The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
28334993
PubMed Central
PMC5435939
DOI
10.1093/nar/gkx157
PII: 3062231
Knihovny.cz E-zdroje
- MeSH
- biokatalýza MeSH
- DNA-glykosylasy chemie metabolismus MeSH
- guanin analogy a deriváty metabolismus MeSH
- kyselina asparagová metabolismus MeSH
- lidé MeSH
- lysin metabolismus MeSH
- molekulární modely MeSH
- mutantní proteiny chemie metabolismus MeSH
- oprava DNA * MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- termodynamika MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 8-hydroxyguanine MeSH Prohlížeč
- DNA-glykosylasy MeSH
- guanin MeSH
- kyselina asparagová MeSH
- lysin MeSH
- mutantní proteiny MeSH
- oxoguanine glycosylase 1, human MeSH Prohlížeč
The excision of 8-oxoguanine (oxoG) by the human 8-oxoguanine DNA glycosylase 1 (hOGG1) base-excision repair enzyme was studied by using the QM/MM (M06-2X/6-31G(d,p):OPLS2005) calculation method and nuclear magnetic resonance (NMR) spectroscopy. The calculated glycosylase reaction included excision of the oxoG base, formation of Lys249-ribose enzyme-substrate covalent adduct and formation of a Schiff base. The formation of a Schiff base with ΔG# = 17.7 kcal/mol was the rate-limiting step of the reaction. The excision of the oxoG base with ΔG# = 16.1 kcal/mol proceeded via substitution of the C1΄-N9 N-glycosidic bond with an H-N9 bond where the negative charge on the oxoG base and the positive charge on the ribose were compensated in a concerted manner by NH3+(Lys249) and CO2-(Asp268), respectively. The effect of Asp268 on the oxoG excision was demonstrated with 1H NMR for WT hOGG1 and the hOGG1(D268N) mutant: the excision of oxoG was notably suppressed when Asp268 was mutated to Asn. The loss of the base-excision function was rationalized with QM/MM calculations and Asp268 was confirmed as the electrostatic stabilizer of ribose oxocarbenium through the initial base-excision step of DNA repair. The NMR experiments and QM/MM calculations consistently illustrated the base-excision reaction operated by hOGG1.
Zobrazit více v PubMed
Lindahl T., Wood R.D.. Quality control by DNA repair. Science. 1999; 286:1897–1905. PubMed
David S.S., Wiliams S.D.. Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem. Rev. 1998; 98:1221–1261. PubMed
Stivers J.T., Jiang Y.L.. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 2003; 103:2729–2759. PubMed
Berti P.J., McCann J.A.B.. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem. Rev. 2006; 106:506–555. PubMed
David S.S., O'Shea V.L., Kundu S.. Base-excision repair of oxidative DNA damage. Nature. 2007; 447:941–950. PubMed PMC
Dodson M.L., Michaels M.L., Lloyd R.S.. Unified catalytic mechanism for DNA glycosylases. J. Biol. Chem. 1994; 269:32709–32712. PubMed
Wagenknecht H.-A. The search for single DNA damage among millions of base pairs: DNA glycosylases trapped at work. Angew. Chem. Int. Ed. Engl. 2006; 45:5583–5585. PubMed
Bruner S.D., Norman D.P.G., Verdine G.L.. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature. 2000; 403:859–866. PubMed
Rowland M.M., Schonhoft J.D., McKibbin P.L., David S.S., Stivers J.T.. Microscopic mechanism of DNA damage searching by hOGG1. Nucleic Acids Res. 2014; 42:9295–9303. PubMed PMC
Paz-Elizur T., Sevilya Z., Leitner-Dagan Y., Elinger D., Roisman L.C., Livneh Z.. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett. 2008; 266:60–72. PubMed PMC
Kryston T.B., Georgiev A.B., Pissis P., Georgakilas A.G.. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 2011; 711:193–201. PubMed
Dumont H., Grber R., Bignon E., Morell C., Aranda J., Ravanat J.-L., Tunon I.. Singlet oxygen attack on guanine: reactivity and structural signature within the B-DNA helix. Chemistry. 2016; 22:1–6. PubMed
Hainaut P., Hernandez T., Robinson A., Rodriguez-Tome P., Flores T., Hollstein M., Harris C.C., Montesano R.. IARC database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 1998; 26:205–213. PubMed PMC
Helleday T., Petermann E., Lundin C., Hodgson B., Sharma R.A.. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer. 2008; 8:193–204. PubMed
Lu R.Z., Nash H.M., Verdine G.L.. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 1997; 7:397–407. PubMed
Arai K., Morishita K., Shinmura K., Kohno T., Kim S.R., Nohmi T., Taniwaki M., Ohwada S., Yokota J.. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene. 1997; 14:2857–2861. PubMed
Roldan-Arjona T., Wei Y.F., Carter K.C., Klungland A., Anselmino C., Wang R.P., Augustus M., Lindahl T.. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:8016–8020. PubMed PMC
Bjoras M., Luna L., Johnson B., Hoff E., Haug T., Rognes T., Seeberg E.. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 1997; 16:6314–6322. PubMed PMC
Rosenquist T.A., Zharkov D.O., Grollman A.P.. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:7429–7434. PubMed PMC
Radicella J.P., Dherin C., Desmaze C., Fox M.S., Boiteux S.. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:8010–8015. PubMed PMC
Kuo F.C., Sklar J.. Augmented expression of a human gene for 8-oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers. J. Exp. Med. 1997; 186:1547–1556. PubMed PMC
Aburatani H., Hippo Y., Ishida T., Takashima R., Matsuba C., Kodama T., Takao M., Yasui A., Yamamoto K., Asano M. et al. Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Res. 1997; 57:2151–2156. PubMed
Nash H.M., Bruner S.D., Scharer O.D., Kawate T., Addona T.A., Sponner E., Lane W.S., Verdine G.L.. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 1996; 6:968–980. PubMed
Boiteux S., Radicella J.P.. The human OGG1 gene: Structure, functions, and its implication in the process of carcinogenesis. Arch. Biochem. Biophys. 2000; 377:1–8. PubMed
Banerjee A., Yang W., Karplus M., Verdine G.L.. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature. 2005; 434:612–618. PubMed
Hamm M.L., Gill T.J., Nicolson S.C., Summers M.R.. Substrate specificity of fpg (MutM) and hOGG1, two repair glycosylases. J. Am. Chem. Soc. 2007; 129:7724–7725. PubMed
McKibbin P.L., Kobori A., Taniguchi Y., Kool E.T., David S.S.. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases. J. Am. Chem. Soc. 2012; 134:1653–1661. PubMed PMC
Yin Y.Z., Sasaki S., Taniguchi Y.. Recognition and excision properties of 8-halogenated-7-deaza-2-deoxyguanosine as 8-oxo-2-deoxyguanosine analogues and Fpg and hOGG1 inhibitors. Chembiochem. 2015; 16:1190–1198. PubMed
Crenshaw C.M., Kwangho N., Kimberly O., Kutchikian P.S., Bowman B., Karplus M., Verdine G.L.. Enforced presentation of an extrahelikal guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. J. Biol. Chem. 2012; 287:24916–24928. PubMed PMC
Lee S., Radom C.T., Verdine G.L.. Trapping and structural elucidation of a very advanced intermediate in the lesion-extrusion pathway of hOGG1. J. Am. Chem. Soc. 2008; 130:7784–7785. PubMed PMC
Donley N., Jaruga P., Coskun E., Dizdaroglu M., McCullough A.K., Lloyd R.S.. Small molecule inhibitors of 8-oxoguanine DNA glycosylase-1 (OGG1). ACS Chem. Biol. 2015; 10:2334–2343. PubMed PMC
Norman D.P.G., Chung S.J., Verdine G.L.. Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase. Biochemistry. 2003; 42:1564–1572. PubMed
Radom C.T., Banerjee A., Verdine G.L.. Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations. J. Biol. Chem. 2007; 282:9182–9194. PubMed
Fromme J.C., Bruner S.D., Yang W., Karplus M., Verdine G.L.. Product-assisted catalysis in base-excision DNA repair. Nat. Struct. Mol. Bio. 2003; 10:204–211. PubMed
Norman D.P.G., Bruner S.D., Verdine G.L.. Coupling of substrate recognition and catalysis by a human base-excision DNA repair protein. J. Am. Chem. Soc. 2001; 123:359–360. PubMed
Kow Y.W., Wallace S.S.. Mechanism of action of escherichia-coli endonuclease-III. Biochemistry. 1987; 26:8200–8206. PubMed
Nash H.M., Lu R.Z., Lane W.S., Verdine G.L.. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOGG1: direct identification, ablation and chemical reconstitution. Chem. Biol. 1997; 4:693–702. PubMed
Warshel A., Sharma P.K., Kato M., Xiang Y., Liu H.B., Olsson M.H.M.. Electrostatic basis for enzyme catalysis. Chem. Rev. 2006; 106:3210–3235. PubMed
Shim E.J., Przybylski J.L., Wetmore S.D.. Effects of nucleophile, oxidative damage, and nucleobase orientation on the glycosidic bond cleavage in deoxyguanosine. J. Phys. Chem. B. 2010; 114:2319–2326. PubMed
Kellie J.L., Wilson K.A., Wetmore S.D.. An ONIOM and MD investigation of possible monofunctional activity of human 8-oxoguanine-DNA glycosylase (hOGG1). J. Phys. Chem. B. 2015; 119:8013–8023. PubMed
Osakabe T., Fujii Y., Hata M., Tsuda M., Neya S., Hoshino T.. Quantum chemical study on base excision mechanism of 8-oxoguanine DNA glycosylase. Chem. Bio Inform. J. 2004; 4:73–92.
Sadeghian K., Ochsenfeld C.. Unraveling the base excision repair mechanism of human DNA glycosylase. J. Am. Chem. Soc. 2015; 137:9824–9831. PubMed
Fromme J.C., Verdine G.L.. Structure of a trapped endonuclease III-DNA covalent intermediate. EMBO J. 2003; 22:3461–3471. PubMed PMC
Schyman P., Danielsson J., Pinak M., Laaksonen A.. Theoretical study of the human DNA repair protein hOGG1 activity. J. Phys. Chem. A. 2005; 109:1713–1719. PubMed
Calvaresi M., Bottoni A., Garavelli M.. Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems. J. Phys. Chem. B. 2007; 111:6557–6570. PubMed
Šebera J., Trantírek L., Tanaka Y., Sychrovský V.. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-oxoG with the hOGG1 DNA repair protein. J. Phys. Chem. B. 2012; 116:12535–12544. PubMed
Pace C.N., Grimsley G.R., Scholtz J.M.. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J. Biol. Chem. 2009; 284:13285–13289. PubMed PMC
Tanaka Y., Yamaguchi H., Oda S., Kondo Y., Nomura M., Kojima C., Ono A.. NMR spectroscopic study of a DNA duplex with mercury-mediated T-T base pairs. Nucleosides Nucleotides Nucleic Acids. 2006; 25:613–624. PubMed
Tanaka Y., Oda S., Yamaguchi H., Kondo Y., Kojima C., Ono A.. N-15-N-15 J-coupling across Hg-II: direct observation of Hg-II-mediated T-T base pairs in a DNA duplex. J. Am. Chem. Soc. 2007; 129:244–245. PubMed
Uchiyama T., Miura T., Takeuchi H., Dairaku T., Komuro T., Kawamura T., Kondo Y., Benda L., Sychrovský V., Bouř P. et al. Raman spectroscopic detection of the T-Hg-II-T base pair and the ionic characteristics of mercury. Nucleic Acids Res. 2012; 40:5766–5774. PubMed PMC
Dairaku T., Furuita K., Sato H., Kondo Y., Kojima C., Ono A., Tanaka Y.. Exploring a DNA sequence for the three-dimensional structure determination of a silver(I)-mediated C-C base pair in a DNA duplex by H-1 NMR spectroscopy. Nucleosides Nucleotides Nucleic Acids. 2015; 34:877–900. PubMed
Zhao Y., Truhlar D.G.. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008; 120:215–241.
Harihara P.C., Pople J.A.. Influence of polarization functions on molecular-orbital hydrogenation energies. Theor. Chim. Acta. 1973; 28:213–222.
Banks J.L., Beard H.S., Cao Y.X., Cho A.E., Damm W., Farid R., Felts A.K., Halgren T.A., Mainz D.T., Maple J.R. et al. Integrated modeling program, applied chemical theory (IMPACT). J. Comput. Chem. 2005; 26:1752–1780. PubMed PMC
Jaguar, v. 8.2, Schrödinger. 2013; NY: LLC
Bochevarov A.D., Harder E., Hughes T.F., Greenwood J.R., Braden D.A., Philipp D.M., Rinaldo D., Halls M.D., Zhang J., Friesner R.A.. Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 2013; 113:2110–2142.
Impact, v. 6.1, Schrödinger. 2013; NY: LLC
QSite, v. 6.1, Schrödinger. 2013; NY: LLC
Friesner R.A., Guallar V.. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu. Rev. Phys. Chem. 2005; 56:389–427. PubMed
Contreras R.R., Fuentealba P., Galvan M., Perez P.. A direct evaluation of regional fukui functions in molecules. Chem. Phys. Lett. 1999; 304:405–413.
Morell C., Grand A., Toro-Labbe A.. New dual descriptor for chemical reactivity. J. Phys. Chem. A. 2005; 109:205–212. PubMed
Chamorro E., Perez P.. Condensed-to-atoms electronic Fukui functions within the framework of spin-polarized density-functional theory. J. Chem. Phys. 2005; 123:114107. PubMed
Šebera J., Trantírek L., Tanaka Y., Nencka R., Fukal J., Sychrovský V.. The activation of N-glycosidic bond cleavage performed by base-excision repair enzyme hOGG1; theoretical study of the role of Lys 249 residue in activation of G, OxoG and FapyG. RSC Adv. 2014; 4:44043–44051.
Kuznetsov N.A., Kuznetsova A.A., Vorobjev Y.N., Krasnoperov L.N., Fedorova O.S.. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase. PLoS One. 2014; 9:e98495. PubMed PMC
Boiteux S., Coste F., Castaing B.. Repair of 8- oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic. Biol. Med. 2016; doi:10.1016/j.freeradbiomed.11.042 PubMed
Sychrovský V., Vokáčová Z.S., Trantírek L.. Guanine bases in DNA G-quadruplex adopt nonplanar geometries owing to solvation and base pairing. J. Phys. Chem. A. 2012; 116:4144–4151. PubMed
Sychrovský V., Foldynová-Trantírková S., Špačková N., Robeyns K., Van Meervelt L., Blankenfeldt W., Vokáčová Z., Šponer J., Trantírek L.. Revisiting the planarity of nucleic acid bases: pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion. Nucleic Acids Res. 2009; 37:7321–7331. PubMed PMC
Vidal A.E., Hickson I.D., Boiteux S., Radicella J.P.. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Nucleic Acids Res. 2001; 29:1285–1292. PubMed PMC
Hill J.W., Hazra T.K., Izumi T., Mitra S.. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair. Nucleic Acids Res. 2001; 29:430–438. PubMed PMC