• This record comes from PubMed

Large Scale Conversion of Trilobolide into the Payload of Mipsagargin: 8-O-(12-Aminododecanoyl)-8-O-Debutanoylthapsigargin

. 2020 Dec 05 ; 10 (12) : . [epub] 20201205

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

In spite of the impressing cytotoxicity of thapsigargin (Tg), this compound cannot be used as a chemotherapeutic drug because of general toxicity, causing unacceptable side effects. Instead, a prodrug targeted towards tumors, mipsagargin, was brought into clinical trials. What substantially reduces the clinical potential is the limited access to Tg and its derivatives and cost-inefficient syntheses with unacceptably low yields. Laser trilobum, which contains a structurally related sesquiterpene lactone, trilobolide (Tb), is successfully cultivated. Here, we report scalable isolation of Tb from L. trilobum and a transformation of Tb to 8-O-(12-aminododecanoyl)-8-O-debutanoylthapsigargin in seven steps. The use of cultivated L. trilobum offers an unlimited source of the active principle in mipsagargin.

See more in PubMed

Doan N.T.Q., Paulsen E.S., Sehgal P., Moeller J.V., Nissen P., Denmeade S.R., Isaacs J.T., Dionne C.A., Christensen S.B. Targeting thapsigargin towards tumors. Steroids. 2015;97:2–7. doi: 10.1016/j.steroids.2014.07.009. PubMed DOI PMC

Ma Z., Fan C., Yang Y., Di S., Hu W., Li T., Zhu Y., Han J., Xin Z., Wu G., et al. Thapsigargin sensitizes human esophageal cancer to TRAIL induced apoptosis via AMPK activation. Sci. Rep. 2016;6:35196. doi: 10.1038/srep35196. PubMed DOI PMC

Huang F., Wang P., Wang X. Thapsigargin induces apoptosis of prostate cancer through cofilin-1 and paxillin. Oncol. Lett. 2018;16:1975–1980. doi: 10.3892/ol.2018.8833. PubMed DOI PMC

Wu L., Huang X., Kuang Y., Xing Z., Deng X., Luo Z. Thapsigargin induces apoptosis in adrenocortical carcinoma by activating endoplasmic reticulum stress and the JNK signaling pathway: An in vitro and in vivo study. Drug Des. Devel. Ther. 2019;13:2787–2798. doi: 10.2147/DDDT.S209947. PubMed DOI PMC

Denmeade S.R., Mhaka A.M., Rosen D.M., Brennen W.N., Dalrymple S., Dach I., Olesen C., Gurel B., DeMarzo A.M., Wilding G., et al. Engineering a prostate specific membrane antigen activated tumor endothelial cell prodrug for cancer therapy. Sci. Transl. Med. 2012;4:140–186. doi: 10.1126/scitranslmed.3003886. PubMed DOI PMC

Škubník J., Jurášek M., Ruml T., Rimpelová S. Mitotic poisons in research and medicine. Molecules. 2020;25:4632. doi: 10.3390/molecules25204632. PubMed DOI PMC

Chan K.S., Koh C.G., Li H.Y. Mitosis targeted anti-cancer therapies: Where they stand. Cell Death Discov. 2012;3 doi: 10.1038/cddis.2012.148. PubMed DOI PMC

Denmeade S.R., Jakobsen C.M., Janssen S., Khan S.R., Garrett E.S., Lilja H., Christensen S.B., Isaacs J.T. Prostate specific antigen activated thapsigargin prodrug as targeted therapy for prostate cancer. J. Natl. Cancer Inst. 2003;95:990–1000. doi: 10.1093/jnci/95.13.990. PubMed DOI

Peterková L., Kmoníčková E., Ruml T., Rimpelová S. Sarco/endoplasmic reticulum calcium ATPase inhibitors: Beyond anticancer perspective. J. Med. Chem. 2020;63:1937–1963. doi: 10.1021/acs.jmedchem.9b01509. PubMed DOI

Sohoel H., Lund J.A.-M., Moller J.V., Nissen P., Denmeade S.R., Isaacs J.T., Olsen C.E., Christensen S.B. Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells. Bioorg. Med. Chem. 2006;14:2810–2815. doi: 10.1016/j.bmc.2005.12.001. PubMed DOI

Sehgal P., Szalai P., Olesen C., Praetorius H.A., Nissen P., Christensen S.B., Engedal N., Møller J.V. Inhibition of the sarco/endoplasmic reticulum (ER) Ca(2+) ATPase by thapsigargin analogs induces cell death via ER Ca(2+) depletion and the unfolded protein response. J. Biol. Chem. 2017;292:19656–19673. doi: 10.1074/jbc.M117.796920. PubMed DOI PMC

Andersen T.B., Lopez C.Q., Manczak T., Martinez K., Simonsen H.T. Thapsigargin from Thapsia, L. to mipsagargin. Molecules. 2015;20:6113–6127. doi: 10.3390/molecules20046113. PubMed DOI PMC

Kmoníčková E., Harmatha J., Vokáč K., Kostecká P., Farghali H., Zídek Z. Sesquiterpene lactone trilobolide activates production of interferon-γ and nitric oxide. Fitoterapia. 2010;81:1213–1219. doi: 10.1016/j.fitote.2010.08.005. PubMed DOI

Winther A.-M.L., Liu H., Sonntag Y., Olesen C., Le M.M., Soehoel H., Olsen C.-E., Christensen S.B., Nissen P., Moller J.V. Critical roles of hydrophobicity and orientation of side chains for inactivation of sarcoplasmic reticulum Ca2+ ATPase with thapsigargin and thapsigargin analogs. J. Biol. Chem. 2010;285:28883–28892. doi: 10.1074/jbc.M110.136242. PubMed DOI PMC

Harmatha J., Buděšínský M., Jurášek M., Zimmermann T., Drašar P., Zídek Z., Kmoníčková E., Vejvodová L. Structural modification of trilobolide for upgrading its immunobiological properties and reducing its cytotoxic action. Fitoterapia. 2019;134:88–95. doi: 10.1016/j.fitote.2019.02.002. PubMed DOI

Christensen S.B., Andersen A., Kromann H., Treiman M., Tombal B., Denmeade S., Isaacs J.T. Thapsigargin analogs for targeting programmed death of androgen independent prostate cancer cells. Bioorg. Med. Chem. 1999;7:1273–1280. doi: 10.1016/S0968-0896(99)00074-7. PubMed DOI

Janssen S., Rosen D.M., Ricklis R.M., Dionne C.A., Lilja H., Christensen S.B., Isaacs J.T., Denmeade S.R. Pharmacokinetics, biodistribution, and antitumor efficacy of a human glandular kallikrein 2 (hK2)-activated thapsigargin prodrug. Prostate. 2006;66:358–368. doi: 10.1002/pros.20348. PubMed DOI

Zimmermann T., Christensen S., Franzyk H. Preparation of enzyme-activated thapsigargin prodrugs by solid-phase synthesis. Molecules. 2018;23:1463. doi: 10.3390/molecules23061463. PubMed DOI PMC

Mahalingam D., Peguero J., Cen P., Arora S.P., Sarantopoulos J., Rowe J., Allgood V., Tubb B., Campos L. A phase II, multicenter, single-arm study of mipsagargin (G-202) as a second-line therapy following sorafenib for adult patients with progressive advanced hepatocellular carcinoma. Cancers. 2019;11:833. doi: 10.3390/cancers11060833. PubMed DOI PMC

Mahalingam D., Wilding G., Denmeade S., Sarantopoulas J., Cosgrove D., Cetnar J., Azad N., Bruce J., Kurman M., Allgood V.E., et al. Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: Results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br. J. Cancer. 2016;114:986–994. doi: 10.1038/bjc.2016.72. PubMed DOI PMC

Tarvainen I., Zimmermann T., Heinonen P., Jäntti M.H., Yli-Kauhaluoma J., Talman V., Franzyk H., Tuominen R.K., Christensen S.B. Missing selectivity of targeted 4β-phorbol prodrugs expected to be potential chemotherapeutics. ACS Med. Chem. Lett. 2019 doi: 10.1021/acsmedchemlett.9b00554. PubMed DOI PMC

Akinboye E.S., Rogers O.C., Isaacs J.T. 2-Fluoro-5-maleimidobenzoic acid-linked albumin drug (MAD) delivery for selective systemic targeting of metastatic prostate cancer. Prostate. 2018;78:655–663. doi: 10.1002/pros.23494. PubMed DOI PMC

Akinboye E.S., Brennen W.N., Denmeade S.R., Isaacs J.T. Albumin-linked prostate-specific antigen-activated thapsigargin and niclosamide based molecular grenades targeting the microenvironment in metastatic castration-resistant prostate cancer. Asian J. Urol. 2019;6:99–108. doi: 10.1016/j.ajur.2018.11.004. PubMed DOI PMC

Chu H., Smith J.M., Felding J., Baran P.S. Scalable Synthesis of (−)-Thapsigargin. ACS Cent. Sci. 2017;3:47–51. doi: 10.1021/acscentsci.6b00313. PubMed DOI PMC

Ley S.V., Antonello A., Balskus E.P., Booth D.T., Christensen S.B., Cleator E., Gold H., Högenauer K., Hünger U., Myers R.M., et al. Synthesis of the thapsigargins. Proc. Natl. Acad. Sci. USA. 2004;101:12073–12078. doi: 10.1073/pnas.0403300101. PubMed DOI PMC

Crestey F., Toma M., Christensen S.B. Concise synthesis of thapsigargin from nortrilobolide. Tetrahedron Lett. 2015;56:5896–5898. doi: 10.1016/j.tetlet.2015.09.024. DOI

Doan N.T.Q., Crestey F., Olsen C.E., Christensen S.B. Chemo-and regioselective functionalization of nortrilobolide: Application for semisynthesis of the natural product 2-acetoxytrilobolide. J. Nat. Prod. 2015;78:1406–1414. doi: 10.1021/acs.jnatprod.5b00333. PubMed DOI

Andrews S.P., Ball M., Wierschem F., Cleator E., Oliver S., Hogenauer K., Simic O., Antonello A., Hunger U., Smith M.D., et al. Total synthesis of five thapsigargins: Guaianolide natural products exhibiting sub-nanomolar SERCA inhibition. Chemistry. 2007;13:5688–5712. doi: 10.1002/chem.200700302. PubMed DOI

Jakobsen C.M., Denmeade S.R., Isaacs J.T., Gady A., Olsen C.E., Christensen S.B. Design, synthesis, and pharmacological evaluation of thapsigargin analogues for targeting apoptosis to prostatic cancer cells. J. Med. Chem. 2001;44:4696–4703. doi: 10.1021/jm010985a. PubMed DOI

Wang D.S., Wagner M., Butt H.J., Wu S. Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue. Soft Matter. 2015;11:7656–7662. doi: 10.1039/C5SM01888A. PubMed DOI

Amorim M.H.R., Gil da Costa R.M., Lopes C., Bastos M.M.S.M. Sesquiterpene lactones: Adverse health effects and toxicity mechanisms. Crit. Rev. Toxicol. 2013;43:559–579. doi: 10.3109/10408444.2013.813905. PubMed DOI

Kishkentayeva A.S., Adekenov S.M., Drašar P.B. Production technologies of pharmacologically active sesquiterpene lactones. Eurasian Chem. Technol. J. 2018;20:325–333. doi: 10.18321/ectj766. DOI

de Melo M.M.R., Silvestre A.J.D., Silva C.M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids. 2014;92:115–176. doi: 10.1016/j.supflu.2014.04.007. DOI

Liang X., Grue-Soerensen G., Petersen A.K., Hogberg T. Semisynthesis of ingenol 3-angelate (PEP005): Efficient stereoconservative angeloylation of alcohols. Synlett. 2012;23:2647–2652. doi: 10.1055/s-0032-1317415. DOI

Jurášek M., Rimpelová S., Kmoníčková E., Drašar P., Ruml T. Tailor-made fluorescent trilobolide to study its biological relevance. J. Med. Chem. 2014;57:7947–7954. doi: 10.1021/jm500690j. PubMed DOI

Huml L., Jurášek M., Mikšátková P., Zimmermann T., Tomanová P., Buděšínský M., Rottnerová Z., Šimková M., Harmatha J., Kmoníčková E., et al. Immunoassay for determination of trilobolide. Steroids. 2017;117:105–111. doi: 10.1016/j.steroids.2016.08.019. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...