Large Scale Conversion of Trilobolide into the Payload of Mipsagargin: 8-O-(12-Aminododecanoyl)-8-O-Debutanoylthapsigargin
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33291419
PubMed Central
PMC7762042
DOI
10.3390/biom10121640
PII: biom10121640
Knihovny.cz E-resources
- Keywords
- 8-O-(12-aminododecanoyl)-8-O-debutanoylthapsigargin, Laser trilobum cultivation, chemical synthesis, extraction, mipsagargin, optimization and scale-up, sarco/endoplasmic reticulum calcium ATPase (SERCA), sesquiterpene lactones, thapsigargin, trilobolide, trilobolide isolation from fruits,
- MeSH
- Apiaceae chemistry metabolism MeSH
- Butyrates chemistry isolation & purification MeSH
- Furans chemistry isolation & purification MeSH
- Antineoplastic Agents, Phytogenic chemistry isolation & purification MeSH
- Humans MeSH
- Molecular Structure MeSH
- Neoplasms drug therapy pathology MeSH
- Fruit chemistry metabolism MeSH
- Carbon Dioxide chemistry MeSH
- Plant Extracts chemistry MeSH
- Sarcoplasmic Reticulum Calcium-Transporting ATPases antagonists & inhibitors metabolism MeSH
- Chromatography, Supercritical Fluid methods MeSH
- Chemistry Techniques, Synthetic * MeSH
- Thapsigargin analogs & derivatives isolation & purification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Butyrates MeSH
- Furans MeSH
- Antineoplastic Agents, Phytogenic MeSH
- Carbon Dioxide MeSH
- Plant Extracts MeSH
- Sarcoplasmic Reticulum Calcium-Transporting ATPases MeSH
- Thapsigargin MeSH
- trilobolide MeSH Browser
In spite of the impressing cytotoxicity of thapsigargin (Tg), this compound cannot be used as a chemotherapeutic drug because of general toxicity, causing unacceptable side effects. Instead, a prodrug targeted towards tumors, mipsagargin, was brought into clinical trials. What substantially reduces the clinical potential is the limited access to Tg and its derivatives and cost-inefficient syntheses with unacceptably low yields. Laser trilobum, which contains a structurally related sesquiterpene lactone, trilobolide (Tb), is successfully cultivated. Here, we report scalable isolation of Tb from L. trilobum and a transformation of Tb to 8-O-(12-aminododecanoyl)-8-O-debutanoylthapsigargin in seven steps. The use of cultivated L. trilobum offers an unlimited source of the active principle in mipsagargin.
See more in PubMed
Doan N.T.Q., Paulsen E.S., Sehgal P., Moeller J.V., Nissen P., Denmeade S.R., Isaacs J.T., Dionne C.A., Christensen S.B. Targeting thapsigargin towards tumors. Steroids. 2015;97:2–7. doi: 10.1016/j.steroids.2014.07.009. PubMed DOI PMC
Ma Z., Fan C., Yang Y., Di S., Hu W., Li T., Zhu Y., Han J., Xin Z., Wu G., et al. Thapsigargin sensitizes human esophageal cancer to TRAIL induced apoptosis via AMPK activation. Sci. Rep. 2016;6:35196. doi: 10.1038/srep35196. PubMed DOI PMC
Huang F., Wang P., Wang X. Thapsigargin induces apoptosis of prostate cancer through cofilin-1 and paxillin. Oncol. Lett. 2018;16:1975–1980. doi: 10.3892/ol.2018.8833. PubMed DOI PMC
Wu L., Huang X., Kuang Y., Xing Z., Deng X., Luo Z. Thapsigargin induces apoptosis in adrenocortical carcinoma by activating endoplasmic reticulum stress and the JNK signaling pathway: An in vitro and in vivo study. Drug Des. Devel. Ther. 2019;13:2787–2798. doi: 10.2147/DDDT.S209947. PubMed DOI PMC
Denmeade S.R., Mhaka A.M., Rosen D.M., Brennen W.N., Dalrymple S., Dach I., Olesen C., Gurel B., DeMarzo A.M., Wilding G., et al. Engineering a prostate specific membrane antigen activated tumor endothelial cell prodrug for cancer therapy. Sci. Transl. Med. 2012;4:140–186. doi: 10.1126/scitranslmed.3003886. PubMed DOI PMC
Škubník J., Jurášek M., Ruml T., Rimpelová S. Mitotic poisons in research and medicine. Molecules. 2020;25:4632. doi: 10.3390/molecules25204632. PubMed DOI PMC
Chan K.S., Koh C.G., Li H.Y. Mitosis targeted anti-cancer therapies: Where they stand. Cell Death Discov. 2012;3 doi: 10.1038/cddis.2012.148. PubMed DOI PMC
Denmeade S.R., Jakobsen C.M., Janssen S., Khan S.R., Garrett E.S., Lilja H., Christensen S.B., Isaacs J.T. Prostate specific antigen activated thapsigargin prodrug as targeted therapy for prostate cancer. J. Natl. Cancer Inst. 2003;95:990–1000. doi: 10.1093/jnci/95.13.990. PubMed DOI
Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI
Sohoel H., Lund J.A.-M., Moller J.V., Nissen P., Denmeade S.R., Isaacs J.T., Olsen C.E., Christensen S.B. Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells. Bioorg. Med. Chem. 2006;14:2810–2815. doi: 10.1016/j.bmc.2005.12.001. PubMed DOI
Sehgal P., Szalai P., Olesen C., Praetorius H.A., Nissen P., Christensen S.B., Engedal N., Møller J.V. Inhibition of the sarco/endoplasmic reticulum (ER) Ca(2+) ATPase by thapsigargin analogs induces cell death via ER Ca(2+) depletion and the unfolded protein response. J. Biol. Chem. 2017;292:19656–19673. doi: 10.1074/jbc.M117.796920. PubMed DOI PMC
Andersen T.B., Lopez C.Q., Manczak T., Martinez K., Simonsen H.T. Thapsigargin from Thapsia, L. to mipsagargin. Molecules. 2015;20:6113–6127. doi: 10.3390/molecules20046113. PubMed DOI PMC
Kmoníčková E., Harmatha J., Vokáč K., Kostecká P., Farghali H., Zídek Z. Sesquiterpene lactone trilobolide activates production of interferon-γ and nitric oxide. Fitoterapia. 2010;81:1213–1219. doi: 10.1016/j.fitote.2010.08.005. PubMed DOI
Winther A.-M.L., Liu H., Sonntag Y., Olesen C., Le M.M., Soehoel H., Olsen C.-E., Christensen S.B., Nissen P., Moller J.V. Critical roles of hydrophobicity and orientation of side chains for inactivation of sarcoplasmic reticulum Ca2+ ATPase with thapsigargin and thapsigargin analogs. J. Biol. Chem. 2010;285:28883–28892. doi: 10.1074/jbc.M110.136242. PubMed DOI PMC
Harmatha J., Buděšínský M., Jurášek M., Zimmermann T., Drašar P., Zídek Z., Kmoníčková E., Vejvodová L. Structural modification of trilobolide for upgrading its immunobiological properties and reducing its cytotoxic action. Fitoterapia. 2019;134:88–95. doi: 10.1016/j.fitote.2019.02.002. PubMed DOI
Christensen S.B., Andersen A., Kromann H., Treiman M., Tombal B., Denmeade S., Isaacs J.T. Thapsigargin analogs for targeting programmed death of androgen independent prostate cancer cells. Bioorg. Med. Chem. 1999;7:1273–1280. doi: 10.1016/S0968-0896(99)00074-7. PubMed DOI
Janssen S., Rosen D.M., Ricklis R.M., Dionne C.A., Lilja H., Christensen S.B., Isaacs J.T., Denmeade S.R. Pharmacokinetics, biodistribution, and antitumor efficacy of a human glandular kallikrein 2 (hK2)-activated thapsigargin prodrug. Prostate. 2006;66:358–368. doi: 10.1002/pros.20348. PubMed DOI
Zimmermann T., Christensen S., Franzyk H. Preparation of enzyme-activated thapsigargin prodrugs by solid-phase synthesis. Molecules. 2018;23:1463. doi: 10.3390/molecules23061463. PubMed DOI PMC
Mahalingam D., Peguero J., Cen P., Arora S.P., Sarantopoulos J., Rowe J., Allgood V., Tubb B., Campos L. A phase II, multicenter, single-arm study of mipsagargin (G-202) as a second-line therapy following sorafenib for adult patients with progressive advanced hepatocellular carcinoma. Cancers. 2019;11:833. doi: 10.3390/cancers11060833. PubMed DOI PMC
Mahalingam D., Wilding G., Denmeade S., Sarantopoulas J., Cosgrove D., Cetnar J., Azad N., Bruce J., Kurman M., Allgood V.E., et al. Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: Results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br. J. Cancer. 2016;114:986–994. doi: 10.1038/bjc.2016.72. PubMed DOI PMC
Tarvainen I., Zimmermann T., Heinonen P., Jäntti M.H., Yli-Kauhaluoma J., Talman V., Franzyk H., Tuominen R.K., Christensen S.B. Missing selectivity of targeted 4β-phorbol prodrugs expected to be potential chemotherapeutics. ACS Med. Chem. Lett. 2019 doi: 10.1021/acsmedchemlett.9b00554. PubMed DOI PMC
Akinboye E.S., Rogers O.C., Isaacs J.T. 2-Fluoro-5-maleimidobenzoic acid-linked albumin drug (MAD) delivery for selective systemic targeting of metastatic prostate cancer. Prostate. 2018;78:655–663. doi: 10.1002/pros.23494. PubMed DOI PMC
Akinboye E.S., Brennen W.N., Denmeade S.R., Isaacs J.T. Albumin-linked prostate-specific antigen-activated thapsigargin and niclosamide based molecular grenades targeting the microenvironment in metastatic castration-resistant prostate cancer. Asian J. Urol. 2019;6:99–108. doi: 10.1016/j.ajur.2018.11.004. PubMed DOI PMC
Chu H., Smith J.M., Felding J., Baran P.S. Scalable Synthesis of (−)-Thapsigargin. ACS Cent. Sci. 2017;3:47–51. doi: 10.1021/acscentsci.6b00313. PubMed DOI PMC
Ley S.V., Antonello A., Balskus E.P., Booth D.T., Christensen S.B., Cleator E., Gold H., Högenauer K., Hünger U., Myers R.M., et al. Synthesis of the thapsigargins. Proc. Natl. Acad. Sci. USA. 2004;101:12073–12078. doi: 10.1073/pnas.0403300101. PubMed DOI PMC
Crestey F., Toma M., Christensen S.B. Concise synthesis of thapsigargin from nortrilobolide. Tetrahedron Lett. 2015;56:5896–5898. doi: 10.1016/j.tetlet.2015.09.024. DOI
Doan N.T.Q., Crestey F., Olsen C.E., Christensen S.B. Chemo-and regioselective functionalization of nortrilobolide: Application for semisynthesis of the natural product 2-acetoxytrilobolide. J. Nat. Prod. 2015;78:1406–1414. doi: 10.1021/acs.jnatprod.5b00333. PubMed DOI
Andrews S.P., Ball M., Wierschem F., Cleator E., Oliver S., Hogenauer K., Simic O., Antonello A., Hunger U., Smith M.D., et al. Total synthesis of five thapsigargins: Guaianolide natural products exhibiting sub-nanomolar SERCA inhibition. Chemistry. 2007;13:5688–5712. doi: 10.1002/chem.200700302. PubMed DOI
Jakobsen C.M., Denmeade S.R., Isaacs J.T., Gady A., Olsen C.E., Christensen S.B. Design, synthesis, and pharmacological evaluation of thapsigargin analogues for targeting apoptosis to prostatic cancer cells. J. Med. Chem. 2001;44:4696–4703. doi: 10.1021/jm010985a. PubMed DOI
Wang D.S., Wagner M., Butt H.J., Wu S. Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue. Soft Matter. 2015;11:7656–7662. doi: 10.1039/C5SM01888A. PubMed DOI
Amorim M.H.R., Gil da Costa R.M., Lopes C., Bastos M.M.S.M. Sesquiterpene lactones: Adverse health effects and toxicity mechanisms. Crit. Rev. Toxicol. 2013;43:559–579. doi: 10.3109/10408444.2013.813905. PubMed DOI
Kishkentayeva A.S., Adekenov S.M., Drašar P.B. Production technologies of pharmacologically active sesquiterpene lactones. Eurasian Chem. Technol. J. 2018;20:325–333. doi: 10.18321/ectj766. DOI
de Melo M.M.R., Silvestre A.J.D., Silva C.M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids. 2014;92:115–176. doi: 10.1016/j.supflu.2014.04.007. DOI
Liang X., Grue-Soerensen G., Petersen A.K., Hogberg T. Semisynthesis of ingenol 3-angelate (PEP005): Efficient stereoconservative angeloylation of alcohols. Synlett. 2012;23:2647–2652. doi: 10.1055/s-0032-1317415. DOI
Jurášek M., Rimpelová S., Kmoníčková E., Drašar P., Ruml T. Tailor-made fluorescent trilobolide to study its biological relevance. J. Med. Chem. 2014;57:7947–7954. doi: 10.1021/jm500690j. PubMed DOI
Huml L., Jurášek M., Mikšátková P., Zimmermann T., Tomanová P., Buděšínský M., Rottnerová Z., Šimková M., Harmatha J., Kmoníčková E., et al. Immunoassay for determination of trilobolide. Steroids. 2017;117:105–111. doi: 10.1016/j.steroids.2016.08.019. PubMed DOI