. Total synthesis of taxol. Nature. 1994;367:630–634. doi: 10.1038/367630a0. PubMed DOI
Wender P.A., Badham N.F., Conway S.P., Floreancig P.E., Glass T.E., Gränicher C., Houze J.B., Jänichen J., Lee D., Marquess D.G., et al. The pinene path to taxanes. 5. Stereocontrolled synthesis of a versatile taxane precursor. J. Am. Chem. Soc. 1997;119:2755–2756. doi: 10.1021/ja9635387. DOI
Wender P.A., Badham N.F., Conway S.P., Floreancig P.E., Glass T.E., Houze J.B., Krauss N.E., Lee D., Marquess D.G., McGrane P.L., et al. The pinene path to taxanes. 6. A concise stereocontrolled synthesis of taxol. J. Am. Chem. Soc. 1997;119:2757–2758. doi: 10.1021/ja963539z. DOI
Kanda Y., Nakamura H., Umemiya S., Puthukanoori R.K., Appala V.R.M., Gaddamanugu G.K., Paraselli B.R., Baran P.S. Two-phase synthesis of taxol. J. Am. Chem. Soc. 2020;142:10526–10533. doi: 10.1021/jacs.0c03592. PubMed DOI PMC
Alqahtani F.Y., Aleanizy F.S., El Tahir E., Alkahtani H.M., AlQuadeib B.T. Chapter three—Paclitaxel. In: Brittain H.G., editor. Profiles of Drug Substances, Excipients and Related Methodology. Volume 44. Academic Press; Cambridge, MA, USA: 2019. pp. 205–238. PubMed DOI
Patel R.N. Tour de paclitaxel: Biocatalysis for semisynthesis. Annu. Rev. Microbiol. 1998;52:361–395. doi: 10.1146/annurev.micro.52.1.361. PubMed DOI
Witherup K.M., Look S.A., Stasko M.W., Ghiorzi T.J., Muschik G.M., Cragg G.M. Taxus spp. needles contain amounts of taxol comparable to the bark of Taxus brevifolia: Analysis and isolation. J. Nat. Prod. 1990;53:1249–1255. doi: 10.1021/np50071a017. PubMed DOI
Schiff P.B., Fant J., Horwitz S.B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665–667. doi: 10.1038/277665a0. PubMed DOI
Parness J., Horwitz S.B. Taxol binds to polymerized tubulin in vitro. J. Cell Biol. 1981;91:479–487. doi: 10.1083/jcb.91.2.479. PubMed DOI PMC
Rao S., He L., Chakravarty S., Ojima I., Orr G.A., Horwitz S.B. Characterization of the taxol binding site on the microtubule. Identification of Arg(282) in beta-tubulin as the site of photoincorporation of a 7-benzophenone analogue of Taxol. J. Biol. Chem. 1999;274:37990–37994. doi: 10.1074/jbc.274.53.37990. PubMed DOI
Díaz J.F., Andreu J.M. Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: Reversibility, ligand stoichiometry, and competition. Biochemistry. 1993;32:2747–2755. doi: 10.1021/bi00062a003. PubMed DOI
Waters J.C., Chen R.H., Murray A.W., Salmon E.D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 1998;141:1181–1191. doi: 10.1083/jcb.141.5.1181. PubMed DOI PMC
Boudny V., Nakano S. Src tyrosine kinase augments taxotere-induced apoptosis through enhanced expression and phosphorylation of Bcl-2. Br. J. Cancer. 2002;86:463–469. doi: 10.1038/sj.bjc.6600080. PubMed DOI PMC
Héliez C., Baricault L., Barboule N., Valette A. Paclitaxel increases p21 synthesis and accumulation of its AKT-phosphorylated form in the cytoplasm of cancer cells. Oncogene. 2003;22:3260–3268. doi: 10.1038/sj.onc.1206409. PubMed DOI
Tanimukai H., Kanayama D., Omi T., Takeda M., Kudo T. Paclitaxel induces neurotoxicity through endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 2013;437:151–155. doi: 10.1016/j.bbrc.2013.06.057. PubMed DOI
Risinger A.L., Riffle S.M., Lopus M., Jordan M.A., Wilson L., Mooberry S.L. The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation. Mol. Cancer. 2014;13:41. doi: 10.1186/1476-4598-13-41. PubMed DOI PMC
Verde F., Berrez J.M., Antony C., Karsenti E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: Requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 1991;112:1177–1187. doi: 10.1083/jcb.112.6.1177. PubMed DOI PMC
Öztop S., Işik A., Güner G., Gürdal H., Karabulut E., Yilmaz E., Akyol A. Class III beta-tubulin expression in colorectal neoplasms is a potential predictive biomarker for paclitaxel response. Anticancer Res. 2019;39:655–662. doi: 10.21873/anticanres.13160. PubMed DOI
Tame M.A., Manjón A.G., Belokhvostova D., Raaijmakers J.A., Medema R.H. TUBB3 overexpression has a negligible effect on the sensitivity to taxol in cultured cell lines. Oncotarget. 2017;8:71536–71547. doi: 10.18632/oncotarget.17740. PubMed DOI PMC
Gelderblom H., Verweij J., Nooter K., Sparreboom A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer. 2001;37:1590–1598. doi: 10.1016/S0959-8049(01)00171-X. PubMed DOI
Mei L., Zhang Y., Zheng Y., Tian G., Song C., Yang D., Chen H., Sun H., Tian Y., Liu K., et al. A novel docetaxel-loaded poly (ε-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res. Lett. 2009;4:1530–1539. doi: 10.1007/s11671-009-9431-6. PubMed DOI PMC
Yuan H., Guo H., Luan X., He M., Li F., Burnett J., Truchan N., Sun D. Albumin nanoparticle of paclitaxel (abraxane) decreases while taxol increases breast cancer stem cells in treatment of triple negative breast cancer. Mol. Pharm. 2020;17:2275–2286. doi: 10.1021/acs.molpharmaceut.9b01221. PubMed DOI PMC
Wang X., Song L., Li N., Qiu Z., Zhou S., Li C., Zhao J., Song H., Chen X. Pharmacokinetics and biodistribution study of paclitaxel liposome in Sprague-Dawley rats and Beagle dogs by liquid chromatography-tandem mass spectrometry. Drug Res. 2013;63:603–606. doi: 10.1055/s-0033-1349126. PubMed DOI
Zhang Q., Huang X.E., Gao L.L. A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors. Biomed. Pharmacother. 2009;63:603–607. doi: 10.1016/j.biopha.2008.10.001. PubMed DOI
Orphan drug designation to LEP-ETU for ovarian cancer. Oncol. Times. 2015;37:25. doi: 10.1097/01.COT.0000462869.83090.9d. DOI
Zhang J.A., Anyarambhatla G., Ma L., Ugwu S., Xuan T., Sardone T., Ahmad I. Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm. 2005;59:177–187. doi: 10.1016/j.ejpb.2004.06.009. PubMed DOI
Fasol U., Frost A., Büchert M., Arends J., Fiedler U., Scharr D., Scheuenpflug J., Mross K. Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis. Ann. Oncol. 2012;23:1030–1036. doi: 10.1093/annonc/mdr300. PubMed DOI
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=lipusu&cntry=&state=&city=&dist=&Search=Search.
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=LEP-ETU&cntry=&state=&city=&dist=&Search=Search.
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=endotag&cntry=&state=&city=&dist=&Search=Search.
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=PTX-LDE&cntry=&state=&city=&dist=&Search=Search.
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=LE-DT&cntry=&state=&city=&dist=&Search=Search.
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=ATI-1123+&cntry=&state=&city=&dist=&Search=Search.
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=genexol-PM&cntry=&state=&city=&dist=&Search=Search.
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=NAnoxel&cntry=&state=&city=&dist=&Search=Search.
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=paclical&cntry=&state=&city=&dist=&Search=Search.
Deeken J.F., Slack R., Weiss G.J., Ramanathan R.K., Pishvaian M.J., Hwang J., Lewandowski K., Subramaniam D., He A.R., Cotarla I., et al. A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother. Pharmacol. 2013;71:627–633. doi: 10.1007/s00280-012-2048-y. PubMed DOI PMC
Mahalingam D., Nemunaitis J.J., Malik L., Sarantopoulos J., Weitman S., Sankhala K., Hart J., Kousba A., Gallegos N.S., Anderson G., et al. Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2014;74:1241–1250. doi: 10.1007/s00280-014-2602-x. PubMed DOI
Merrimack Discontinues Development of MM-310. [(accessed on 22 January 2021)]; Available online: https://investors.merrimack.com/news-releases/news-release-details/merrimack-discontinues-development-mm-310.
Trial to Study the Safety of Intravenous MNK-010 in Advanced Solid Tumors. [(accessed on 22 January 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02040558.
Zhang M., Li M., Du L., Zeng J., Yao T., Jin Y. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int. J. Pharm. 2020;578:119177. doi: 10.1016/j.ijpharm.2020.119177. PubMed DOI
Do V.Q., Park K.H., Park J.M., Lee M.Y. Comparative in vitro toxicity study of docetaxel and nanoxel, a docetaxel-loaded micellar formulation using cultured and blood cells. Toxicol. Res. 2019;35:201–207. doi: 10.5487/TR.2019.35.2.201. PubMed DOI PMC
Borga O., Lilienberg E., Bjermo H., Hansson F., Heldring N., Dediu R. Pharmacokinetics of total and unbound paclitaxel after administration of paclitaxel micellar or nab-paclitaxel: An open, randomized, cross-over, explorative study in breast cancer patients. Adv. Ther. 2019;36:2825–2837. doi: 10.1007/s12325-019-01058-6. PubMed DOI PMC
Van Tomme S.R., Storm G., Hennink W.E. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm. 2008;355:1–18. doi: 10.1016/j.ijpharm.2008.01.057. PubMed DOI
Ruel-Gariépy E., Shive M., Bichara A., Berrada M., Le Garrec D., Chenite A., Leroux J.C. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur. J. Pharm. Biopharm. 2004;57:53–63. doi: 10.1016/S0939-6411(03)00095-X. PubMed DOI
Li C., Ren S., Dai Y., Tian F., Wang X., Zhou S., Deng S., Liu Q., Zhao J., Chen X. Efficacy, pharmacokinetics, and biodistribution of thermosensitive chitosan/β -glycerophosphate hydrogel loaded with docetaxel. AAPS PharmSciTech. 2014;15:417–424. doi: 10.1208/s12249-014-0077-z. PubMed DOI PMC
Bajaj G., Kim M.R., Mohammed S.I., Yeo Y. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J. Control. Release. 2012;158:386–392. doi: 10.1016/j.jconrel.2011.12.001. PubMed DOI PMC
Mao Y., Li X., Chen G., Wang S. Thermosensitive hydrogel system with paclitaxel liposomes used in localized drug delivery system for in situ treatment of tumor: Better antitumor efficacy and lower toxicity. J. Pharm. Sci. 2016;105:194–204. doi: 10.1002/jps.24693. PubMed DOI
Ma P., Mumper R.J. Paclitaxel nano-delivery systems: A comprehensive review. J. Nanomed. Nanotechnol. 2013;4:1000164. doi: 10.4172/2157-7439.1000164. PubMed DOI PMC
Godara S., Lather V., Kirthanashri S.V., Awasthi R., Pandita D. Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation. Mater. Sci. Eng. 2020;109:110576. doi: 10.1016/j.msec.2019.110576. PubMed DOI
Houdaihed L., Evans J.C., Allen C. Dual-targeted delivery of nanoparticles encapsulating paclitaxel and everolimus: A novel strategy to overcome breast cancer receptor heterogeneity. Pharm. Res. 2020;37:39. doi: 10.1007/s11095-019-2684-6. PubMed DOI
Tang H., Chen J., Wang L., Li Q., Yang Y., Lv Z., Bao H., Li Y., Luan X., Li Y., et al. Co-delivery of epirubicin and paclitaxel using an estrone-targeted PEGylated liposomal nanoparticle for breast cancer. Int. J. Pharm. 2020;573:118806. doi: 10.1016/j.ijpharm.2019.118806. PubMed DOI
Duan T., Xu Z., Sun F., Wang Y., Zhang J., Luo C., Wang M. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed. Pharmacother. 2019;117:109121. doi: 10.1016/j.biopha.2019.109121. PubMed DOI
Cao X., Tan T., Zhu D., Yu H., Liu Y., Zhou H., Jin Y., Xia Q. Paclitaxel-loaded macrophage membrane camouflaged albumin nanoparticles for targeted cancer therapy. Int. J. Nanomed. 2020;15:1915–1928. doi: 10.2147/IJN.S244849. PubMed DOI PMC
Fang W.S., Liang X.T. Recent progress in structure activity relationship and mechanistic studies of taxol analogues. Mini. Rev. Med. Chem. 2005;5:1–12. doi: 10.2174/1389557053402837. PubMed DOI
Safavy A., Raisch K.P., Khazaeli M.B., Buchsbaum D.J., Bonner J.A. Paclitaxel derivatives for targeted therapy of cancer: Toward the development of smart taxanes. J. Med. Chem. 1999;42:4919–4924. doi: 10.1021/jm990355x. PubMed DOI
Ndungu J.M., Lu Y.J., Zhu S., Yang C., Wang X., Chen G., Shin D.M., Snyder J.P., Shoji M., Sun A. Targeted delivery of paclitaxel to tumor cells: Synthesis and in vitro evaluation. J. Med. Chem. 2010;53:3127–3132. doi: 10.1021/jm901763f. PubMed DOI PMC
Ojima I., Zuniga E.S., Berger W.T., Seitz J.D. Tumor-targeting drug delivery of new-generation taxoids. Future Med. Chem. 2012;4:33–50. doi: 10.4155/fmc.11.167. PubMed DOI PMC
Ojima I., Wang X., Jing Y., Wang C. Quest for efficacious next-generation taxoid anticancer agents and their tumor-targeted delivery. J. Nat. Prod. 2018;81:703–721. doi: 10.1021/acs.jnatprod.7b01012. PubMed DOI PMC
Vineberg J.G., Wang T., Zuniga E.S., Ojima I. Design, synthesis, and biological evaluation of theranostic vitamin-linker-taxoid conjugates. J. Med. Chem. 2015;58:2406–2416. doi: 10.1021/jm5019115. PubMed DOI PMC
Ojima I., Geng X., Wu X., Qu C., Borella C.P., Xie H., Wilhelm S.D., Leece B.A., Bartle L.M., Goldmacher V.S., et al. Tumor-specific novel taxoid-monoclonal antibody conjugates. J. Med. Chem. 2002;45:5620–5623. doi: 10.1021/jm025540g. PubMed DOI
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=oraxol&cntry=&state=&city=&dist=
Lee K.W., Lee K.H., Zang D.Y., Park Y.I., Shin D.B., Kim J.W., Im S.A., Koh S.A., Yu K.S., Cho J.Y., et al. Phase I/II study of weekly oraxol for the second-line treatment of patients with metastatic or recurrent gastric cancer. Oncologist. 2015;20:896–897. doi: 10.1634/theoncologist.2015-0202. PubMed DOI PMC
Ferlini C., Cicchillitti L., Raspaglio G., Bartollino S., Cimitan S., Bertucci C., Mozzetti S., Gallo D., Persico M., Fattorusso C., et al. Paclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77. Cancer Res. 2009;69:6906–6914. doi: 10.1158/0008-5472.CAN-09-0540. PubMed DOI
Wang X., Liow S.S., Wu Q., Li C., Owh C., Li Z., Loh X.J., Wu Y.L. Codelivery for paclitaxel and Bcl-2 conversion gene by PHB-PDMAEMA amphiphilic cationic copolymer for effective drug resistant cancer therapy. Macromol. Biosci. 2017;17:1700186. doi: 10.1002/mabi.201700186. PubMed DOI
Whitaker R.H., Placzek W.J. Regulating the BCL2 family to improve sensitivity to microtubule targeting agents. Cells. 2019;8:346. doi: 10.3390/cells8040346. PubMed DOI PMC
Pires M.M., Emmert D., Hrycyna C.A., Chmielewski J. Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers. Mol. Pharmacol. 2009;75:92–100. doi: 10.1124/mol.108.050492. PubMed DOI PMC
Sandhu P.S., Beg S., Mehta F., Singh B., Trivedi P. Novel dietary lipid-based self-nanoemulsifying drug delivery systems of paclitaxel with P-gp inhibitor: Implications on cytotoxicity and biopharmaceutical performance. Expert Opin. Drug Deliv. 2015;12:1809–1822. doi: 10.1517/17425247.2015.1060219. PubMed DOI
Wang F., Zhang D., Zhang Q., Chen Y., Zheng D., Hao L., Duan C., Jia L., Liu G., Liu Y. Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance. Biomaterials. 2011;32:9444–9456. doi: 10.1016/j.biomaterials.2011.08.041. PubMed DOI
Zhong J., Guo Z., Fan L., Zhao X., Zhao B., Cao Z., Cheng L., Shi Y., Li X., Zhang Y., et al. ABCB1 polymorphism predicts the toxicity and clinical outcome of lung cancer patients with taxane-based chemotherapy. Thorac. Cancer. 2019;10:2088–2095. doi: 10.1111/1759-7714.13184. PubMed DOI PMC
Muley H., Fadó R., Rodríguez-Rodríguez R., Casals N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem. Pharmacol. 2020;177:113959. doi: 10.1016/j.bcp.2020.113959. PubMed DOI
Dong X.L., Xu P.F., Miao C., Fu Z.Y., Li Q.P., Tang P.Y., Wang T. Hypoxia decreased chemosensitivity of breast cancer cell line MCF-7 to paclitaxel through cyclin B1. Biomed. Pharmacother. 2012;66:70–75. doi: 10.1016/j.biopha.2011.11.016. PubMed DOI
Ricker J.L., Chen Z., Yang X.P., Pribluda V.S., Swartz G.M., Van Waes C. 2-Methoxyestradiol inhibits hypoxia-inducible factor 1α, tumor growth, and angiogenesis and augments paclitaxel efficacy in head and neck squamous cell carcinoma. Clin. Cancer Res. 2004;10:8665–8673. doi: 10.1158/1078-0432.CCR-04-1393. PubMed DOI
Zeng L., Kizaka-Kondoh S., Itasaka S., Xie X., Inoue M., Tanimoto K., Shibuya K., Hiraoka M. Hypoxia inducible factor-1 influences sensitivity to paclitaxel of human lung cancer cell lines under normoxic conditions. Cancer Sci. 2007;98:1394–1401. doi: 10.1111/j.1349-7006.2007.00537.x. PubMed DOI PMC
Chen D., Bao C., Zhao F., Yu H., Zhong G., Xu L., Yan S. Exploring specific miRNA-mRNA axes with relationship to taxanes-resistance in breast cancer. Front. Oncol. 2020;10:1397. doi: 10.3389/fonc.2020.01397. PubMed DOI PMC
Bomane A., Gonçalves A., Ballester P.J. Paclitaxel response can be predicted with interpretable multi-variate classifiers exploiting DNA-methylation and miRNA data. Front. Genet. 2019;10:1041. doi: 10.3389/fgene.2019.01041. PubMed DOI PMC
Liskova A., Samec M., Koklesova L., Giordano F.A., Kubatka P., Golubnitschaja O. Liquid biopsy is instrumental for 3PM dimensional solutions in cancer management. J. Clin. Med. 2020;9:2749. doi: 10.3390/jcm9092749. PubMed DOI PMC
Farrar M.C., Jacobs T.F. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2020. Paclitaxel.
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=Cancer+&term=carboplatin+paclitaxel&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
Safra T., Waissengrin B., Levy T., Leidner E., Merose R., Matceyevsky D., Grisaru D., Laskov I., Mishaan N., Shayzaf R., et al. Weekly carboplatin and paclitaxel: A retrospective comparison with the three-weekly schedule in first-line treatment of ovarian cancer. Oncologist. 2021;26:30–39. doi: 10.1634/theoncologist.2020-0196. PubMed DOI PMC
Cohen M.H., Gootenberg J., Keegan P., Pazdur R. FDA drug approval summary: Bevacizumab (Avastin) plus carboplatin and paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist. 2007;12:713–718. doi: 10.1634/theoncologist.12-6-713. PubMed DOI
Secord A.A., Burdett K.B., Owzar K., Tritchler D., Sibley A.B., Liu Y., Starr M.D., Brady J.C., Lankes H.A., Hurwitz H.I., et al. Predictive blood-based biomarkers in patients with epithelial ovarian cancer treated with carboplatin and paclitaxel with or without bevacizumab: Results from GOG-0218. Clin. Cancer Res. 2020;26:1288–1296. doi: 10.1158/1078-0432.CCR-19-0226. PubMed DOI PMC
Battaglia A., Buzzonetti A., Fossati M., Scambia G., Fattorossi A., Madiyalakan M.R., Mahnke Y.D., Nicodemus C. Translational immune correlates of indirect antibody immunization in a randomized phase II study using scheduled combination therapy with carboplatin/paclitaxel plus oregovomab in ovarian cancer patients. Cancer Immunol. Immunother. 2020;69:383–397. doi: 10.1007/s00262-019-02456-z. PubMed DOI PMC
Cejalvo J.M., Jacob W., Kanonnikoff T.F., Felip E., Mendivil A.N., Garcia M.M., Garcia A.T., Leighl N., Lassen U., Mau-Soerensen M., et al. A phase Ib/II study of HER3-targeting lumretuzumab in combination with carboplatin and paclitaxel as first-line treatment in patients with advanced or metastatic squamous non-small cell lung cancer. ESMO Open. 2019;4:e000532. doi: 10.1136/esmoopen-2019-000532. PubMed DOI PMC
Wu J.J., Atkinson E.C., Leichman L.P., Patel H., Iqbal S., Du K.L., Bizekis C., Goldberg J.D., Thomas C.R., Cohen D.J., et al. A phase I/II multisite study of nivolumab and carboplatin/paclitaxel with radiation therapy (RT) in patients with locally advanced esophageal squamous cell carcinoma (ESCC) J. Clin. Oncol. 2020;38:372. doi: 10.1200/JCO.2020.38.4_suppl.372. PubMed DOI
Goldman J.W., Waterhouse D.M., George B., O’Dwyer P.J., Bhore R., Banerjee S., Lyons L., Louis C.U., Ong T.J., Kelly K. Safety and efficacy results of a phase I, open-label study of concurrent and delayed nivolumab in combination with nab-paclitaxel and carboplatin in advanced non-small cell lung cancer. Front. Oncol. 2019;9:1256. doi: 10.3389/fonc.2019.01256. PubMed DOI PMC
Jotte R., Cappuzzo F., Vynnychenko I., Stroyakovskiy D., Rodríguez-Abreu D., Hussein M., Soo R., Conter H.J., Kozuki T., Huang K.C., et al. Atezolizumab in combination with carboplatin and nab-paclitaxel in advanced squamous NSCLC: Results from a randomized phase III trial. J. Thorac. Oncol. 2020;15:1351–1360. doi: 10.1016/j.jtho.2020.03.028. PubMed DOI
Lopresti M.L., Bian J.J., Sakr B.J., Strenger R.S., Legare R.D., Fenton M.A., Witherby S.M., Dizon D.S., Pandya S.V., Stuckey A.R., et al. Neoadjuvant weekly paclitaxel (wP) and carboplatin (Cb) with trastuzumab (T) and pertuzumab (P) in HER2-positive breast cancer (H+BC): A Brown University oncology group (BrUOG) study. Cancer Res. 2020;80 doi: 10.1158/1538-7445.SABCS19-P2-16-19. PubMed DOI
Shirasu H., Yokota T., Kawakami T., Hamauchi S., Onozawa Y., Ogawa H., Onoe T., Mori K., Onitsuka T. Efficacy and feasibility of induction chemotherapy with paclitaxel, carboplatin and cetuximab for locally advanced unresectable head and neck cancer patients ineligible for combination treatment with docetaxel, cisplatin, and 5-fluorouracil. Int. J. Clin. Oncol. 2020;25:1914–1920. doi: 10.1007/s10147-020-01742-6. PubMed DOI
Villaruz L.C., Cobo M., Syrigos K., Mavroudis D., Zhang W., Kim J.S., Socinski M.A. A phase II study of nab-paclitaxel and carboplatin chemotherapy plus necitumumab in the first-line treatment of patients with stage IV squamous non-small cell lung cancer. Lung Cancer. 2019;136:52–56. doi: 10.1016/j.lungcan.2019.08.009. PubMed DOI
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/home.
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=monoclonal+antibody+AND+paclitaxel&cntry=&state=&city=&dist=
ClinicalTrials.gov. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=monoclonal+antibody+AND+docetaxel&cntry=&state=&city=&dist=&Search=Search.
Casak S.J., Fashoyin-Aje I., Lemery S.J., Zhang L., Jin R., Li H., Zhao L., Zhao H., Zhang H., Chen H., et al. FDA approval summary: Ramucirumab for gastric cancer. Clin. Cancer Res. 2015;21:3372–3376. doi: 10.1158/1078-0432.CCR-15-0600. PubMed DOI
Wilke H., Muro K., Van Cutsem E., Oh S.C., Bodoky G., Shimada Y., Hironaka S., Sugimoto N., Lipatov O., Kim T.Y., et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15:1224–1235. doi: 10.1016/S1470-2045(14)70420-6. PubMed DOI
Rakusic Z., Krpan A.M., Sjekavica I. Fulminant Fournier’s gangrene in a patient with gastric cancer treated with ramucirumab and paclitaxel. Ther. Adv. Drug Saf. 2020;11:1–4. doi: 10.1177/2042098620946556. PubMed DOI PMC
ClinicalTrials.gov NCT04136782. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04136782?term=NCT04136782&draw=2&rank=1.
ClinicalTrials.gov NCT04194203. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04194203?term=NCT04194203&draw=2&rank=1.
Clinicaltrials.gov NCT04325698. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04325698?term=NCT04325698&draw=2&rank=1.
ClinicalTrials.gov NCT04416035. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04416035?term=NCT04416035&draw=2&rank=1.
ClinicalTrials.gov NCT03991403. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03991403?term=NCT03991403&draw=2&rank=1.
ClinicalTrials.gov NCT04489888. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04489888?term=NCT04489888&draw=2&rank=1.
ClinicalTrials.gov NCT03794778. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03794778?term=NCT03794778&draw=2&rank=1.
ClinicalTrials.gov NCT04499924. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04499924?term=NCT04499924&draw=2&rank=1.
ClinicalTrials.gov NCT04278092. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04278092?term=NCT04278092&draw=2&rank=1.
ClinicalTrials.gov NCT03941093. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03941093?term=NCT03941093&draw=2&rank=1.
ClinicalTrials.gov NCT03401827. [(accessed on 22 January 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03401827?term=NCT03401827&draw=2&rank=1.
Di Bartolomeo M., Niger M., Morano F., Corallo S., Antista M., Tamberi S., Lonardi S., Di Donato S., Berardi R., Scartozzi M., et al. Assessment of ramucirumab plus paclitaxel as switch maintenance versus continuation of first-line chemotherapy in patients with advanced HER-2 negative gastric or gastroesophageal junction cancers: The ARMANI phase III trial. BMC Cancer. 2019;19:283. doi: 10.1186/s12885-019-5498-3. PubMed DOI PMC
Refolo M.G., Lotesoriere C., Lolli I.R., Messa C., D’Alessandro R. Molecular mechanisms of synergistic action of ramucirumab and paclitaxel in gastric cancers cell lines. Sci. Rep. 2020;10:7162. doi: 10.1038/s41598-020-64195-x. PubMed DOI PMC
Sawatani Y., Komiyama Y., Nakashiro K.I., Uchida D., Fukumoto C., Shimura M., Hasegawa T., Kamimura R., Hitomi-Koide M., Hyodo T., et al. Paclitaxel potentiates the anticancer effect of cetuximab by enhancing antibody-dependent cellular cytotoxicity on oral squamous cell carcinoma cells in vitro. Int. J. Mol. Sci. 2020;21:6292. doi: 10.3390/ijms21176292. PubMed DOI PMC
Adkins D., Ley J., Trinkaus K., Thorstad W., Lewis J., Wildes T., Siegel B.A., Dehdashti F., Gay H., Mehan P., et al. A phase 2 trial of induction nab-paclitaxel and cetuximab given with cisplatin and 5-fluorouracil followed by concurrent cisplatin and radiation for locally advanced squamous cell carcinoma of the head and neck. Cancer. 2013;119:766–773. doi: 10.1002/cncr.27741. PubMed DOI PMC
Borghaei H., Langer C.J., Millenson M., Tuttle H., Seldomridge J., Rovito M., Mintzer D., Treat J. Phase II trial of cetuximab (C225) in combination with monthly carboplatin (Cb) and weekly paclitaxel (Pac) in patients with advanced NSCLC: Promising early results. J. Clin. Oncol. 2008;26:8104. doi: 10.1200/jco.2008.26.15_suppl.8104. DOI
Enokida T., Ogawa T., Homma A., Okami K., Minami S., Nakanome A., Shimizu Y., Maki D., Ueda Y., Fujisawa T., et al. A multicenter phase II trial of paclitaxel, carboplatin, and cetuximab followed by chemoradiotherapy in patients with unresectable locally advanced squamous cell carcinoma of the head and neck. Cancer Med. 2020;9:1671–1682. doi: 10.1002/cam4.2852. PubMed DOI PMC
Hitt R., Irigoyen A., Nuñez J., Grau J., Saenz J.G., Pastor M., Jara C., Giron C.G., Hidalgo M., Hernandez J.C. Phase II study of combination cetuximab and weekly paclitaxel in patients with metastatic/recurrent squamous cell carcinoma of head and neck (SCCHN): Spanish head and neck cancer group (TTCC) J. Clin. Oncol. 2007;25:6012. doi: 10.1200/jco.2007.25.18_suppl.6012. DOI
Hussain M., Theodorescu D. Re: Phase II trial of cetuximab with or without paclitaxel in patients with advanced urothelial tract carcinoma. Eur. Urol. 2014;65:501. doi: 10.1016/j.eururo.2013.10.054. PubMed DOI
Kim E.S., Moon J., Herbst R.S., Redman M.W., Dakhil S.R., Velasco M.R., Hirsch F.R., Mack P.C., Kelly K., Heymach J.V., et al. Phase II trial of carboplatin, paclitaxel, cetuximab, and bevacizumab followed by cetuximab and bevacizumab in advanced nonsquamous non-small-cell lung cancer SWOG S0536. J. Thorac. Oncol. 2013;8:1519–1528. doi: 10.1097/JTO.0000000000000009. PubMed DOI PMC
Langer C.J., Ruth K., Borghaei H., Treat J.A., Shafer D., Millenson M., Tuttle H., Rovito M., Mintzer D. Phase II trial of cetuximab (C225) in combination with monthly carboplatin (Cb) and weekly paclitaxel (Pac) in patients with advanced NSCLC: Promising early results. J. Thorac. Oncol. 2007;2:S465–S466. doi: 10.1097/01.JTO.0000283410.30744.4f. DOI
Modi S., D’Andrea G., Norton L., Yao T.J., Caravelli J., Rosen P.P., Hudis C., Seidman A.D. A phase I study of cetuximab/paclitaxel in patients with advanced-stage breast cancer. Clin. Breast Cancer. 2006;7:270–277. doi: 10.3816/CBC.2006.n.040. PubMed DOI
Pignata S., Scambia G., Lorusso D., De Giorgi U., Nicoletto M.O., Lauria R., Mosconi A.M., Sacco C., Omarini C., Tagliaferri P., et al. The MITO CERV-2 trial: A randomized phase II study of cetuximab plus carboplatin and paclitaxel, in advanced or recurrent cervical cancer. Gynecol. Oncol. 2019;153:535–540. doi: 10.1016/j.ygyno.2019.03.260. PubMed DOI
Socinski M.A., Saleh M.N., Trent D.F., Dobbs T.W., Zehngebot L.M., Levine M.A., Bordoni R., Stella P.J. Randomized phase II trial of two dose schedules of carboplatin/paclitaxel/cetuximab in stage IIIB/IV non-small-cell lung cancer (NSCLC) Ann. Oncol. 2009;20:1068–1073. doi: 10.1093/annonc/mdn745. PubMed DOI
Suntharalingam M., Winter K., Ilson D., Dicker A.P., Kachnic L., Konski A., Chakravarthy A.B., Anker C.J., Thakrar H., Horiba N., et al. Effect of the addition of cetuximab to paclitaxel, cisplatin, and radiation therapy for patients with esophageal cancer: The NRG Oncology RTOG 0436 phase 3 randomized clinical trial. JAMA Oncol. 2017;3:1520–1528. doi: 10.1001/jamaoncol.2017.1598. PubMed DOI PMC
Tahara M., Kiyota N., Yokota T., Hasegawa Y., Muro K., Takahashi S., Onoe T., Homma A., Taguchi J., Suzuki M., et al. Phase II trial of combination treatment with paclitaxel, carboplatin and cetuximab (PCE) as first-line treatment in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck (CSPOR-HN02) Ann. Oncol. 2018;29:1004–1009. doi: 10.1093/annonc/mdy040. PubMed DOI
Bossi P., Miceli R., Locati L.D., Ferrari D., Vecchio S., Moretti G., Denaro N., Caponigro F., Airoldi M., Moro C., et al. A randomized, phase 2 study of cetuximab plus cisplatin with or without paclitaxel for the first-line treatment of patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Ann. Oncol. 2017;28:2820–2826. doi: 10.1093/annonc/mdx439. PubMed DOI
Wanebo H.J., Lee J., Burtness B.A., Ridge J.A., Ghebremichael M., Spencer S.A., Psyrri D., Pectasides E., Rimm D., Rosen F.R., et al. Induction cetuximab, paclitaxel, and carboplatin followed by chemoradiation with cetuximab, paclitaxel, and carboplatin for stage III/IV head and neck squamous cancer: A phase II ECOG-ACRIN trial (E2303) Ann. Oncol. 2014;25:2036–2041. doi: 10.1093/annonc/mdu248. PubMed DOI PMC
Wong Y.N., Litwin S., Vaughn D., Cohen S., Plimack E.R., Lee J., Song W., Dabrow M., Brody M., Tuttle H., et al. Phase II trial of cetuximab with or without paclitaxel in patients with advanced urothelial tract carcinoma. J. Clin. Oncol. 2012;30:3545–3551. doi: 10.1200/JCO.2012.41.9572. PubMed DOI PMC
Picozzi V., Alseidi A., Winter J., Pishvaian M., Mody K., Glaspy J., Larson T., Matrana M., Carney M., Porter S., et al. Gemcitabine/nab-paclitaxel with pamrevlumab: A novel drug combination and trial design for the treatment of locally advanced pancreatic cancer. ESMO Open. 2020;5:e000668. doi: 10.1136/esmoopen-2019-000668. PubMed DOI PMC
Staff N.P., Fehrenbacher J.C., Caillaud M., Damaj M.I., Segal R.A., Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp. Neurol. 2020;324:113121. doi: 10.1016/j.expneurol.2019.113121. PubMed DOI PMC
Tonello R., Lee S.H., Berta T. Monoclonal antibody targeting the matrix metalloproteinase 9 prevents and reverses paclitaxel-induced peripheral neuropathy in mice. J. Pain. 2019;20:515–527. doi: 10.1016/j.jpain.2018.11.003. PubMed DOI PMC
Huehnchen P., Muenzfeld H., Boehmerle W., Endres M. Blockade of IL-6 signaling prevents paclitaxel-induced neuropathy in C57Bl/6 mice. Cell Death Dis. 2020;11:45. doi: 10.1038/s41419-020-2239-0. PubMed DOI PMC
Chen L.H., Yeh Y.M., Chen Y.F., Hsu Y.H., Wang H.H., Lin P.C., Chang L.Y., Lin C.C.K., Chang M.S., Shen M.R. Targeting interleukin-20 alleviates paclitaxel-induced peripheral neuropathy. Pain. 2020;161:1237–1254. doi: 10.1097/j.pain.0000000000001831. PubMed DOI
Matsuoka A., Maeda O., Mizutani T., Nakano Y., Tsunoda N., Kikumori T., Goto H., Ando Y. Bevacizumab exacerbates paclitaxel-induced neuropathy: A retrospective cohort study. PLoS ONE. 2016;11:e0168707. doi: 10.1371/journal.pone.0168707. PubMed DOI PMC
Moreno-Aspitia A., Dueck A., Patel T., Hillman D., Tenner K., Dakhil S., Rowland K., McLaughlin S., Perez E. Paclitaxel-related peripheral neuropathy associated with improved outcome of patients with early stage HER2+ breast cancer who did not receive trastuzumab in the N9831 clinical trial. Cancer Res. 2009;69:2100. doi: 10.1158/0008-5472.SABCS-09-2100. PubMed DOI
Sierecki M.R., Rugo H.S., McArthur H.L., Traina T.A., Paulson M., Rourke M., Norton L., Seidman A.D., Hudis C.A., Dickler M.N. Incidence and severity of sensory neuropathy (SN) with bevacizumab (B) added to dose-dense (dd) doxorubicin/cyclophosphamide (AC) followed by nanoparticle albumin-bound (nab) paclitaxel (P) in patients (pts) with early stage breast cancer (BC) J. Clin. Oncol. 2008;26 doi: 10.1200/jco.2008.26.15_suppl.589. DOI
Kazandjian D., Blumenthal G.M., Yuan W., He K., Keegan P., Pazdur R. FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation–positive non–small cell lung cancer. Clin. Cancer Res. 2016;22:1307–1312. doi: 10.1158/1078-0432.CCR-15-2266. PubMed DOI
Herbst R.S., Prager D., Hermann R., Fehrenbacher L., Johnson B.E., Sandler A., Kris M.G., Tran H.T., Klein P., Li X., et al. TRIBUTE investigator group. TRIBUTE: A phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J. Clin. Oncol. 2005;23:5892–5899. doi: 10.1200/JCO.2005.02.840. PubMed DOI
Hu Z., Zheng B., Xu J., Gao S., Lu W. An albumin-bound drug conjugate of paclitaxel and indoleamine-2,3-dioxygenase inhibitor for enhanced cancer chemo-immunotherapy. Nanotechnology. 2020;31:295101. doi: 10.1088/1361-6528/ab824d. PubMed DOI
White P.T., Cohen M.S. The discovery and development of sorafenib for the treatment of thyroid cancer. Expert Opin. Drug Discov. 2015;10:427–439. doi: 10.1517/17460441.2015.1006194. PubMed DOI PMC
Nawara H.M., Afify S.M., Hassan G., Zahra M.H., Atallah M.N., Mansour H., Abu Quora H.A., Alam M.J., Osman A., Kakuta H., et al. Paclitaxel and sorafenib: The effective combination of suppressing the self-renewal of cancer stem cells. Cancers. 2020;12:1360. doi: 10.3390/cancers12061360. PubMed DOI PMC
De Jesus-Acosta A., Sugar E.A., O’Dwyer P.J., Ramanathan R.K., Von Hoff D.D., Rasheed Z., Zheng L., Begum A., Anders R., Maitra A., et al. Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma. Br. J. Cancer. 2020;122:498–505. doi: 10.1038/s41416-019-0683-3. PubMed DOI PMC
Lorenzen S., Knorrenschild J.R., Pauligk C., Hegewisch-Becker S., Seraphin J., Thuss-Patience P., Kopp H.G., Dechow T., Vogel A., Luley K.B., et al. Phase III randomized, double-blind study of paclitaxel with and without everolimus in patients with advanced gastric or esophagogastric junction carcinoma who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen (RADPAC) Int. J. Cancer. 2020;147:2493–2502. doi: 10.1002/ijc.33025. PubMed DOI
Alvarellos M.L., Lamba J., Sangkuhl K., Thorn C.F., Wang L., Klein D.J., Altman R.B., Klein T.E. PharmGKB summary: Gemcitabine pathway. Pharmacogenet. Genomics. 2014;24:564–574. doi: 10.1097/FPC.0000000000000086. PubMed DOI PMC
Von Hoff D.D., Ervin T., Arena F.P., Chiorean E.G., Infante J., Moore M., Seay T., Tjulandin S.A., Ma W.W., Saleh M.N., et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013;369:1691–1703. doi: 10.1056/NEJMoa1304369. PubMed DOI PMC
Wainberg Z.A., Hochster H.S., Kim E.J., George B., Kaylan A., Chiorean E.G., Waterhouse D.M., Guiterrez M., Parikh A., Jain R., et al. Open-label, phase I study of nivolumab combined with nab-paclitaxel plus gemcitabine in advanced pancreatic cancer. Clin. Cancer Res. 2020;26:4814–4822. doi: 10.1158/1078-0432.CCR-20-0099. PubMed DOI
ClinicalTrials.gov. [(accessed on 22 January 2020)]; Available online: https://www.clinicaltrials.gov/ct2/results?term=paclitaxel+gemcitabine+nivolumab&Search=Apply&recrs=b&recrs=a&recrs=f&recrs=d&age_v=&gndr=&type=&rslt=
Yu J., Wang Y., Zhou S., Li J., Wang J., Chi D., Wang X., Lin G., He Z., Wang Y. Remote loading paclitaxel–doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharm. Sin. B. 2020;10:1730–1740. doi: 10.1016/j.apsb.2020.04.011. PubMed DOI PMC
Kaur P., Mishra V., Shunmugaperumal T., Goyal A.K., Ghosh G., Rath G. Inhalable spray dried lipidnanoparticles for the co-delivery of paclitaxel and doxorubicin in lung cancer. J. Drug Deliv. Sci. Technol. 2020;56:101502. doi: 10.1016/j.jddst.2020.101502. DOI
Fraguas-Sanchez A.I., Fernández-Carballido A., Simancas-Herbada R., Martin-Sabroso C., Torres-Suárez A.I. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int. J. Pharm. 2020;574:118916. doi: 10.1016/j.ijpharm.2019.118916. PubMed DOI
Zhu C., Jung S., Luo S., Meng F., Zhu X., Park T.G., Zhong Z. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials. 2010;31:2408–2416. doi: 10.1016/j.biomaterials.2009.11.077. PubMed DOI
Sun T.M., Du J.Z., Yao Y.D., Mao C.Q., Dou S., Huang S.Y., Zhang P.Z., Leong K.W., Song E.W., Wang J. Simultaneous Delivery of siRNA and paclitaxel via a "two-in-one" micelleplex promotes synergistic tumor suppression. ACS Nano. 2011;5:1483–1494. doi: 10.1021/nn103349h. PubMed DOI
Yin T., Wang L., Yin L., Zhou J., Huo M. Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer. Biomaterials. 2015;61:10–25. doi: 10.1016/j.biomaterials.2015.05.022. PubMed DOI
Yu Y.H., Kim E., Park D.E., Shim G., Lee S., Kim Y.B., Kim C.W., Oh Y.K. Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur. J. Pharm. Biopharm. 2012;80:268–273. doi: 10.1016/j.ejpb.2011.11.002. PubMed DOI
Salzano G., Navarro G., Trivedi M.S., De Rosa G., Torchilin V.P. Multifunctional polymeric micelles co-loaded with anti-survivin siRNA and paclitaxel overcome drug resistance in an animal model of ovarian cancer. Mol. Cancer Ther. 2015;14:1075–1084. doi: 10.1158/1535-7163.MCT-14-0556. PubMed DOI PMC
Škubník J., Rimpelová S., Jurášek M., Ruml T. Mitotic poisons in research and medicine. Molecules. 2020;25:4632. doi: 10.3390/molecules25204632. PubMed DOI PMC
Falchook G., Coleman R.L., Roszak A., Behbakht K., Matulonis U., Ray-Coquard I., Sawrycki P., Duska L.R., Tew W., Ghamande S., et al. Alisertib in combination with weekly paclitaxel in patients with advanced breast cancer or recurrent ovarian cancer: A randomized clinical trial. JAMA Oncol. 2019;5:e183773. doi: 10.1001/jamaoncol.2018.3773. PubMed DOI PMC
Yasuhira S., Shibazaki M., Nishiya M., Maesawa C. Paclitaxel-induced aberrant mitosis and mitotic slippage efficiently lead to proliferative death irrespective of canonical apoptosis and p53. Cell Cycle. 2016;15:3268–3277. doi: 10.1080/15384101.2016.1242537. PubMed DOI PMC
Bombuwala K., Kinstle T., Popik V., Uppal S.O., Olesen J.B., Viña J., Heckman C.A. Colchitaxel, a coupled compound made from microtubule inhibitors colchicine and paclitaxel. Beilstein J. Org. Chem. 2006;2:13. doi: 10.1186/1860-5397-2-13. PubMed DOI PMC
Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI
Ashrafizadeh M., Zarrabi A., Hashemi F., Moghadam E.R., Hashemi F., Entezari M., Hushmandi K., Mohammadinejad R., Najafi M. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci. 2020;256:117984. doi: 10.1016/j.lfs.2020.117984. PubMed DOI
Shen L., Liu C.C., An C.Y., Ji H.F. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci. Rep. 2016;6:20872. doi: 10.1038/srep20872. PubMed DOI PMC
Nelson K.M., Dahlin J.L., Bisson J., Graham J., Pauli G.F., Walters M.A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017;60:1620–1637. doi: 10.1021/acs.jmedchem.6b00975. PubMed DOI PMC
Garofalo M., Saari H., Somersalo P., Crescenti D., Kuryk L., Aksela L., Capasso C., Madetoja M., Koskinen K., Oksanen T., et al. Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J. Control. Release. 2018;283:223–234. doi: 10.1016/j.jconrel.2018.05.015. PubMed DOI
Lal G., Rajala M.S. Combination of oncolytic measles virus armed with BNiP3, a pro-apoptotic gene and paclitaxel induces breast cancer cell death. Front. Oncol. 2019;8:676. doi: 10.3389/fonc.2018.00676. PubMed DOI PMC
ClinicalTrials.gov. [(accessed on 1 November 2020)]; Available online: https://www.clinicaltrials.gov/ct2/results?cond=&term=docetaxel+combination&cntry=&state=&city=&dist=
Bishop R.T., Marino S., Carrasco G., Li B., Allen R.J., Sparatore A., Ottewell P.D., Mollat P., Sims A.H., Capulli M., et al. Combined administration of a small-molecule inhibitor of TRAF6 and Docetaxel reduces breast cancer skeletal metastasis and osteolysis. Cancer Lett. 2020;488:27–39. doi: 10.1016/j.canlet.2020.05.021. PubMed DOI
Hasegawa H., Kaneko T., Kanno C., Endo M., Yamazaki M., Kitabatake T., Monma T., Takeishi E., Sato E., Kano M. Preoperative intra-arterial chemotherapy with docetaxel, cisplatin, and peplomycin combined with intravenous chemotherapy using 5-fluorouracil for oral squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 2020;49:984–992. doi: 10.1016/j.ijom.2020.01.024. PubMed DOI
Rodallec A., Franco C., Robert S., Sicard G., Giacometti S., Lacarelle B., Bouquet F., Savina A., Lacroix R., Dignat-George F., et al. Prototyping trastuzumab docetaxel immunoliposomes with a new FCM-based method to quantify optimal antibody density on nanoparticles. Sci. Rep. 2020;10:4147. doi: 10.1038/s41598-020-60856-z. PubMed DOI PMC
Laber D.A., Eatrides J., Jaglal M.V., Haider M., Visweshwar N., Patel A. A phase I/II study of docetaxel in combination with pegylated liposomal doxorubicin in metastatic castration-resistant prostate cancer. Med. Oncol. 2020;37:95. doi: 10.1007/s12032-020-01420-7. PubMed DOI
Zhao Z., Li Y., Liu H., Jain A., Patel P.V., Cheng K. Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer. Sci. Adv. 2020;6:eabb0616. doi: 10.1126/sciadv.abb0616. PubMed DOI PMC
Chen Y., Deng Y., Zhu C., Xiang C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed. Pharmacother. 2020;127:110181. doi: 10.1016/j.biopha.2020.110181. PubMed DOI
Wheeler N.C., Jech K., Masters S., Brobst S.W., Alvarado A.B., Hoover A.J., Snader K.M. Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. J. Nat. Prod. 1992;55:432–440. doi: 10.1021/np50082a005. PubMed DOI