Quo Vadis Advanced Prostate Cancer Therapy? Novel Treatment Perspectives and Possible Future Directions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33921501
PubMed Central
PMC8069564
DOI
10.3390/molecules26082228
PII: molecules26082228
Knihovny.cz E-zdroje
- Klíčová slova
- advanced prostate cancer treatment, androgen deprivation therapy, antiandrogen therapy, cancer diagnostics, immunotherapy, multimodal therapy, photodynamic therapy, phototherapy, specific drug targeting,
- MeSH
- antitumorózní látky hormonální chemie farmakologie terapeutické užití MeSH
- fototerapie MeSH
- imunoterapie MeSH
- klinické zkoušky jako téma MeSH
- kombinovaná terapie MeSH
- lidé MeSH
- nádory prostaty farmakoterapie imunologie terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky hormonální MeSH
Prostate cancer is a very common disease, which is, unfortunately, often the cause of many male deaths. This is underlined by the fact that the early stages of prostate cancer are often asymptomatic. Therefore, the disease is usually detected and diagnosed at late advanced or even metastasized stages, which are already difficult to treat. Hence, it is important to pursue research and development not only in terms of novel diagnostic methods but also of therapeutic ones, as well as to increase the effectiveness of the treatment by combinational medicinal approach. Therefore, in this review article, we focus on recent approaches and novel potential tools for the treatment of advanced prostate cancer; these include not only androgen deprivation therapy, antiandrogen therapy, photodynamic therapy, photothermal therapy, immunotherapy, multimodal therapy, but also poly(ADP-ribose) polymerase, Akt and cyclin-dependent kinase inhibitors.
Zobrazit více v PubMed
Lonergan P.E., Tindall D.J. Androgen receptor signaling in prostate cancer development and progression. J. Carcinog. 2011;10:20. doi: 10.4103/1477-3163.83937. PubMed DOI PMC
Schaufele F., Carbonell X., Guerbadot M., Borngraeber S., Chapman M.S., Ma A.A., Miner J.N., Diamond M.I. The structural basis of androgen receptor activation: Intramolecular and intermolecular amino-carboxy interactions. Proc. Natl. Acad. Sci. USA. 2005;102:9802–9807. doi: 10.1073/pnas.0408819102. PubMed DOI PMC
Anderson J. The role of antiandrogen monotherapy in the treatment of prostate cancer. BJU Int. 2003;91:455–461. doi: 10.1046/j.1464-410X.2003.04026.x. PubMed DOI
Potosky A.L., Knopf K., Clegg L.X., Albertsen P.C., Stanford J.L., Hamilton A.S., Gilliland F.D., Eley J.W., Stephenson R.A., Hoffman R.M. Quality-of-life outcomes after primary androgen deprivation therapy: Results from the prostate cancer outcomes study. J. Clin. Oncol. 2001;19:3750–3757. doi: 10.1200/JCO.2001.19.17.3750. PubMed DOI
Harris W.P., Mostaghel E.A., Nelson P.S., Montgomery B. Androgen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 2009;6:76–85. doi: 10.1038/ncpuro1296. PubMed DOI PMC
Iversen P. Antiandrogen monotherapy: Indications and results. Urology. 2002;60:64–71. doi: 10.1016/S0090-4295(02)01576-5. PubMed DOI
Singh S.M., Gauthier S., Labrie F. Androgen receptor antagonists (antiandrogens): Structure-activity relationships. Curr. Med. Chem. 2000;7:211–247. doi: 10.2174/0929867003375371. PubMed DOI
Rice M.A., Malhotra S.V., Stoyanova T. Second-generation antiandrogens: From discovery to standard of care in castration resistant prostate cancer. Front Oncol. 2019;9:801. doi: 10.3389/fonc.2019.00801. PubMed DOI PMC
Kenny B., Ballard S., Blagg J., Fox D. Pharmacological options in the treatment of benign prostatic hyperplasia. J. Med. Chem. 1997;40:1293–1315. doi: 10.1021/jm960697s. PubMed DOI
Schellhammer P., Sharifi R., Block N., Soloway M., Venner P., Patterson A.L., Sarosdy M., Vogelzang N., Jones J., Kolvenbag G. A controlled trial of bicalutamide versus flutamide, each in combination with luteinizing hormone-releasing hormone analogue therapy, in patients with advanced prostate cancer. Urology. 1995;45:745–752. doi: 10.1016/S0090-4295(99)80077-6. PubMed DOI
Ito Y., Sadar M.D. Enzalutamide and blocking androgen receptor in advanced prostate cancer: Lessons learnt from the history of drug development of antiandrogens. Res. Rep. Urol. 2018;10:23–32. doi: 10.2147/RRU.S157116. PubMed DOI PMC
Rathkopf D., Scher H.I. Androgen receptor antagonists in castration-resistant prostate cancer. Cancer, J. 2013;19:43–49. doi: 10.1097/PPO.0b013e318282635a. PubMed DOI PMC
Tan P.S., Haaland B., Montero A.J., Kyriakopoulos C.E., Lopes G. Enzalutamide and abiraterone acetate in the treatment of metastatic castration-resistant prostate cancer (mCRPC) post-docetaxel-an indirect comparison. Clin. Med. Insights Oncol. 2014;8:29–36. doi: 10.4137/CMO.S13671. PubMed DOI PMC
Tran C., Ouk S., Clegg N.J., Chen Y., Watson P.A., Arora V., Wongvipat J., Smith-Jones P.M., Yoo D., Kwon A., et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324:787–790. doi: 10.1126/science.1168175. PubMed DOI PMC
FDA [(accessed on 1 November 2019)]; Available online: http://www.fda.gov.
Rathkopf D.E., Scher H.I. Apalutamide for the treatment of prostate cancer. Expert Rev. Anticancer Ther. 2018;18:823–836. doi: 10.1080/14737140.2018.1503954. PubMed DOI PMC
Shore N.D. Darolutamide (ODM-201) for the treatment of prostate cancer. Expert Opin. Pharmacother. 2017;18:945–952. doi: 10.1080/14656566.2017.1329820. PubMed DOI
Attard G., Reid A.H., Yap T.A., Raynaud F., Dowsett M., Settatree S., Barrett M., Parker C., Martins V., Folkerd E., et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 2008;26:4563–4571. doi: 10.1200/JCO.2007.15.9749. PubMed DOI
Clegg N.J., Wongvipat J., Joseph J.D., Tran C., Ouk S., Dilhas A., Chen Y., Grillot K., Bischo E.D., Cail L., et al. ARN-509: A novel antiandrogen for prostate cancer treatment. Cancer Res. 2012;72:1494–1503. doi: 10.1158/0008-5472.CAN-11-3948. PubMed DOI PMC
Moilanen A.M., Riikonen R., Oksala R., Ravanti L., Aho E., Wohlfahrt G., Nykänen P.S., Törmäkangas O.P., Palvimo J.J., Kallioa P.J. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci. Rep. 2015;5:12007. doi: 10.1038/srep12007. PubMed DOI PMC
Chen Y., Clegg N.J., Scher H.I. Anti-androgens and androgen-depleting therapies in prostate cancer: New agents for an established target. Lancet Oncol. 2009;10:981–991. doi: 10.1016/S1470-2045(09)70229-3. PubMed DOI PMC
Hammerer P., Madersbacher S. Landmarks in hormonal therapy for prostate cancer. BJU Int. 2012;110:23–29. doi: 10.1111/j.1464-410X.2012.11431.x. PubMed DOI
Abraham J., Staffurth J. Hormonal therapy for cancer. Medicine. 2016;44:30–33. doi: 10.1016/j.mpmed.2015.10.014. DOI
Pullar B., Shah N. Prostate cancer. Surgery. 2016;34:505–511. doi: 10.1016/j.mpsur.2016.07.007. DOI
Omlin A., Pezaro C., Mukherji D., Cassidy A.M., Sandhu S., Bianchini D., Olmos D., Ferraldeschi R., Maier G., Thompson E., et al. Improved survival in a cohort of trial participants with metastatic castration-resistant prostate cancer demonstrates the need for updated prognostic nomograms. Eur. Urol. 2013;64:300–306. doi: 10.1016/j.eururo.2012.12.029. PubMed DOI
Schally A.V., Block N.L., Rick F.G. New therapies for relapsed castration-resistant prostate cancer based on peptide analogs of hypothalamic hormones. Asian, J. Androl. 2015;17:925–928. doi: 10.4103/1008-682X.152819. PubMed DOI PMC
Kotake T., Usami M., Akaza H., Koiso K., Homma Y., Kawabe K., Aso Y., Orikasa S., Shimazaki J., Isaka S., et al. Goserelin acetate with or without antiandrogen or estrogen in the treatment of patients with advanced prostate cancer: A multicenter, randomized, controlled trial in Japan. Jpn. J. Clin. Oncol. 1999;29:562–570. doi: 10.1093/jjco/29.11.562. PubMed DOI
FDA [(accessed on 6 November 2019)]; Available online: http://www.accessdata.fda.gov.
Heidenreich A., Bellmunt J., Bolla M., Joniau S., Mason M., Matveev V., Mottet N., Schmid H.P., van der Kwast T., Wiegel T., et al. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and treatment of clinically localised disease. Eur. Urol. 2011;59:61–71. doi: 10.1016/j.eururo.2010.10.039. PubMed DOI
Klotz L., Miller K., Crawford E.D., Shore N., Tombal B., Karup C., Malmberg A., Persson B.E. Disease control outcomes from analysis of pooled individual patient data from five comparative randomised clinical trials of degarelix versus luteinising hormone-releasing hormone agonists. Eur. Urol. 2014;66:1101–1108. doi: 10.1016/j.eururo.2013.12.063. PubMed DOI
Stricker H.J. Luteinizing hormone–releasing hormone antagonists in prostate cancer. Urology. 2001;58:24–27. doi: 10.1016/S0090-4295(01)01238-9. PubMed DOI
EMA [(accessed on 6 November 2019)]; Available online: http://www.ema.eu.
Kiratli B.J., Srinivas S., Perkash I., Terris M.K. Progressive decrease in bone density over 10 years of androgen deprivation therapy in patients with prostate cancer. Urology. 2001;57:127–132. doi: 10.1016/S0090-4295(00)00895-5. PubMed DOI
Skolarus T.A., Caram M.V., Shahinian V.B. Androgen-deprivation-associated bone disease. Curr. Opin. Urol. 2014;24:601–607. doi: 10.1097/MOU.0000000000000101. PubMed DOI
Seidell J.C., Bjorntorp P., Sjostrom L., Kvist H., Sannerstedt R. Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels. Metabolism. 1990;39:897–901. doi: 10.1016/0026-0495(90)90297-P. PubMed DOI
Ferroni C., Del Rio A., Martini C., Manoni E., Varchi G. Light-induced therapies for prostate cancer treatment. Front. Chem. 2019;7:719. doi: 10.3389/fchem.2019.00719. PubMed DOI PMC
Lian H., Wu J., Hu Y., Guo H. Self-assembled albumin nanoparticles for combination therapy in prostate cancer. Int. J. Nanomed. 2017;12:7777–7787. doi: 10.2147/IJN.S144634. PubMed DOI PMC
Miller J.D., Baron E.D., Scull H., Hsia A., Berlin J.C., McCormick T., Colussi V., Kenney M.E., Cooper K.D., Oleinick N.L. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: The case experience with preclinical mechanistic and early clinical-translational studies. Toxicol. Appl. Pharmacol. 2007;224:290–299. doi: 10.1016/j.taap.2007.01.025. PubMed DOI PMC
Mokwena M.G., Kruger C.A., Ivan M.T., Heidi A. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photod. Photodyn. Ther. 2018;22:147–154. doi: 10.1016/j.pdpdt.2018.03.006. PubMed DOI
Paszko E., Ehrhardt C., Senge M.O., Kelleher D.P., Reynolds J.V. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn. Ther. 2011;8:14–29. doi: 10.1016/j.pdpdt.2010.12.001. PubMed DOI
Yoon I., Li J.Z., Shim Y.K. Advance in photosensitizers and light delivery for photodynamic therapy. Clin. Endosc. 2013;46:7–23. doi: 10.5946/ce.2013.46.1.7. PubMed DOI PMC
Darmostuk M., Rimpelova S., Gbelcova H., Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol. Adv. 2015;33:1141–1161. doi: 10.1016/j.biotechadv.2015.02.008. PubMed DOI
Pavlíčková V., Jurášek M., Rimpelová S., Záruba K., Sedlák D., Šimková M., Kodr D., Staňková E., Fähnrich J., Rottnerová Z., et al. Oxime-based 19-nortestosterone–pheophorbide a conjugate: Bimodal controlled release concept for PDT. J. Mater. Chem. B. 2019;7:5465–5477. doi: 10.1039/C9TB01301F. PubMed DOI
Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI
Zimmermann T., Drašar P., Rimpelová S., Christensen S.B., Khripach V.A., Jurášek M. Large scale conversion of trilobolide into the payload of mipsagargin: 8-O-(12-aminododecanoyl)-8-O-debutanoylthapsigargin. Biomolecules. 2020;10:1640. doi: 10.3390/biom10121640. PubMed DOI PMC
Tomanová P., Rimpelová S., Jurášek M., Buděšínský M., Vejvodová L., Ruml T., Kmoníčková E., Drašar P.B. Trilobolide–porphyrin conjugates: On synthesis and biological effects evaluation. Steroids. 2015;97:8–12. doi: 10.1016/j.steroids.2014.08.024. PubMed DOI
Kozlowska D., Foran P., MacMahon P., Shelly M.J., Eustace S., O’Kennedy R. Molecular and magnetic resonance imaging: The value of immunoliposomes. Adv. Drug Deliv. Rev. 2009;61:1402–1411. doi: 10.1016/j.addr.2009.09.003. PubMed DOI
Liu T., Wu L.Y., Choi J.K., Berkman C.E. In vitro targeted photodynamic therapy with a pyropheophorbide-a conjugated inhibitor of prostate specific membrane antigen. Prostate. 2009;69:585–594. doi: 10.1002/pros.20909. PubMed DOI PMC
Wang X., Tsui B., Ramamurthy G., Zhang P., Meyers J., Kenney M.E., Kiechle J., Ponsky L., Basilion J.P. Theranostic agents for photodynamic therapy of prostate cancer by targeting prostate-specific membrane antigen. Mol. Cancer Ther. 2016;15:1834–1844. doi: 10.1158/1535-7163.MCT-15-0722. PubMed DOI
Torchilin V.P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9:E128–E147. doi: 10.1208/aapsj0902015. PubMed DOI PMC
Zhang L., Gu F.X., Chan J.M., Wang A.Z., Langer R.S., Farokhzad O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008;83:761–769. doi: 10.1038/sj.clpt.6100400. PubMed DOI
Zhang C., Zhao X., Guo S., Lin T., Guo H. Highly effective photothermal chemotherapy with pH-responsive polymer-coated drug-loaded melanin-like nanoparticles. Int. J. Nanomed. 2017;12:1827–1840. doi: 10.2147/IJN.S130539. PubMed DOI PMC
Cai Z., Zhang Y., He Z., Jiang L.P., Zhu J.J. NIR-triggered chemo-photothermal therapy by thermosensitive gold nanostarmesoporous silicaliposome-composited drug delivery systems. ACS Appl. Biomater. 2020;3:5322–5330. doi: 10.1021/acsabm.0c00651. PubMed DOI
Motlagh N.S.J., Parvin P., Mirzaie Z.H., Karimi R., Sanderson J.H., Atyabi F. Synergistic performance of triggered drug release and photothermal therapy of MCF7 cells based on laser activated PEGylated GO + DOX. Biomed. Opt. Express. 2020:3783–3794. doi: 10.1364/BOE.389261. PubMed DOI PMC
Tran V.A., Vo V.G., Shim K., Lee S.W., An S.S.A. Multimodal mesoporous silica nanocarriers for dual stimuli-responsive drug release and excellent photothermal ablation of cancer cells. Int. J. Nanomed. 2020;15:7667–7685. doi: 10.2147/IJN.S254344. PubMed DOI PMC
Li X., Wang X., Hua M., Yu H., Wei S., Wang A., Zhou J. Photothermal-triggered controlled drug release from mesoporous silica nanoparticles based on base-pairing rules. ACS Biomater. Sci. Eng. 2019;5:2399–2408. doi: 10.1021/acsbiomaterials.9b00478. PubMed DOI
Zhang W., Zheng X., Shen S., Wang X. Doxorubicin-loaded magnetic nanoparticle clusters for chemo-photothermal treatment of the prostate cancer cell line PC3. Biochem. Biophys. Res. Commun. 2015;466:278–282. doi: 10.1016/j.bbrc.2015.09.036. PubMed DOI
Qiang L., Cai Z., Jiang W., Liu J., Tai Z., Li G., Gong C., Gao S., Gao Y. A novel macrophage-mediated biomimetic delivery system with NIR-triggered release for prostate cancer therapy. J. Nanobiotechnol. 2019;17:83. doi: 10.1186/s12951-019-0513-z. PubMed DOI PMC
Doughty A.C., Hoover A.R., Layton E., Murray C.K., Howard E.W., Chen W.R. Nanomaterial applications in photothermal therapy for cancer. Materials. 2019;12:779. doi: 10.3390/ma12050779. PubMed DOI PMC
Riley R.S., Day E.S. Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. 2017;9:e1449. doi: 10.1002/wnan.1449. PubMed DOI PMC
Kim J., Chun S.H., Amornkitbamrung L., Song C., Yuk J.S., Ahn S.Y., Kim B.W., Lim Y.T., Oh B.K., Um S.H. Gold nanoparticle clusters for the investigation of therapeutic efficiency against prostate cancer under near-infrared irradiation. Nano Converg. 2020;7:5. doi: 10.1186/s40580-019-0216-z. PubMed DOI PMC
Liu Y., Ashton J.R., Moding E.J., Yuan H., Register J.K., Fales A.M., Choi J., Whitley M.J., Zhao X., Qi Y., et al. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 2015;5:946–960. doi: 10.7150/thno.11974. PubMed DOI PMC
Huang L., Xu C., Xu P., Qin Y., Chen M., Feng Q., Wen X., Wang Y., Shi Y., Cheng Y. Intelligent photosensitive mesenchymal stem cells and cell-derived microvesicles for photothermal therapy of prostate cancer. Nanotheranostic. 2019;3:41–53. doi: 10.7150/ntno.28450. PubMed DOI PMC
Stern J.M., Solomonov V.V.K., Sazykina E., Schwartz J.A., Gad S.C., Goodrich G.P. Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int. J. Toxicol. 2016;35:38–46. doi: 10.1177/1091581815600170. PubMed DOI
Gad S.C., Sharp K.L., Montgomery C., Payne J.D., Goodrich G.P. Evaluation of the toxicity of intravenous delivery of auroshell particles (gold–silica nanoshells) Int. J. Toxicol. 2012;31:584–594. doi: 10.1177/1091581812465969. PubMed DOI
Rastinehad A.R., Anastos H., Wajswol E., Winoker J.S., Sfakianos J.P., Doppalapudi S.K., Carrick M.R., Knauer C.J., Taouli B., Lewis S.C., et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA. 2019;116:18590–18596. doi: 10.1073/pnas.1906929116. PubMed DOI PMC
Slovin S. Chemotherapy and immunotherapy combination in advanced prostate cancer. Clin. Adv. Hematol. Oncol. 2012;10:90–100. doi: 10.3389/fonc.2012.00043. PubMed DOI
Cordes L.M., Gulley J.L., Madan R.A. Perspectives on the clinical development of immunotherapy in prostate cancer. Asian J. Androl. 2018;20:253–259. doi: 10.4103/aja.aja_9_18. PubMed DOI PMC
Dunn G.P., Old L.J., Schreiber R.D. The three es of cancer immunoediting. Annu. Rev. Immunol. 2004;22:329–360. doi: 10.1146/annurev.immunol.22.012703.104803. PubMed DOI
Steinman R.M. Lasker basic medical research award. Dendritic cells: Versatile controllers of the immune system. Nat. Med. 2007;13:1155–1159. doi: 10.1038/nm1643. PubMed DOI
Handy C.E., Antonarakis E.S. Sipuleucel-T for the treatment of prostate cancer: Novel insights and future directions. Future Oncol. 2017;14:907–917. doi: 10.2217/fon-2017-0531. PubMed DOI PMC
FDA [(accessed on 9 January 2019)]; Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/provenge-sipuleucel-t.
Podrazil M., Horvath R., Becht E., Rozkova D., Bilkova P., Sochorova K., Hromadkova H., Kayserova J., Vavrova K., Lastovicka J., et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2015;6:18192–18205. doi: 10.18632/oncotarget.4145. PubMed DOI PMC
Schepisi G., Cursano M.C., Casadei C., Menna C., Altavilla A., Lolli C., Cerchione C., Paganelli G., Santini D., Tonini G., et al. CAR-T cell therapy: A potential new strategy against prostate cancer. J. Immunother. Cancer. 2019;7:258. doi: 10.1186/s40425-019-0741-7. PubMed DOI PMC
Schepisi G., Farolfi A., Conteduca V., Martignano F., De Lisi D., Ravaglia G., Rossi L., Menna C., Bellia R.S., Barone D., et al. Immunotherapy for prostate cancer: Where we are headed. Int. J. Mol. Sci. 2017;18:2627. doi: 10.3390/ijms18122627. PubMed DOI PMC
Hansen A.R., Massard C., Ott P.A., Haas N.B., Lopez J.S., Ejadi S., Wallmark J.M., Keam B., Delord J.P., Aggarwal R., et al. Pembrolizumab for advanced prostate adenocarcinoma: Findings of the KEYNOTE-028 study. Ann. Oncol. 2018;29:1807–1813. doi: 10.1093/annonc/mdy232. PubMed DOI
Adam M., Tennstedt P., Lanwehr D., Tilki D., Steuber T., Beyer B., Thederan I., Heinzer H., Haese A., Salomon G., et al. Functional outcomes and quality of life after radical prostatectomy only versus a combination of prostatectomy with radiation and hormonal therapy. Eur. Urol. 2017;71:330–336. doi: 10.1016/j.eururo.2016.11.015. PubMed DOI
Seisen T., Abdollah F. Surgery-based multimodal management of high-risk prostate cancer patients: What is the functional price to pay for optimal disease control? Eur. Urol. 2017;71:337–339. doi: 10.1016/j.eururo.2016.11.026. PubMed DOI
Zhang X.Y., Zhang P.Y. Combinations in multimodality treatments and clinical outcomes during cancer. Oncol. Letters. 2016;12:4301–4304. doi: 10.3892/ol.2016.5242. PubMed DOI PMC
Koupparis A., Gleave M.E. Multimodal approaches to high-risk prostate cancer. Curr. Oncol. 2010;17:S33–S37. doi: 10.3747/co.v17i0.677. PubMed DOI PMC
Lee S.U., Cho K.H. Multimodal therapy for locally advanced prostate cancer: The roles of radiotherapy, androgen deprivation therapy, and their combination. Rad. Oncol. J. 2017;35:189–197. doi: 10.3857/roj.2017.00318. PubMed DOI PMC
Azzouzi A.R., Barret E., Moore C.M., Villers A., Allen C., Scherz A., Muir G., de Wildt M., Barber N.J., Lebdai S., et al. TOOKAD® Soluble vascular-targeted photodynamic (VTP) therapy: Determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer. BJU Int. 2013;112:766–774. doi: 10.1111/bju.12265. PubMed DOI
Borle F., Radu A., Fontolliet C., van den Bergh H., Monnier P., Wagnières G. Selectivity of the photosensitiser TOOKAD® for photodynamic therapy evaluated in the Syrian golden hamster cheek pouch tumour model. Br. J. Cancer. 2003;89:2320–2326. doi: 10.1038/sj.bjc.6601428. PubMed DOI PMC
Koudinova N.V., Pinthus J.H., Brandis A., Brenner O., Bendel P., Ramon J., Eshhar Z., Scherz A., Salomon Y. Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): Successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int. J. Cancer. 2003;104:782–789. doi: 10.1002/ijc.11002. PubMed DOI
Azzouzi A.R., Lebdai S., Benzaghou F., Stief C. Vascular-targeted photodynamic therapy with TOOKAD® Soluble in localized prostate cancer: Standardization of the procedure. World J. Urol. 2015;33:937–944. doi: 10.1007/s00345-015-1535-2. PubMed DOI PMC
Rapozzi V., Ragno D., Guerrini A., Ferroni C., della Pietra E., Cesselli D., Castoria G., Di Donato M., Saracino E., Benfenati V., et al. Androgen receptor targeted conjugate for bimodal photodynamic therapy of prostate cancer in vitro. Biocon. Chem. 2015;26:1662–1671. doi: 10.1021/acs.bioconjchem.5b00261. PubMed DOI
Nagaya T., Nakamura Y., Okuyama S., Ogata F., Maruoka Y., Choyke P.L., Kobayashi H. Near-infrared photoimmunotherapy targeting prostate cancer with prostate-specific membrane antigen (PSMA) antibody. Mol. Cancer Res. 2017;15:1153–1162. doi: 10.1158/1541-7786.MCR-17-0164. PubMed DOI PMC
Fucikova J., Moserova I., Truxova I., Hermanova I., Vancurova I., Partlova S., Fialova A., Sojka L., Cartron P.F., Houska M., et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int. J. Cancer. 2014;135:1165–1177. doi: 10.1002/ijc.28766. PubMed DOI
Melichar B., Študentova H., Kalábová H., Vitásková D., Čermáková P., Hormychová H., Ryška A. Predictive and prognostic significance of tumor-infiltrating lymphocytes in patients with breast cancer treated with neoadjuvant systemic therapy. Anticancer Res. 2014;34:1115–1125. PubMed
McDonnell A.M., Nowak A.K., Lake R.A. Contribution of the immune system to the chemotherapeutic response. Semin. Immunopathol. 2011;33:353–367. doi: 10.1007/s00281-011-0246-z. PubMed DOI
Škubník J., Jurášek M., Ruml T., Rimpelová S. Mitotic poisons in research and medicine. Molecules. 2020;25:4632. doi: 10.3390/molecules25204632. PubMed DOI PMC
Petrylak D.P., Vogelzang N.J., Chatta G.S., Fleming M.T., Smith D.C., Appleman L.J., Hussain A., Modiano M., Singh P., Tagawa S.T., et al. PSMA ADC monotherapy in patients with progressive metastatic castration-resistant prostate cancer following abiraterone and/or enzalutamide: Efficacy and safety in open-label single-arm phase 2 study. Prostate. 2020;80:99–108. doi: 10.1002/pros.23922. PubMed DOI
Tekin V., Aweda T., Guldu O.K., Muftuler Z.B., Bartels J., Lapib S.E., Unak P. A novel anti-angiogenic radio/photo sensitizer for prostate cancer imaging and therapy: 89Zr-Pt@TiO2-SPHINX, synthesis and in vitro evaluation. Nucl. Med. Biol. 2021:94–95. doi: 10.1016/j.nucmedbio.2020.12.005. PubMed DOI
Bryant H.E., Schultz N., Thomas H.D., Parker K.M., Flower D., Lopez E., Kyle S., Meuth M., Curtin N.J., Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–917. doi: 10.1038/nature03443. PubMed DOI
Patel A.G., Sarkaria J.N., Kaufmanna S.H. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc. Natl. Acad. Sci. USA. 2011;108:3406–3411. doi: 10.1073/pnas.1013715108. PubMed DOI PMC
Beck C., Boehler C., Barbat J.G., Bonnet M.E., Illuzzi G., Ronde P., Gauthier L.R., Magroun N., Rajendran A., Lopez B.S., et al. PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic Acids Res. 2014;42:5616–5632. doi: 10.1093/nar/gku174. PubMed DOI PMC
Lord C.J., Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017;355:1152–1158. doi: 10.1126/science.aam7344. PubMed DOI PMC
Clinical Trials [(accessed on 15 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02975934.
Smith M.R., Sandhu S.K., Kelly W.K., Scher H.I., Efstathiou E., Lara P.N., Yu E.Y., George D.J., Chi K.N., Saad F., et al. LBA50—Pre-specified interim analysis of GALAHAD: A phase II study of niraparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD) Ann. Oncol. 2019;30:v884–v885. doi: 10.1093/annonc/mdz394.043. DOI
De Bono J.S., Mehra N., Higano C.S., Saad F., Buttigliero C., Mata M., Chen H.C., Healy C.G., Paccagnella M.L., Czibere A., et al. TALAPRO-1: A phase II study of talazoparib (TALA) in men with DNA damage repair mutations (DDRmut) and metastatic castration-resistant prostate cancer (mCRPC)—First interim analysis (IA) J. Clin. Oncol. 2020;38:119. doi: 10.1200/JCO.2020.38.6_suppl.119. DOI
Clinical Trials [(accessed on 15 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03395197.
Clinical Trials [(accessed on 15 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01576172.
Clinical Trials [(accessed on 15 February 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03712930?term=pamiparib&cond=prostate&draw=2&rank=1.
Chowdhury S., Mateo J., Gross M., Armstrong A.J., Cruz-Correa M., Piulats J.M., Blay J.Y., Li M., Rivas D., Quintero L., et al. Pamiparib, an investigational PARP inhibitor, in patients with metastatic castration-resistant prostate cancer (mCRPC) and a circulating tumor cell (CTC) homologous recombination deficiency (HRD) phenotype or BRCA defects: A trial in progress. J. Clin. Oncol. 2019;37(Suppl 15) doi: 10.1200/JCO.2019.37.15_suppl.TPS5086. DOI
Clinical Trials [(accessed on 15 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03572478.
Clinical Trials [(accessed on 15 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03012321.
Clinical Trials [(accessed on 15 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03732820.
Clinical Trials [(accessed on 15 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03317392.
Nizialek E., Antonarakis E.S. PARP inhibitors in metastatic prostate cancer: Evidence to date. Cancer Manag. Res. 2020;12:8105–8114. doi: 10.2147/CMAR.S227033. PubMed DOI PMC
Powers E., Karachaliou G.S., Kao C., Harrison M.R., Hoimes C.J., George D.J., Armstrong A.J., Zhang T. Novel therapies are changing treatment paradigms in metastatic prostate cancer. J. Hematol. Oncol. 2020;13:144. doi: 10.1186/s13045-020-00978-z. PubMed DOI PMC
Pezaro C. PARP inhibitor combinations in prostate cancer. Ther. Adv. Med. Oncol. 2020;12:1–10. doi: 10.1177/1758835919897537. PubMed DOI PMC
Clinical Trials [(accessed on 9 April 2021)]; Available online: https://www.clinicaltrials.gov/
Carver B.S., Chapinski C., Wongvipat J., Hieronymus H., Chen Y., Chandarlapaty S., Arora V.K., Le C., Koutcher J., Scher H., et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19:575–586. doi: 10.1016/j.ccr.2011.04.008. PubMed DOI PMC
Braglia L., Zavatti M., Vinceti M., Martelli A.M., Marmiroli S. Deregulated PTEN/PI3K/AKT/mTOR signaling in prostate cancer: Still a potential druggable target? Biochim. Biophys. Acta Mol. Cell Res. 2020;1867:118731. doi: 10.1016/j.bbamcr.2020.118731. PubMed DOI
Grünwald V., DeGraffenried L., Russel D., Friedrichs W.E., Ray R.B., Hidalgo M. Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res. 2002;62:6141–6145. doi: 10.1016/j.bbamcr.2020.118731. PubMed DOI
Skvortsova I., Skvortsov S., Stasyk T., Raju U., Popper B.A., Schiestl B., von Guggenber E., Neher A., Bonn G.K., Huber L.K., et al. Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Cell Biol. 2008;8:4521–4533. doi: 10.1002/pmic.200800113. PubMed DOI
De Bono J.S., De Giorgi U., Rodrigues D.N., Massard C., Bracarda S., Font A., Arija J.A.A., Shih K.C., Radavoi G.D., Xu N., et al. Randomized phase II study evaluating Akt blockade with ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss. Clin. Cancer Res. 2019;25:2019. doi: 10.1158/1078-0432.CCR-18-0981. PubMed DOI
Clinical Trials [(accessed on 16 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03072238.
Clinical Trials [(accessed on 16 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03673787.
Clinical Trials [(accessed on 16 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04404140.
Clinical Trials [(accessed on 16 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04493853.
Clinical Trials [(accessed on 16 February 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04087174.
Clinical Trials [(accessed on 16 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02121639.
Crabb S.J., Griffiths G., Marwood E., Dunkley D., Downs N., Martin K., Light M., Northey J., Wilding S., Whitehead A., et al. Pan-AKT Inhibitor Capivasertib With Docetaxel and Prednisolone in Metastatic Castration-Resistant Prostate Cancer: A Randomized, Placebo-Controlled Phase II Trial (ProCAID) J. Clin. Oncol. 2021;39:190–201. doi: 10.1200/JCO.20.01576. PubMed DOI PMC
Clinical Trials [(accessed on 17 February 2021)]; Available online: https://repository.icr.ac.uk/bitstream/handle/internal/3528/jco.19.00368.pdf?sequence=2&isAllowed=y.
Clinical Trials [(accessed on 17 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02905318.
Clinical Trials [(accessed on 17 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02059213.
Palmbos P.L., Tomlins S.A., Daignault S., Agarwal N., Twardowski P., Morgans A.K., Kelly W.K., Arora V., Antonarakis E.S., Siddiqui J., et al. Clinical outcomes and markers of treatment response in a randomized phase II study of androgen deprivation therapy with or without palbociclib in RB-intact metastatic hormone-sensitive prostate cancer (mHSPC) [(accessed on 17 February 2021)];J. Clin. Oncol. 2020 38:5573. doi: 10.1200/JCO.2020.38.15_suppl.5573. Available online: https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.5573. PubMed DOI PMC
Palmbos P.L., Tomlins S.A., Agarwal N., Twardowski P., Morgans A.K., Kelly W.K., Arora V., Antonarakis E.S., Siddiqui J., Daignault S., et al. Cotargeting AR signaling and cell cycle: A randomized phase II study of androgen deprivation therapy with or without palbociclib in RB-positive metastatic hormone sensitive prostate cancer (mHSPC) [(accessed on 17 February 2021)];J. Clin. Oncol. 2018 36:251. doi: 10.1200/JCO.2018.36.6_suppl.251. Available online: https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.6_suppl.251. PubMed DOI PMC
Clinical Trials [(accessed on 17 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02555189?term=Ribociclib&cond=prostate+cancer&draw=2&rank=1.
Clinical Trials [(accessed on 17 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02494921.
Clinical Trials [(accessed on 17 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04408924?term=Abemaciclib&cond=Prostate+Cancer&draw=2&rank=3.
Clinical Trials [(accessed on 17 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04298983.
Clinical Trials [(accessed on 17 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03706365.
Clinical Trials [(accessed on 17 February 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04751929?term=Abemaciclib&cond=Prostate+Cancer&draw=2&rank=5.