• This record comes from PubMed

Missing Selectivity of Targeted 4β-Phorbol Prodrugs Expected to be Potential Chemotherapeutics

. 2020 May 14 ; 11 (5) : 671-677. [epub] 20191223

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Targeting cytotoxic 4β-phorbol esters toward cancer tissue was attempted by conjugating a 4β-pborbol derivative with substrates for the proteases prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) expressed in cancer tissue. The hydrophilic peptide moiety was hypothesized to prevent penetration of the prodrugs into cells and prevent interaction with PKC. Cleavage of the peptide in cancer tumors was envisioned to release lipophilic cytotoxins, which subsequently penetrate into cancer cells. The 4β-phorbol esters were prepared from 4β-phorbol isolated from Croton tiglium seeds, while the peptides were prepared by solid-phase synthesis. Cellular assays revealed activation of PKC by the prodrugs and efficient killing of both peptidase positive as well as peptidase negative cells. Consequently no selectivity for enzyme expressing cells was found.

See more in PubMed

Bray F.; Ferlay J.; Soerjomataram I.; Siegel R. L.; Torre L. A.; Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-Cancer J. Clin. 2018, 68, 394–424. 10.3322/caac.21492. PubMed DOI

Hwang C.Overcoming docetaxel resistance in prostate cancer: a perspective review. Ther. Adv. Med. Oncol. 2012, 4, 329–340, 12.10.1177/1758834012449685 PubMed DOI PMC

Akinboye E. S.; Brennen W. N.; Denmeade S. R.; Isaacs J. T. Albumin-linked prostate-specific antigen-activated thapsigargin- and niclosamide-based molecular grenades targeting the microenvironment in metastatic castration-resistant prostate cancer. Asian J. Urol 2019, 6, 99–108. 10.1016/j.ajur.2018.11.004. PubMed DOI PMC

Chan K. S.; Koh C. G.; Li H. Y. Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis. 2012, 3, e411–11. 10.1038/cddis.2012.148. PubMed DOI PMC

Berges R. R.; Vukanovic J.; Epstein J. I.; CarMichel M.; Cisek L.; Johnson D. E.; Veltri R. W.; Walsh P. C.; Isaacs J. T. Implication of cell kinetic changes during the progression of human prostatic cancer. Clin. Cancer Res. 1995, 1, 473–480. PubMed PMC

Pinski J.; Parikh A.; Bova G. S.; Isaacs J. T. Therapeutic implications of enhanced G0/G1 checkpoint control induced by coculture of prostate cancer cells with osteoblasts. Cancer Res. 2001, 61, 6372–6376. PubMed

Inoue T.; Ogawa O. Role of signaling transduction pathways in development of castration-resistant prostate cancer. Prostate Cancer 2011, 2011, 1–7. 10.1155/2011/647987. PubMed DOI PMC

Cornford P.; Evans J.; Dodson A.; Parsons K.; Woolfenden A.; Neoptolemos J.; Foster C. S. Protein kinase C isoenzyme patterns characteristically modulated in early prostate cancer. Am. J. Pathol. 1999, 154, 137–144. 10.1016/S0002-9440(10)65260-1. PubMed DOI PMC

Villar J.; Arenas M. I.; MacCarthy C. M.; Blanquez M. J.; Tirado O. M.; Notario V. PCPH/ENTPD5 expression enhances the invasiveness of human prostate cancer cells by a Protein Kinase Cδ-Dependent Mechanism. Cancer Res. 2007, 67, 10859–10868. 10.1158/0008-5472.CAN-07-2041. PubMed DOI

Antal C. E.; Hudson A. M.; Kang E.; Zanca C.; Wirth C.; Stephenson N. L.; Trotter E. W.; Gallegos L. L.; Miller C. J.; Furnari F. B.; Hunter T.; Brognard J.; Newton A. C. Cancer-Associated Protein Kinase C Mutations Reveal Kinase’s Role as Tumor Suppressor. Cell (Cambridge, MA, U. S.) 2015, 160, 489–502. 10.1016/j.cell.2015.01.001. PubMed DOI PMC

Pandian S. S.; Sneddon A. A.; Bestwick C. S.; McClinton S.; Grant I.; Wahle K. W. J.; Heys S. D. Fatty Acid regulation of protein kinase C isoforms in prostate cancer cells. Biochem. Biophys. Res. Commun. 2001, 283, 806–812. 10.1006/bbrc.2001.4873. PubMed DOI

Rusnak J. M.; Lazo J. S. Downregulation of protein kinase C suppresses induction of apoptosis in human prostatic carcinoma cells. Exp. Cell Res. 1996, 224, 189–99. 10.1006/excr.1996.0127. PubMed DOI

Lamm M. L. G.; Long D. D.; Goodwin S. M.; Lee C. Transforming growth factor-β1 inhibits membrane association of protein kinase Cα in a human prostate cancer cell line, PC3. Endocrinology 1997, 138, 4657–4664. 10.1210/endo.138.11.5531. PubMed DOI

Fujii T.; Garcia-Bermejo M. L.; Bernabo J. L.; Caamano J.; Ohba M.; Kuroki T.; Li L.; Yuspa S. H.; Kazanietz M. G. Involvement of protein kinase C delta (PKCdelta) in phorbol ester-induced apoptosis in LNCaP prostate cancer cells. Lack of proteolytic cleavage of PKCdelta. J. Biol. Chem. 2000, 275, 7574–82. 10.1074/jbc.275.11.7574. PubMed DOI

Kharait S.; Dhir R.; Lauffenburger D.; Wells A. Protein kinase Cdelta signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells. Biochem. Biophys. Res. Commun. 2006, 343, 848–56. 10.1016/j.bbrc.2006.03.044. PubMed DOI

Aziz M. H.; Manoharan H. T.; Church D. R.; Dreckschmidt N. E.; Zhong W.; Oberley T. D.; Wilding G.; Verma A. K. Protein Kinase Cε interacts with signal transducers and activators of transcription 3 (Stat3), phosphorylates Stat3 Ser727, and regulates its constitutive activation in Prostate cancer. Cancer Res. 2007, 67, 8828–8838. 10.1158/0008-5472.CAN-07-1604. PubMed DOI

Gundimeda U.; Schiffman J. E.; Chhabra D.; Wong J.; Wu A.; Gopalakrishna R. Locally Generated Methylseleninic Acid Induces Specific Inactivation of Protein Kinase C Isoenzymes: relevance to selenium-induced apoptosis in prostate cancer cells. J. Biol. Chem. 2008, 283, 34519–34531. 10.1074/jbc.M807007200. PubMed DOI PMC

Sarveswaran S.; Gautam S. C.; Ghosh J. Wedelolactone, a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCε without inhibiting Akt. Int. J. Oncol. 2012, 41, 2191–2199. 10.3892/ijo.2012.1664. PubMed DOI PMC

Sarveswaran S.; Thamilselvan V.; Brodie C.; Ghosh J. Inhibition of 5-lipoxygenase triggers apoptosis in prostate cancer cells via down-regulation of protein kinase C-epsilon. Biochim. Biophys. Acta, Mol. Cell Res. 2011, 1813, 2108–2117. 10.1016/j.bbamcr.2011.07.015. PubMed DOI PMC

Hafeez B. B.; Zhong W.; Fischer J. W.; Mustafa A.; Shi X.; Meske L.; Hong H.; Cai W.; Havighurst T.; Kim K. M.; Verma A. K. Plumbagin, a medicinal plant (Plumbago zeylanica)-derived 1,4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3M-luciferase cells in an orthotopic xenograft mouse model. Mol. Oncol. 2013, 7, 428–439. 10.1016/j.molonc.2012.12.001. PubMed DOI PMC

Gobbi G.; Mirandola P.; Carubbi C.; Micheloni C.; Malinverno C.; Lunghi P.; Bonati A.; Vitale M. Phorbol ester-induced PKCε down-modulation sensitizes AML cells to TRAIL-induced apoptosis and cell differentiation. Blood 2009, 113, 3080–3087. 10.1182/blood-2008-03-143784. PubMed DOI

Schaar D.; Goodell L.; Aisner J.; Cui X. X.; Han Z. T.; Chang R.; Martin J.; Grospe S.; Dudek L.; Riley J.; Manago J.; Lin Y.; Rubin E. H.; Conney A.; Strair R. K. A phase I clinical trial of 12- O-tetradecanoylphorbol-13-acetate for patients with relapsed/refractory malignancies. Cancer Chemother. Pharmacol. 2006, 57, 789–795. 10.1007/s00280-005-0125-1. PubMed DOI

Han Z. T.; Tong Y. K.; He L. M.; Zhang Y.; Sun J. Z.; Wang T. Y.; Zhang H.; Cui Y. L.; Newmark H. L.; Conney A. H.; Chang R. L. 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced increase in depressed white blood cell counts in patients treated with cytotoxic cancer chemotherapeutic drugs. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 5362–5365. 10.1073/pnas.95.9.5362. PubMed DOI PMC

Miller J.; Campbell J.; Blum A.; Reddell P.; Gordon V.; Schmidt P.; Lowden S. Dose Characterization of the Investigational Anticancer Drug Tigilanol Tiglate (EBC-46) in the Local Treatment of Canine Mast Cell Tumors. Front Vet Sci. 2019, 6, 106.10.3389/fvets.2019.00106. PubMed DOI PMC

Tzogani K.; Pignatti F.; Nagercoil N.; Hemmings Robert J.; Samir B.; Gardette J.; Demolis P.; Salmonson T. The European Medicines Agency approval of ingenol mebutate (Picato) for the cutaneous treatment of non-hyperkeratotic, non-hypertrophic actinic keratosis in adults: Summary of the scientific assessment of the Committee for Medicinal Products for Human Use (CHMP). Eur. J. Dermatol. 2014, 24, 457–463. 10.1684/ejd.2014.2368. PubMed DOI

Ersvaer E.; Kittang A. O.; Hampson P.; Sand K.; Gjertsen B. T.; Lord J. M.; Bruserud O. The protein kinase C agonist PEP005 (ingenol 3-angelate) in the treatment of human cancer: a balance between efficacy and toxicity. Toxins 2010, 2, 174–194. 10.3390/toxins2010174. PubMed DOI PMC

Aloysius H.; Hu L. Targeted Prodrug Approaches for Hormone Refractory Prostate Cancer. Med. Res. Rev. 2015, 35, 554–585. 10.1002/med.21333. PubMed DOI

Ishii K.; Otsuka T.; Iguchi K.; Usui S.; Yamamoto H.; Sugimura Y.; Yoshikawa K.; Hayward S. W.; Hirano K. Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Lett. (N. Y., NY, U. S.) 2004, 207, 79–87. 10.1016/j.canlet.2003.09.029. PubMed DOI

Denmeade S. R.; Jakobsen C. M.; Janssen S.; Khan S. R.; Garrett E. S.; Lilja H.; Christensen S. B.; Isaacs J. T. Prostate-Specific Antigen-Activated Thapsigargin Prodrug as Targeted Therapy for Prostate Cancer. J. Natl. Cancer Inst. 2003, 95, 990–1000. 10.1093/jnci/95.13.990. PubMed DOI

Denmeade S. R.; Isaacs J. T. Engineering enzymatically activated ″molecular grenades″ for cancer. Oncotarget 2012, 3, 666–667. 10.18632/oncotarget.562. PubMed DOI PMC

Denmeade S. R.; Nagy A.; Gao J.; Lilja H.; Schally A. V.; Isaacs J. T. Enzymatic activation of a doxorubicin-peptide prodrug by prostate-specific antigen. Cancer Res. 1998, 58, 2537–2540. PubMed

Denmeade S. R.; Isaacs J. T.; Buckley J. T.. Proaerolysin containing protease activation sequences and methods use for treatment of prostate cancer. Eur. Pat. 2 518 142 B1, July 15, 2015.

Rajasekaran A. K.; Anilkumar G.; Christiansen J. J. Is prostate-specific membrane antigen a multifunctional protein?. Am. J. Physiol. 2005, 288, C975–C981. 10.1152/ajpcell.00506.2004. PubMed DOI

Williams S. A.; Singh P.; Isaacs J. T.; Denmeade S. R. Does PSA play a role as a promoting agent during the initiation and/or progression of prostate cancer?. Prostate 2007, 67, 312–329. 10.1002/pros.20531. PubMed DOI

Lovgren J.; Airas K.; Lilja H. Enzymatic action of human glandular kallikrein 2 (hK2). Substrate specificity and regulation by Zn2+ and extracellular protease inhibitors. Eur. J. Biochem. 1999, 262, 781–789. 10.1046/j.1432-1327.1999.00433.x. PubMed DOI

Janssen S.; Rosen D. M.; Ricklis R. M.; Dionne C. A.; Lilja H.; Christensen S. B.; Isaacs J. T.; Denmeade S. R. Pharmacokinetics, biodistribution, and antitumor efficacy of a human glandular kallikrein 2 (hK2)-activated thapsigargin prodrug. Prostate 2006, 66, 358–368. 10.1002/pros.20348. PubMed DOI

Denmeade S. R.; Mhaka A. M.; Rosen D. M.; Brennen W. N.; Dalrymple S.; Dach I.; Olesen C.; Gurel B.; DeMarzo A. M.; Wilding G.; Carducci M. A.; Dionne C. A.; Moeller J. V.; Nissen P.; Christensen S. B.; Isaacs J. T. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Sci. Transl. Med. 2012, 4, 140ra86–13. 10.1126/scitranslmed.3003886. PubMed DOI PMC

Mahalingam D.; Mahalingam D.; Arora S. P.; Sarantopoulos J.; Peguero J.; Campos L.; Cen P.; Rowe J.; Allgood V.; Tubb B.. A Phase II, Multicenter, Single-Arm Study of Mipsagargin (G-202) as a Second-Line Therapy Following Sorafenib for Adult Patients with Progressive Advanced Hepatocellular Carcinoma. Cancers 2019, 11, 833.10.3390/cancers11060833 PubMed DOI PMC

Boije af Gennas G.; Talman V.; Aitio O.; Ekokoski E.; Finel M.; Tuominen R. K.; Yli-Kauhaluoma J. Design, Synthesis, and Biological Activity of Isophthalic Acid Derivatives Targeted to the C1 Domain of Protein Kinase C. J. Med. Chem. 2009, 52, 3969–3981. 10.1021/jm900229p. PubMed DOI

Bennett N. C.; Hooper J. D.; Johnson D. W.; Gobe G. C. Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines. Prostate (Hoboken, NJ, U. S.) 2014, 74, 478–487. 10.1002/pros.22767. PubMed DOI

Ghosh A.; Wang X.; Klein E.; Heston W. D. W. Novel role of prostate-specific membrane antigen in suppressing prostate cancer invasiveness. Cancer Res. 2005, 65, 727–731. 10.21236/ADA474688. PubMed DOI

Tanaka Y.; Gavrielides M. V.; Mitsuuchi Y.; Fujii T.; Kazanietz M. G. Protein Kinase C Promotes Apoptosis in LNCaP Prostate Cancer Cells through Activation of p38 MAPK and Inhibition of the Akt Survival Pathway. J. Biol. Chem. 2003, 278, 33753–33762. 10.1074/jbc.M303313200. PubMed DOI

Chang L.; Karin M. Mammalian MAP kinase signalling cascades. Nature (London, U. K.) 2001, 410, 37–40. 10.1038/35065000. PubMed DOI

Schonwasser D. C.; Marajs R. M.; Marshall C. J.; Parker P. J. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol. Cell. Biol. 1998, 18, 790–798. 10.1128/MCB.18.2.790. PubMed DOI PMC

Fuerstenberger G.; Berry D. L.; Sorg B.; Marks F. Skin tumor promotion by phorbol esters is a two-stage process. Proc. Natl. Acad. Sci. U. S. A. 1981, 78, 7722–6. 10.1073/pnas.78.12.7722. PubMed DOI PMC

Itsumi M.; Shiota M.; Yokomizo A.; Takeuchi A.; Kashiwagi E.; Dejima T.; Inokuchi J.; Tatsugami K.; Uchiumi T.; Naito S. PMA induces androgen receptor downregulation and cellular apoptosis in prostate cancer cells. J. Mol. Endocrinol. 2014, 53, 31–41. 10.1530/JME-13-0303. PubMed DOI

Liu T.; Wu L. Y.; Fulton M. D.; Johnson J. M.; Berkman C. E. Prolonged androgen deprivation leads to downregulation of androgen receptor and prostate-specific membrane antigen in prostate cancer cells. Int. J. Oncol. 2012, 41, 2087–2092. 10.3892/ijo.2012.1649. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...