Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34571726
PubMed Central
PMC8468923
DOI
10.3390/biology10090849
PII: biology10090849
Knihovny.cz E-zdroje
- Klíčová slova
- antibodies, antimitotics, combinatorial treatment, cyclophosphamide, dacarbazine, doxorubicin, etoposide, procarbazine, topotecan, vinca alkaloids,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Treatment of blood malignancies and other cancer diseases has been mostly unfeasible, so far. Therefore, novel treatment regimens should be developed and the currently used ones should be further elaborated. A stable component in various cancer treatment regimens consists of vincristine, an antimitotic compound of natural origin. Despite its strong anticancer activity, mostly, it cannot be administered as monotherapy due to its unspecific action and severe side effects. However, vincristine is suitable for combination therapy. Multidrug treatment regimens including vincristine are standardly applied in the therapy of non-Hodgkin lymphoma and other malignancies, in which it is combined with drugs of different mechanisms of action, mainly with DNA-interacting compounds (for example cyclophosphamide), or drugs interfering with DNA synthesis (for example methotrexate). Besides, co-administration of vincristine with monoclonal antibodies has also emerged, the typical example of which is the anti-CD20 antibody rituximab. Although in some combination anticancer therapies, vincristine has been replaced with other drugs exhibiting lesser side effects, though, in most cases, it is still irreplaceable. This is strongly evidenced by the number of active clinical trials evaluating vincristine in combination cancer therapy. Therefore, in this article, we have reviewed the most common cancer treatment regimens employing vincristine and bring an overview of current trends in the clinical development of this compound.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Neuss N., Gorman M., Boaz H.E., Cone N.J. Vinca alkaloids. XI.1Structures of leurocristine (LCR) and vincaleukoblastine (VLB)2. J. Am. Chem. Soc. 1962;84:1509–1510. doi: 10.1021/ja00867a049. DOI
Freireich E.J., Wiernik P.H., Steensma D.P. The leukemias: A half-century of discovery. J. Clin. Oncol. 2014;32:3463–3469. doi: 10.1200/JCO.2014.57.1034. PubMed DOI
Škubník J., Jurášek M., Ruml T., Rimpelová S. Mitotic poisons in research and medicine. Molecules. 2020;25:4632. doi: 10.3390/molecules25204632. PubMed DOI PMC
Field J.J., Waight A.B., Senter P.D. A previously undescribed tubulin binder. Proc. Natl. Acad. Sci. USA. 2014;111:13684–13685. doi: 10.1073/pnas.1414572111. PubMed DOI PMC
Himes R.H. Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol. Ther. 1991;51:257–267. doi: 10.1016/0163-7258(91)90081-V. PubMed DOI
Jordan M.A., Thrower D., Wilson L. Mechanism of inhibition of cell proliferation by vinca alkaloids. Cancer Res. 1991;51:2212–2222. PubMed
Boussios S., Pentheroudakis G., Katsanos K., Pavlidis N. Systemic treatment-induced gastrointestinal toxicity: Incidence, clinical presentation and management. Ann. Gastroenterol. 2012;25:106–118. PubMed PMC
Botchkarev V.A. Molecular mechanisms of chemotherapy-induced hair loss. J. Investig. Dermatol. Symp. Proc. 2003;8:72–75. doi: 10.1046/j.1523-1747.2003.12175.x. PubMed DOI
Maxwell M.B., Maher K.E. Chemotherapy-induced myelosuppression. Semin. Oncol. Nurs. 1992;8:113–123. doi: 10.1016/0749-2081(92)90027-Z. PubMed DOI
Kaufman I.A., Kung F.H., Koenig H.M., Giammona S.T. Overdosage with vincristine. J. Pediatr. 1976;89:671–674. doi: 10.1016/S0022-3476(76)80416-7. PubMed DOI
Cantwell B.M.J., Begent R.H.J., Rubens R.D. Augmentation of vincristine-induced thrombocytosis by norethisterone. Eur. J. Cancer. 1965;15:1065–1069. doi: 10.1016/0014-2964(79)90295-0. PubMed DOI
Buchanan G.R., Buchsbaum H.J., O’Banion K., Gojer B. Extravasation of dactinomycin, vincristine, and cisplatin: Studies in an animal model. Med. Pediatr. Oncol. 1985;13:375–380. doi: 10.1002/mpo.2950130615. PubMed DOI
Gidding C.E., Kellie S.J., Kamps W.A., de Graaf S.S. Vincristine revisited. Crit. Rev. Oncol. Hematol. 1999;29:267–287. doi: 10.1016/S1040-8428(98)00023-7. PubMed DOI
Verma P., Devaraj J., Skiles J.L., Sajdyk T., Ho R.H., Hutchinson R., Wells E., Li L., Renbarger J., Cooper B., et al. A metabolomics approach for early prediction of vincristine-induced peripheral neuropathy. Sci. Rep. 2020;10:9659. doi: 10.1038/s41598-020-66815-y. PubMed DOI PMC
Stockstill K., Doyle T.M., Yan X., Chen Z., Janes K., Little J.W., Braden K., Lauro F., Giancotti L.A., Harada C.M., et al. Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J. Exp. Med. 2018;215:1301–1313. doi: 10.1084/jem.20170584. PubMed DOI PMC
Kramer R., Bielawski J., Kistner-Griffin E., Othman A., Alecu I., Ernst D., Kornhauser D., Hornemann T., Spassieva S. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB J. 2015;29:4461–4472. doi: 10.1096/fj.15-272567. PubMed DOI PMC
Janes K., Little J.W., Li C., Bryant L., Chen C., Chen Z., Kamocki K., Doyle T., Snider A., Esposito E., et al. The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J. Biol. Chem. 2014;289:21082–21097. doi: 10.1074/jbc.M114.569574. PubMed DOI PMC
Starobova H., Monteleone M., Adolphe C., Batoon L., Sandrock C.J., Tay B., Deuis J.R., Smith A.V., Mueller A., Nadar E.I., et al. Vincristine-induced peripheral neuropathy is driven by canonical NLRP3 activation and IL-1β release. J. Exp. Med. 2021;218:e20201452. doi: 10.1084/jem.20201452. PubMed DOI PMC
Linschoten M., Kamphuis J.A.M., Van Rhenen A., Bosman L.P., Cramer M.J., Doevendans P.A., Teske A.J., Asselbergs F.W. Cardiovascular adverse events in patients with non-Hodgkin lymphoma treated with first-line cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP with rituximab (R-CHOP): A systematic review and meta-analysis. Lancet Haematol. 2020;7:E295–E308. doi: 10.1016/S2352-3026(20)30031-4. PubMed DOI
Emadi A., Jones R.J., Brodsky R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol. 2009;6:638–647. doi: 10.1038/nrclinonc.2009.146. PubMed DOI
Carvalho C., Santos R.X., Cardoso S., Correia S., Oliveira P.J., Santos M.S., Moreira P.I. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem. 2009;16:3267–3285. doi: 10.2174/092986709788803312. PubMed DOI
Barone A., Chi D.-C., Theoret M.R., Chen H., He K., Kufrin D., Helms W.S., Subramaniam S., Zhao H., Patel A., et al. FDA approval summary: Trabectedin for unresectable or metastatic liposarcoma or leiomyosarcoma following an anthracycline-containing regimen. Clin. Cancer Res. 2017;23:7448–7453. doi: 10.1158/1078-0432.CCR-17-0898. PubMed DOI
Lossignol D. A little help from steroids in oncology. J. Transl. Int. Med. 2016;4:52–54. doi: 10.1515/jtim-2016-0011. PubMed DOI PMC
Coiffier B., Lepage E., Briere J., Herbrecht R., Tilly H., Bouabdallah R., Morel P., Van den Neste E., Salles G., Gaulard P., et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002;346:235–242. doi: 10.1056/NEJMoa011795. PubMed DOI
Mohammed R., Milne A., Kayani K., Ojha U. How the discovery of rituximab impacted the treatment of B-cell non-Hodgkin’s lymphomas. J. Blood Med. 2019;10:71–84. doi: 10.2147/JBM.S190784. PubMed DOI PMC
Mondello P., Mian M. Frontline treatment of diffuse large B-cell lymphoma: Beyond R-CHOP. Hematol. Oncol. 2019;37:333–344. doi: 10.1002/hon.2613. PubMed DOI
Baldwin E.L., Osheroff N. Etoposide, topoisomerase II and cancer. Curr. Med. Chem. Anticancer Agents. 2005;5:363–372. doi: 10.2174/1568011054222364. PubMed DOI
Dunleavy K., Fanale M.A., Abramson J.S., Noy A., Caimi P.F., Pittaluga S., Parekh S., Lacasce A., Hayslip J.W., Jagadeesh D., et al. Dose-adjusted EPOCH-R (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab) in untreated aggressive diffuse large B-cell lymphoma with MYC rearrangement: A prospective, multicentre, single-arm phase 2 study. Lancet Haematol. 2018;5:E609–E617. doi: 10.1016/S2352-3026(18)30177-7. PubMed DOI PMC
Magrath I., Adde M., Shad A., Venzon D., Seibel N., Gootenberg J., Neely J., Arndt C., Nieder M., Jaffe E., et al. Adults and children with small non-cleaved-cell lymphoma have a similar excellent outcome when treated with the same chemotherapy regimen. J. Clin. Oncol. 1996;14:925–934. doi: 10.1200/JCO.1996.14.3.925. PubMed DOI
Roschewski M., Dunleavy K., Abramson J.S., Powell B.L., Link B.K., Patel P., Bierman P.J., Jagadeesh D., Mitsuyasu R.T., Peace D., et al. Multicenter study of risk-adapted therapy with dose-adjusted EPOCH-R in adults with untreated burkitt lymphoma. J. Clin. Oncol. 2020;38:2519–2529. doi: 10.1200/JCO.20.00303. PubMed DOI PMC
Shah N.N., Szabo A., Huntington S.F., Epperla N., Reddy N., Ganguly S., Vose J., Obiozor C., Faruqi F., Kovach A.E., et al. R-CHOP versus dose-adjusted R-EPOCH in frontline management of primary mediastinal B-cell lymphoma: A multi-centre analysis. Br. J. Haematol. 2018;180:534–544. doi: 10.1111/bjh.15051. PubMed DOI
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=etoposide+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=lenalidomide+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=ibrutinib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=chidamide+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=nelarabine+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=azacitidine+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=decitabine+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=venetoclax+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=dasatinib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=ponatinib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=romidepsin+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=vorinostat+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=bortezomib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=ixazomib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=acalabrutinib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=zanubrutinib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=umbralisib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=parsaclisib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=pralatrexate+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=duvelisib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=copanlisib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03147885.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=iberdomide+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=TAK-659+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
ClinicalTrials.gov. [(accessed on 28 May 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=&term=carfilzomib+vincristine+cyclophosphamide+hydroxydaunorubicin+prednisone&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=f.
Graf S.A., Lynch R.C., Coffey D.G., Shadman M., Kanan S., Libby E.N., III, Warren E.H., Godwin C., Gooley T., Fromm J.R., et al. Ixazomib in previously untreated indolent B-cell non-hodgkin lymphoma. Blood. 2018;132:5326. doi: 10.1182/blood-2018-99-117572. DOI
Leonard J.P., Kolibaba K.S., Reeves J.A., Tulpule A., Flinn I.W., Kolevska T., Robles R., Flowers C.R., Collins R., DiBella N.J., et al. Randomized phase II study of R-CHOP with or without bortezomib in previously untreated patients with non-germinal center B-cell-like diffuse large B-cell lymphoma. J. Clin. Oncol. 2017;35:3538–3546. doi: 10.1200/JCO.2017.73.2784. PubMed DOI
Robak T., Jin J., Pylypenko H., Verhoef G., Siritanaratkul N., Drach J., Raderer M., Mayer J., Pereira J., Tumyan G., et al. Frontline bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP) versus rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in transplantation-ineligible patients with newly diagnosed mantle cell lymphoma: Final overall survival results of a randomised, open-label, phase 3 study. Lancet Oncol. 2018;19:1449–1458. doi: 10.1016/S1470-2045(18)30685-5. PubMed DOI
ClinicalTrials.gov. [(accessed on 23 June 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=cancer&term=vincristine&cntry=&state=&city=&dist=&Search=Search&recrs=b.
ClinicalTrials.gov. [(accessed on 23 June 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=cancer&term=vincristine&cntry=&state=&city=&dist=&Search=Search&recrs=a.
ClinicalTrials.gov. [(accessed on 23 June 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=cancer&term=vincristine&cntry=&state=&city=&dist=&Search=Search&recrs=f.
ClinicalTrials.gov. [(accessed on 23 June 2021)]; Available online: https://clinicaltrials.gov/ct2/results?cond=cancer&term=vincristine&cntry=&state=&city=&dist=&Search=Search&recrs=d.
Goodsell D.S. The molecular perspective: Methotrexate. Stem Cells. 1999;17:314–315. doi: 10.1002/stem.170314. PubMed DOI
Costanzi J.J., Coltman C.A., Jr., Col L. Combination chemotherapy using cyclophosphamide, vincristine, methotrexate and 5-fluorouracil in solid tumors. Cancer. 1969;23:589–596. doi: 10.1002/1097-0142(196903)23:3<589::AID-CNCR2820230310>3.0.CO;2-A. PubMed DOI
Bearden J.D., 3rd, Coltman C.A., Jr., Moon T.E., Costanzi J.J., Saiki J.H., Balcerzak S.P., Rivkin S.E., Morrison F.S., Lane M., Spigel S.C. Combination chemotherapy using cyclophosphamide, vincristine, methotrexate, 5-fluorouracil, and prednisone in solid tumors. Cancer. 1977;39:21–26. doi: 10.1002/1097-0142(197701)39:1<21::AID-CNCR2820390105>3.0.CO;2-I. PubMed DOI
Fyfe M.J., Goldman I.D. Characteristics of vincristine-induced augmentation of methotrexate uptake in ehrlich ascites tumor-cells. J. Biol. Chem. 1973;248:5067–5073. doi: 10.1016/S0021-9258(19)43672-7. PubMed DOI
Mulder J.H., van Putten L.M. Vincristine-methotrexate combination chemotherapy and the influence of weight loss on experimental tumour growth. Cancer Chemother. Pharmacol. 1979;3:111–116. doi: 10.1007/BF00254981. PubMed DOI
Chello P.L., Sirotnak F.M., Dorick D.M., Moccio D.M. Schedule-dependent synergism of methotrexate and vincristine against murine L1210 leukemia. Cancer Treat Rep. 1979;63:1889–1894. PubMed
Kano Y., Ohnuma T., Okano T., Holland J.F. Effects of vincristine in combination with methotrexate and other antitumor agents in human acute lymphoblastic leukemia cells in culture. Cancer Res. 1988;48:351–356. PubMed
Freeman T., Legasto C.S., Schickli M.A., McLaughlin E.M., Giglio P., Puduvalli V., Gonzalez J. High-dose methotrexate-based regimens with or without vincristine for the treatment of primary central nervous system lymphoma. Neurooncol. Adv. 2020;2:vdaa077. doi: 10.1093/noajnl/vdaa077. PubMed DOI PMC
Shimada K., Yamaguchi M., Atsuta Y., Matsue K., Sato K., Kusumoto S., Nagai H., Takizawa J., Fukuhara N., Nagafuji K., et al. Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone combined with high-dose methotrexate plus intrathecal chemotherapy for newly diagnosed intravascular large B-cell lymphoma (PRIMEUR-IVL): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21:593–602. doi: 10.1016/S1470-2045(20)30059-0. PubMed DOI
Alifrangis C., Agarwal R., Short D., Fisher R.A., Sebire N.J., Harvey R., Savage P.M., Seckl M.J. EMA/CO for high-risk gestational trophoblastic neoplasia: Good outcomes with induction low-dose etoposide-cisplatin and genetic analysis. J. Clin. Oncol. 2013;31:280–286. doi: 10.1200/JCO.2012.43.1817. PubMed DOI
Bower M., Newlands E.S., Holden L., Short D., Brock C., Rustin G.J., Begent R.H., Bagshawe K.D. EMA/CO for high-risk gestational trophoblastic tumors: Results from a cohort of 272 patients. J. Clin. Oncol. 1997;15:2636–2643. doi: 10.1200/JCO.1997.15.7.2636. PubMed DOI
Newlands E.S., Bagshawe K.D., Begent R.H., Rustin G.J., Holden L. Results with the EMA/CO (etoposide, methotrexate, actinomycin D, cyclophosphamide, vincristine) regimen in high risk gestational trophoblastic tumours, 1979 to 1989. Br. J. Obstet. Gynaecol. 1991;98:550–557. doi: 10.1111/j.1471-0528.1991.tb10369.x. PubMed DOI
Singh K., Gillett S., Ireson J., Hills A., Tidy J.A., Coleman R.E., Hancock B.W., Winter M.C. M-EA (methotrexate, etoposide, dactinomycin) and EMA-CO (methotrexate, etoposide, dactinomycin/cyclophosphamide, vincristine) regimens as first-line treatment of high-risk gestational trophoblastic neoplasia. Int. J. Cancer. 2021;148:2335–2344. doi: 10.1002/ijc.33403. PubMed DOI
Hu Q., Sun W., Wang C., Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev. 2016;98:19–34. doi: 10.1016/j.addr.2015.10.022. PubMed DOI PMC
Avendaño C., Menéndez J.C., editors. Medicinal Chemistry of Anticancer Drugs. 2nd ed. Elsevier; Boston, MA, USA: 2015. DNA alkylating agents; pp. 197–241. DOI
Solimando D.A., Jr., Waddell J.A. Procarbazine, lomustine, and vincristine (PCV) regimen for central nervous system tumors. Hosp. Pharm. 2017;52:98–104. doi: 10.1310/hpj5202-98. PubMed DOI PMC
Lassman A.B. Procarbazine, lomustine and vincristine or temozolomide: Which is the better regimen? CNS Oncol. 2015;4:341–346. doi: 10.2217/cns.15.36. PubMed DOI PMC
Parasramka S., Talari G., Rosenfeld M., Guo J., Villano J.L. Procarbazine, lomustine and vincristine for recurrent highgrade glioma. Cochrane Database Syst. Rev. 2017;7:CD011773. doi: 10.1002/14651858.CD011773.pub2. PubMed DOI PMC
Esteyrie V., Dehais C., Martin E., Carpentier C., Uro-Coste E., Figarella-Branger D., Bronniman C., Pouessel D., Ciron D.L., Ducray F., et al. Radiotherapy plus procarbazine, lomustine, and vincristine versus radiotherapy plus temozolomide for IDH-mutant anaplastic astrocytoma: A retrospective multicenter analysis of the French POLA cohort. Oncologist. 2021;26:e838–e846. doi: 10.1002/onco.13701. PubMed DOI PMC
Bell E.H., Zhang P.X., Shaw E.G., Buckner J.C., Barger G.R., Bullard D.E., Mehta M.P., Gilbert M.R., Brown P.D., Stelzer K.J., et al. Comprehensive genomic analysis in NRG oncology/RTOG 9802: A phase III trial of radiation versus dadiation plus procarbazine, lomustine (CCNU), and vincristine in high-risk low-grade glioma. J. Clin. Oncol. 2020;38:3407–3417. doi: 10.1200/JCO.19.02983. PubMed DOI PMC
Cairncross J.G., Wang M.H., Jenkins R.B., Shaw E.G., Giannini C., Brachman D.G., Buckner J.C., Fink K.L., Souhami L., Laperriere N.J., et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J. Clin. Oncol. 2014;32:783–790. doi: 10.1200/JCO.2013.49.3726. PubMed DOI PMC
Canellos G.P., Arseneau J.C., DeVita V.T., Whang-Peng J., Johnson R.E. Second malignancies complicating Hodgkin’s disease in remission. Lancet. 1975;1:47–49. doi: 10.1016/s0140-6736(75)92007-3. PubMed DOI
Henry-Amar M. Second cancer after the treatment for Hodgkin’s disease: A report from the International Database on Hodgkin’s Disease. Ann Oncol. 1992;3:117–128. doi: 10.1093/annonc/3.suppl_4.S117. PubMed DOI
Rheingold S.R., Neugut A.I., Meadows A.T. In: Holland-Frei Cancer Medicine. 6th ed. Kufe D.W., Pollock R.E., Weichselbaum R.R., Bast R.C., Gansler T.S., Holland J.F., Frei E., editors. BC Decker; Hamilton, ON, Canada: 2003. [(accessed on 27 May 2021)]. Therapy-Related Secondary Cancers; Available online: https://www.ncbi.nlm.nih.gov/books/NBK13999/
Averbuch S.D., Steakley C.S., Young R.C., Gelmann E.P., Goldstein D.S., Stull R., Keiser H.R. Malignant pheochromocytoma: Effective treatment with a combination of cyclophosphamide, vincristine, and dacarbazine. Ann. Intern. Med. 1988;109:267–273. doi: 10.7326/0003-4819-109-4-267. PubMed DOI
Deutschbein T., Fassnacht M., Weismann D., Reincke M., Mann K., Petersenn S. Treatment of malignant phaeochromocytoma with a combination of cyclophosphamide, vincristine and dacarbazine: Own experience and overview of the contemporary literature. Clin. Endocrinol. 2015;82:84–90. doi: 10.1111/cen.12590. PubMed DOI
Niemeijer N.D., Alblas G., van Hulsteijn L.T., Dekkers O.M., Corssmit E.P. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: Systematic review and meta-analysis. Clin. Endocrinol. (Oxf.) 2014;81:642–651. doi: 10.1111/cen.12542. PubMed DOI
Asai S., Katabami T., Tsuiki M., Tanaka Y., Naruse M. Controlling tumor progression with cyclophosphamide, vincristine, and dacarbazine treatment improves survival in patients with metastatic and unresectable malignant pheochromocytomas/paragangliomas. Horm Cancer. 2017;8:108–118. doi: 10.1007/s12672-017-0284-7. PubMed DOI PMC
Deutschbein T., Matuszczyk A., Moeller L.C., Unger N., Yuece A., Lahner H., Mann K., Petersenn S. Treatment of advanced medullary thyroid carcinoma with a combination of cyclophosphamide, vincristine, and dacarbazine: A single-center experience. Exp. Clin. Endocrinol. Diabet. 2011;119:540–543. doi: 10.1055/s-0031-1279704. PubMed DOI
Andre M.P.E., Carde P., Viviani S., Bellei M., Fortpied C., Hutchings M., Gianni A.M., Brice P., Casasnovas O., Gobbi P.G., et al. Long-term overall survival and toxicities of ABVD vs BEACOPP in advanced Hodgkin lymphoma: A pooled analysis of four randomized trials. Cancer Med. 2020;9:6565–6575. doi: 10.1002/cam4.3298. PubMed DOI PMC
Russell J., Collins A., Fowler A., Karanth M., Saha C., Docherty S., Padayatty J., Maw K., Lentell I., Cooke L., et al. Advanced Hodgkin lymphoma in the East of England: A 10-year comparative analysis of outcomes for real-world patients treated with ABVD or escalated-BEACOPP, aged less than 60 years, compared with 5-year extended follow-up from the RATHL trial. Ann. Hematol. 2021;100:1049–1058. doi: 10.1007/s00277-021-04460-9. PubMed DOI PMC
Connors J.M., Jurczak W., Straus D.J., Ansell S.M., Kim W.S., Gallamini A., Younes A., Alekseev S., Illés Á., Picardi M., et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N. Engl. J. Med. 2017;378:331–344. doi: 10.1056/NEJMoa1708984. PubMed DOI PMC
Eichenauer D.A., Plütschow A., Kreissl S., Sökler M., Hellmuth J.C., Meissner J., Mathas S., Topp M.S., Behringer K., Klapper W., et al. Incorporation of brentuximab vedotin into first-line treatment of advanced classical Hodgkin’s lymphoma: Final analysis of a phase 2 randomised trial by the German Hodgkin Study Group. Lancet Oncol. 2017;18:1680–1687. doi: 10.1016/S1470-2045(17)30696-4. PubMed DOI
Metzger M.L., Link M.P., Billett A.L., Flerlage J., Lucas J.T., Mandrell B.N., Ehrhardt M.J., Bhakta N., Yock T.I., Friedmann A.M., et al. Excellent outcome for pediatric patients with high-risk Hodgkin lymphoma treated with brentuximab vedotin and risk-adapted residual node radiation. J. Clin. Oncol. 2021;39:2276–2283. doi: 10.1200/JCO.20.03286. PubMed DOI PMC
Raymakers A.J.N., Costa S., Cameron D., Regier D.A. Cost-effectiveness of brentuximab vedotin in advanced stage Hodgkin’s lymphoma: A probabilistic analysis. BMC Cancer. 2020;20:992. doi: 10.1186/s12885-020-07374-3. PubMed DOI PMC
Amin M.S.A., Brunckhorst O., Scott C., Wrench D., Gleeson M., Kazmi M., Ahmed K. ABVD and BEACOPP regimens’ effects on fertility in young males with Hodgkin lymphoma. Clin. Transl. Oncol. 2021;23:1067–1077. doi: 10.1007/s12094-020-02483-8. PubMed DOI PMC
Policiano C., Subira J., Aguilar A., Monzo S., Iniesta I., Rubio J.M.R. Impact of ABVD chemotherapy on ovarian reserve after fertility preservation in reproductive-aged women with Hodgkin lymphoma. J. Assist. Reprod. Genet. 2020;37:1755–1761. doi: 10.1007/s10815-020-01844-0. PubMed DOI PMC
Ramos S., Navarrete-Meneses P., Molina B., Cervantes-Barragán D.E., Lozano V., Gallardo E., Marchetti F., Frias S. Genomic chaos in peripheral blood lymphocytes of Hodgkin’s lymphoma patients one year after ABVD chemotherapy/radiotherapy. Environ. Mol. Mutagen. 2018;59:755–768. doi: 10.1002/em.22216. PubMed DOI
Gnekow A.K., Walker D.A., Kandels D., Picton S., Perilongo G., Grill J., Stokland T., Sandstrom P.E., Warmuth-Metz M., Pietsch T., et al. A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (≤ 16 years) low grade glioma—A final report. Eur. J. Cancer. 2017;81:206–225. doi: 10.1016/j.ejca.2017.04.019. PubMed DOI PMC
Chintagumpala M., Eckel S.P., Krailo M., Morris M., Adesina A., Packer R., Lau C., Gajjar A. A pilot study using carboplatin, vincristine, and temozolomide in children with progressive/symptomatic low-grade glioma: A Children’s Oncology Group study. Neuro-Oncology. 2015;17:1132–1138. doi: 10.1093/neuonc/nov057. PubMed DOI PMC
Qaddoumi I., Billups C.A., Tagen M., Stewart C.F., Wu J., Helton K., McCarville M.B., Merchant T.E., Brennan R., Free T.M., et al. Topotecan and vincristine combination is effective against advanced bilateral intraocular retinoblastoma and has manageable toxicity. Cancer. 2012;118:5663–5670. doi: 10.1002/cncr.27563. PubMed DOI PMC
King B.A., Sahr N., Sykes A., Wilson M.W., Brennan R.C. Chemoreduction with topotecan and vincristine: Quantifying tumor response in bilateral retinoblastoma patients. Pediatr. Blood Cancer. 2021;68:e28882. doi: 10.1002/pbc.28882. PubMed DOI
Amoroso L., Erminio G., Makin G., Pearson A.D.J., Brock P., Valteau-Couanet D., Castel V., Pasquet M., Laureys G., Thomas C., et al. Topotecan-vincristine-doxorubicin in stage 4 high-risk neuroblastoma patients failing to achieve a complete metastatic response to rapid COJEC: A SIOPEN study. Cancer Res. Treat. 2018;50:148–155. doi: 10.4143/crt.2016.511. PubMed DOI PMC
Mascarenhas L., Felgenhauer J.L., Bond M.C., Villaluna D., Femino J.D., Laack N.N., Ranganathan S., Meyer J., Womer R.B., Gorlick R., et al. Pilot study of adding vincristine, topotecan, and cyclophosphamide to interval-compressed chemotherapy in newly diagnosed patients with localized Ewing sarcoma: A report from the Children’s Oncology Group. Pediatr. Blood Cancer. 2016;63:493–498. doi: 10.1002/pbc.25837. PubMed DOI PMC
Papageorgiou G.I., Tsakatikas S.A., Fioretzaki R.G., Kosmas C. Notable response of a young adult with recurrent glioblastoma multiforme to vincristine-irinotecan-temozolomide and bevacizumab. Anti-Cancer Drugs. 2021;32:330–336. doi: 10.1097/CAD.0000000000001021. PubMed DOI
Venkatramani R., Malogolowkin M., Davidson T.B., May W., Sposto R., Mascarenhas L. A phase I study of vincristine, irinotecan, temozolomide and bevacizumab (Vitb) in pediatric patients with relapsed solid tumors. PLoS ONE. 2013;8:e68416. doi: 10.1371/journal.pone.0068416. PubMed DOI PMC
Venkatramani R., Malogolowkin M.H., Mascarenhas L. Treatment of multiply relapsed Wilms tumor with vincristine, irinotecan, temozolomide and bevacizumab. Pediatr. Blood Cancer. 2014;61:756–759. doi: 10.1002/pbc.24785. PubMed DOI
Wagner L., Turpin B., Nagarajan R., Weiss B., Cripe T., Geller J. Pilot study of vincristine, oral irinotecan, and temozolomide (VOIT regimen) combined with bevacizumab in pediatric patients with recurrent solid tumors or brain tumors. Pediatr. Blood Cancer. 2013;60:1447–1451. doi: 10.1002/pbc.24547. PubMed DOI
Schiavetti A., Varrasso G., Collini P., Clerico A. Vincristine, irinotecan, and bevacizumab in relapsed Wilms tumor with diffuse anaplasia. J. Pediatr. Hematol. Oncol. 2018;40:331–333. doi: 10.1097/MPH.0000000000000934. PubMed DOI
Ganjoo K., Hong F.X., Horning S.J., Gascoyne R.D., Natkunam Y., Swinnen L.J., Habermann T.M., Kahl B.S., Advani R.H. Bevacizumab and cyclosphosphamide, doxorubicin, vincristine and prednisone in combination for patients with peripheral T-cell or natural killer cell neoplasms: An Eastern Cooperative Oncology Group study (E2404) Leuk. Lymphoma. 2014;55:768–772. doi: 10.3109/10428194.2013.816700. PubMed DOI PMC
Sehn L.H., Martelli M., Trněný M., Liu W., Bolen C.R., Knapp A., Sahin D., Sellam G., Vitolo U. A randomized, open-label, Phase III study of obinutuzumab or rituximab plus CHOP in patients with previously untreated diffuse large B-Cell lymphoma: Final analysis of GOYA. J. Hematol. Oncol. 2020;13:71. doi: 10.1186/s13045-020-00900-7. PubMed DOI PMC
NCT04692155. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04692155.
NCT03677141. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03677141.
NCT03467373. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03467373.
NCT01527149. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01527149.
Peyrade F., Bologna S., Delwail V., Emile J.F., Pascal L., Fermé C., Schiano J.M., Coiffier B., Corront B., Farhat H., et al. Combination of ofatumumab and reduced-dose CHOP for diffuse large B-cell lymphomas in patients aged 80 years or older: An open-label, multicentre, single-arm, phase 2 trial from the LYSA group. Lancet Haematol. 2017;4:e46–e55. doi: 10.1016/S2352-3026(16)30171-5. PubMed DOI
NCT01445535. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01445535.
Roswarski J., Roschewski M., Lucas A., Melani C., Pittaluga S., Jaffe E.S., Steinberg S.M., Waldmann T.A., Wilson W.H. Phase I dose escalation study of the anti-CD2 monoclonal antibody, siplizumab, with DA-EPOCH-R in aggressive peripheral T-cell lymphomas. Leuk. Lymphoma. 2018;59:1466–1469. doi: 10.1080/10428194.2017.1387908. PubMed DOI PMC
Jabbour E., Ravandi F., Kebriaei P., Huang X., Short N.J., Thomas D., Sasaki K., Rytting M., Jain N., Konopleva M., et al. Salvage Chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: A phase 2 clinical trial. JAMA Oncol. 2018;4:230–234. doi: 10.1001/jamaoncol.2017.2380. PubMed DOI PMC
Kantarjian H., Ravandi F., Short N.J., Huang X., Jain N., Sasaki K., Daver N., Pemmaraju N., Khoury J.D., Jorgensen J., et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: A single-arm, phase 2 study. Lancet Oncol. 2018;19:240–248. doi: 10.1016/S1470-2045(18)30011-1. PubMed DOI
NCT04824092. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04824092.
NCT04661007. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04661007.
NCT04134936. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04134936.
NCT03518112. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03518112.
NCT04448834. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04448834.
NCT03914625. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/show/NCT03914625.
NCT03147612. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03147612.
NCT02877303. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02877303.
NCT03643276. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03643276.
NCT02003222. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02003222.
NCT02734771. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02734771.
NCT02398240. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02398240.
NCT02166463. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02166463.
NCT01920932. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01920932.
NCT04139304. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04139304.
NCT03384654. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03384654.
NCT03860844. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03860844.
NCT01030900. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01030900.
NCT00069238. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT00069238.
NCT01256398. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01256398.
NCT04231877. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04231877.
NCT03274492. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03274492.
Cheah C.Y., Fowler N.H., Neelapu S.S. Targeting the programmed death-1/programmed death-ligand 1 axis in lymphoma. Curr. Opin. Oncol. 2015;27:384–391. doi: 10.1097/CCO.0000000000000212. PubMed DOI
NCT04796012. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04796012.
NCT04759586. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04759586.
NCT03586999. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03586999.
NCT03749018. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03749018.
NCT03704714. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/show/NCT03704714.
NCT04058470. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04058470.
NCT03407144. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03407144.
NCT04113226. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04113226.
NCT03003520. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03003520.
NCT04181489. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04181489.
NCT04023916. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04023916.
NCT03244176. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03244176.
NCT03786783. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03786783.
NCT02306161. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02306161.
NCT03991884. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03991884.
NCT03851081. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03851081.
NCT02981628. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02981628.
NCT03249870. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03249870.
NCT01925131. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/show/NCT01925131.
NCT04747912. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04747912.
NCT04307576. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04307576.
NCT03150693. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03150693.
NCT01371630. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01371630.
NCT03817853. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03817853.
NCT03269669. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03269669.
NCT02529852. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02529852.
NCT01332968. [(accessed on 27 May 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01332968.
Syed S.B., Lin S.Y., Arya H., Fu I.H., Yeh T.K., Charles M.R.C., Periyasamy L., Hsieh H.P., Coumar M.S. Overcoming vincristine resistance in cancer: Computational design and discovery of piperine-inspired P-glycoprotein inhibitors. Chem. Biol. Drug Des. 2021;97:51–66. doi: 10.1111/cbdd.13758. PubMed DOI
Guo Y., Wang K., Chen X., Li H., Wan Q., Morris-Natschke S., Lee K.H., Chen Y. Seco-4-methyl-DCK derivatives as potent chemosensitizers. Bioorg. Med. Chem. Lett. 2019;29:28–31. doi: 10.1016/j.bmcl.2018.11.023. PubMed DOI
Wan Q., Jin X., Guo Y., Yu Z., Guo S., Morris-Natschke S., Lee K.-H., Liu H., Chen Y. New Seco-DSP derivatives as potent chemosensitizers. Eur. J. Med. Chem. 2020;204:112555. doi: 10.1016/j.ejmech.2020.112555. PubMed DOI
Li Y.S., Yang X., Zhao D.S., Cai Y., Huang Z., Wu R., Wang S.J., Liu G.J., Wang J., Bao X.Z., et al. Design, synthesis and bioactivity study on 5-phenylfuran derivatives as potent reversal agents against P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cell. Eur. J. Med. Chem. 2021;216:113336. doi: 10.1016/j.ejmech.2021.113336. PubMed DOI
Teng Y.N., Lin K.I., Lin Y.C., Thang T.D., Lan Y.H., Hung C.C. A novel flavonoid from Fissistigma cupreonitens, 5-hydroxy-7,8-dimethoxyflavanone, competitively inhibited the efflux function of human P-glycoprotein and reversed cancer multi-drug resistance. Phytomedicine. 2021;85:153528. doi: 10.1016/j.phymed.2021.153528. PubMed DOI
Diouf B., Wing C., Panetta J.C., Eddins D., Lin W.W., Yang W.J., Fan Y.P., Pei D.Q., Cheng C., Delaney S.M., et al. Identification of small molecules that mitigate vincristine-induced neurotoxicity while sensitizing leukemia cells to vincristine. Clin. Transl. Sci. 2021;14:1490–1504. doi: 10.1111/cts.13012. PubMed DOI PMC
Buzun K., Gornowicz A., Lesyk R., Bielawski K., Bielawska A. Autophagy Modulators in Cancer Therapy. Int. J. Mol. Sci. 2021;22:5804. doi: 10.3390/ijms22115804. PubMed DOI PMC
Xia H., Qu X.L., Liu L.Y., Qian D.H., Jing H.Y. LncRNA MEG3 promotes the sensitivity of vincristine by inhibiting autophagy in lung cancer chemotherapy. Eur. Rev. Med. Pharmacol. Sci. 2018;22:1020–1027. doi: 10.26355/eurrev_201802_14384. PubMed DOI
Yao L., Yang L., Song H., Liu T.G., Yan H. Silencing of lncRNA XIST suppresses proliferation and autophagy and enhances vincristine sensitivity in retinoblastoma cells by sponging miR-204-5p. Eur. Rev. Med. Pharmacol. Sci. 2020;24:3526–3537. doi: 10.26355/eurrev_202004_20812. PubMed DOI
Li L.J., Wang Y.L., Yuan L.Q., Gu W.Z., Zhu K., Yang M., Zhou D., Lv Y., Li M.J., Zhao Z.Y., et al. Autophagy inhibition in childhood nephroblastoma and the therapeutic significance. Curr. Cancer Drug Targets. 2018;18:295–303. doi: 10.2174/1568009617666170330105433. PubMed DOI
Shan C., Hui W., Li H., Wang Z., Guo C., Peng R., Gu J., Chen Y., Ouyang Q. Discovery of novel autophagy inhibitors and their sensitization abilities for vincristine-resistant esophageal cancer cell line Eca109/VCR. ChemMedChem. 2020;15:970–981. doi: 10.1002/cmdc.202000004. PubMed DOI
American Childhood Cancer Organization. [(accessed on 18 August 2021)]. Available online: https://www.acco.org/blog/the-vincristine-drug-shortage-update/
Food and Drug Administration. [(accessed on 18 August 2021)]; Available online: https://www.accessdata.fda.gov/scripts/drugshortages/dsp_ActiveIngredientDetails.cfm?AI=Vincristine%20Sulfate%20Injection,%20USP%20(Preservative-Free)&st=c.