The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine

. 2017 May 19 ; 45 (9) : 5231-5242.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28334993

The excision of 8-oxoguanine (oxoG) by the human 8-oxoguanine DNA glycosylase 1 (hOGG1) base-excision repair enzyme was studied by using the QM/MM (M06-2X/6-31G(d,p):OPLS2005) calculation method and nuclear magnetic resonance (NMR) spectroscopy. The calculated glycosylase reaction included excision of the oxoG base, formation of Lys249-ribose enzyme-substrate covalent adduct and formation of a Schiff base. The formation of a Schiff base with ΔG# = 17.7 kcal/mol was the rate-limiting step of the reaction. The excision of the oxoG base with ΔG# = 16.1 kcal/mol proceeded via substitution of the C1΄-N9 N-glycosidic bond with an H-N9 bond where the negative charge on the oxoG base and the positive charge on the ribose were compensated in a concerted manner by NH3+(Lys249) and CO2-(Asp268), respectively. The effect of Asp268 on the oxoG excision was demonstrated with 1H NMR for WT hOGG1 and the hOGG1(D268N) mutant: the excision of oxoG was notably suppressed when Asp268 was mutated to Asn. The loss of the base-excision function was rationalized with QM/MM calculations and Asp268 was confirmed as the electrostatic stabilizer of ribose oxocarbenium through the initial base-excision step of DNA repair. The NMR experiments and QM/MM calculations consistently illustrated the base-excision reaction operated by hOGG1.

Zobrazit více v PubMed

Lindahl T., Wood R.D.. Quality control by DNA repair. Science. 1999; 286:1897–1905. PubMed

David S.S., Wiliams S.D.. Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem. Rev. 1998; 98:1221–1261. PubMed

Stivers J.T., Jiang Y.L.. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 2003; 103:2729–2759. PubMed

Berti P.J., McCann J.A.B.. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem. Rev. 2006; 106:506–555. PubMed

David S.S., O'Shea V.L., Kundu S.. Base-excision repair of oxidative DNA damage. Nature. 2007; 447:941–950. PubMed PMC

Dodson M.L., Michaels M.L., Lloyd R.S.. Unified catalytic mechanism for DNA glycosylases. J. Biol. Chem. 1994; 269:32709–32712. PubMed

Wagenknecht H.-A. The search for single DNA damage among millions of base pairs: DNA glycosylases trapped at work. Angew. Chem. Int. Ed. Engl. 2006; 45:5583–5585. PubMed

Bruner S.D., Norman D.P.G., Verdine G.L.. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature. 2000; 403:859–866. PubMed

Rowland M.M., Schonhoft J.D., McKibbin P.L., David S.S., Stivers J.T.. Microscopic mechanism of DNA damage searching by hOGG1. Nucleic Acids Res. 2014; 42:9295–9303. PubMed PMC

Paz-Elizur T., Sevilya Z., Leitner-Dagan Y., Elinger D., Roisman L.C., Livneh Z.. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett. 2008; 266:60–72. PubMed PMC

Kryston T.B., Georgiev A.B., Pissis P., Georgakilas A.G.. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 2011; 711:193–201. PubMed

Dumont H., Grber R., Bignon E., Morell C., Aranda J., Ravanat J.-L., Tunon I.. Singlet oxygen attack on guanine: reactivity and structural signature within the B-DNA helix. Chemistry. 2016; 22:1–6. PubMed

Hainaut P., Hernandez T., Robinson A., Rodriguez-Tome P., Flores T., Hollstein M., Harris C.C., Montesano R.. IARC database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 1998; 26:205–213. PubMed PMC

Helleday T., Petermann E., Lundin C., Hodgson B., Sharma R.A.. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer. 2008; 8:193–204. PubMed

Lu R.Z., Nash H.M., Verdine G.L.. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 1997; 7:397–407. PubMed

Arai K., Morishita K., Shinmura K., Kohno T., Kim S.R., Nohmi T., Taniwaki M., Ohwada S., Yokota J.. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene. 1997; 14:2857–2861. PubMed

Roldan-Arjona T., Wei Y.F., Carter K.C., Klungland A., Anselmino C., Wang R.P., Augustus M., Lindahl T.. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:8016–8020. PubMed PMC

Bjoras M., Luna L., Johnson B., Hoff E., Haug T., Rognes T., Seeberg E.. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 1997; 16:6314–6322. PubMed PMC

Rosenquist T.A., Zharkov D.O., Grollman A.P.. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:7429–7434. PubMed PMC

Radicella J.P., Dherin C., Desmaze C., Fox M.S., Boiteux S.. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:8010–8015. PubMed PMC

Kuo F.C., Sklar J.. Augmented expression of a human gene for 8-oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers. J. Exp. Med. 1997; 186:1547–1556. PubMed PMC

Aburatani H., Hippo Y., Ishida T., Takashima R., Matsuba C., Kodama T., Takao M., Yasui A., Yamamoto K., Asano M. et al. . Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Res. 1997; 57:2151–2156. PubMed

Nash H.M., Bruner S.D., Scharer O.D., Kawate T., Addona T.A., Sponner E., Lane W.S., Verdine G.L.. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 1996; 6:968–980. PubMed

Boiteux S., Radicella J.P.. The human OGG1 gene: Structure, functions, and its implication in the process of carcinogenesis. Arch. Biochem. Biophys. 2000; 377:1–8. PubMed

Banerjee A., Yang W., Karplus M., Verdine G.L.. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature. 2005; 434:612–618. PubMed

Hamm M.L., Gill T.J., Nicolson S.C., Summers M.R.. Substrate specificity of fpg (MutM) and hOGG1, two repair glycosylases. J. Am. Chem. Soc. 2007; 129:7724–7725. PubMed

McKibbin P.L., Kobori A., Taniguchi Y., Kool E.T., David S.S.. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases. J. Am. Chem. Soc. 2012; 134:1653–1661. PubMed PMC

Yin Y.Z., Sasaki S., Taniguchi Y.. Recognition and excision properties of 8-halogenated-7-deaza-2-deoxyguanosine as 8-oxo-2-deoxyguanosine analogues and Fpg and hOGG1 inhibitors. Chembiochem. 2015; 16:1190–1198. PubMed

Crenshaw C.M., Kwangho N., Kimberly O., Kutchikian P.S., Bowman B., Karplus M., Verdine G.L.. Enforced presentation of an extrahelikal guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. J. Biol. Chem. 2012; 287:24916–24928. PubMed PMC

Lee S., Radom C.T., Verdine G.L.. Trapping and structural elucidation of a very advanced intermediate in the lesion-extrusion pathway of hOGG1. J. Am. Chem. Soc. 2008; 130:7784–7785. PubMed PMC

Donley N., Jaruga P., Coskun E., Dizdaroglu M., McCullough A.K., Lloyd R.S.. Small molecule inhibitors of 8-oxoguanine DNA glycosylase-1 (OGG1). ACS Chem. Biol. 2015; 10:2334–2343. PubMed PMC

Norman D.P.G., Chung S.J., Verdine G.L.. Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase. Biochemistry. 2003; 42:1564–1572. PubMed

Radom C.T., Banerjee A., Verdine G.L.. Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations. J. Biol. Chem. 2007; 282:9182–9194. PubMed

Fromme J.C., Bruner S.D., Yang W., Karplus M., Verdine G.L.. Product-assisted catalysis in base-excision DNA repair. Nat. Struct. Mol. Bio. 2003; 10:204–211. PubMed

Norman D.P.G., Bruner S.D., Verdine G.L.. Coupling of substrate recognition and catalysis by a human base-excision DNA repair protein. J. Am. Chem. Soc. 2001; 123:359–360. PubMed

Kow Y.W., Wallace S.S.. Mechanism of action of escherichia-coli endonuclease-III. Biochemistry. 1987; 26:8200–8206. PubMed

Nash H.M., Lu R.Z., Lane W.S., Verdine G.L.. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOGG1: direct identification, ablation and chemical reconstitution. Chem. Biol. 1997; 4:693–702. PubMed

Warshel A., Sharma P.K., Kato M., Xiang Y., Liu H.B., Olsson M.H.M.. Electrostatic basis for enzyme catalysis. Chem. Rev. 2006; 106:3210–3235. PubMed

Shim E.J., Przybylski J.L., Wetmore S.D.. Effects of nucleophile, oxidative damage, and nucleobase orientation on the glycosidic bond cleavage in deoxyguanosine. J. Phys. Chem. B. 2010; 114:2319–2326. PubMed

Kellie J.L., Wilson K.A., Wetmore S.D.. An ONIOM and MD investigation of possible monofunctional activity of human 8-oxoguanine-DNA glycosylase (hOGG1). J. Phys. Chem. B. 2015; 119:8013–8023. PubMed

Osakabe T., Fujii Y., Hata M., Tsuda M., Neya S., Hoshino T.. Quantum chemical study on base excision mechanism of 8-oxoguanine DNA glycosylase. Chem. Bio Inform. J. 2004; 4:73–92.

Sadeghian K., Ochsenfeld C.. Unraveling the base excision repair mechanism of human DNA glycosylase. J. Am. Chem. Soc. 2015; 137:9824–9831. PubMed

Fromme J.C., Verdine G.L.. Structure of a trapped endonuclease III-DNA covalent intermediate. EMBO J. 2003; 22:3461–3471. PubMed PMC

Schyman P., Danielsson J., Pinak M., Laaksonen A.. Theoretical study of the human DNA repair protein hOGG1 activity. J. Phys. Chem. A. 2005; 109:1713–1719. PubMed

Calvaresi M., Bottoni A., Garavelli M.. Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems. J. Phys. Chem. B. 2007; 111:6557–6570. PubMed

Šebera J., Trantírek L., Tanaka Y., Sychrovský V.. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-oxoG with the hOGG1 DNA repair protein. J. Phys. Chem. B. 2012; 116:12535–12544. PubMed

Pace C.N., Grimsley G.R., Scholtz J.M.. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J. Biol. Chem. 2009; 284:13285–13289. PubMed PMC

Tanaka Y., Yamaguchi H., Oda S., Kondo Y., Nomura M., Kojima C., Ono A.. NMR spectroscopic study of a DNA duplex with mercury-mediated T-T base pairs. Nucleosides Nucleotides Nucleic Acids. 2006; 25:613–624. PubMed

Tanaka Y., Oda S., Yamaguchi H., Kondo Y., Kojima C., Ono A.. N-15-N-15 J-coupling across Hg-II: direct observation of Hg-II-mediated T-T base pairs in a DNA duplex. J. Am. Chem. Soc. 2007; 129:244–245. PubMed

Uchiyama T., Miura T., Takeuchi H., Dairaku T., Komuro T., Kawamura T., Kondo Y., Benda L., Sychrovský V., Bouř P. et al. . Raman spectroscopic detection of the T-Hg-II-T base pair and the ionic characteristics of mercury. Nucleic Acids Res. 2012; 40:5766–5774. PubMed PMC

Dairaku T., Furuita K., Sato H., Kondo Y., Kojima C., Ono A., Tanaka Y.. Exploring a DNA sequence for the three-dimensional structure determination of a silver(I)-mediated C-C base pair in a DNA duplex by H-1 NMR spectroscopy. Nucleosides Nucleotides Nucleic Acids. 2015; 34:877–900. PubMed

Zhao Y., Truhlar D.G.. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008; 120:215–241.

Harihara P.C., Pople J.A.. Influence of polarization functions on molecular-orbital hydrogenation energies. Theor. Chim. Acta. 1973; 28:213–222.

Banks J.L., Beard H.S., Cao Y.X., Cho A.E., Damm W., Farid R., Felts A.K., Halgren T.A., Mainz D.T., Maple J.R. et al. . Integrated modeling program, applied chemical theory (IMPACT). J. Comput. Chem. 2005; 26:1752–1780. PubMed PMC

Jaguar, v. 8.2, Schrödinger. 2013; NY: LLC

Bochevarov A.D., Harder E., Hughes T.F., Greenwood J.R., Braden D.A., Philipp D.M., Rinaldo D., Halls M.D., Zhang J., Friesner R.A.. Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 2013; 113:2110–2142.

Impact, v. 6.1, Schrödinger. 2013; NY: LLC

QSite, v. 6.1, Schrödinger. 2013; NY: LLC

Friesner R.A., Guallar V.. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu. Rev. Phys. Chem. 2005; 56:389–427. PubMed

Contreras R.R., Fuentealba P., Galvan M., Perez P.. A direct evaluation of regional fukui functions in molecules. Chem. Phys. Lett. 1999; 304:405–413.

Morell C., Grand A., Toro-Labbe A.. New dual descriptor for chemical reactivity. J. Phys. Chem. A. 2005; 109:205–212. PubMed

Chamorro E., Perez P.. Condensed-to-atoms electronic Fukui functions within the framework of spin-polarized density-functional theory. J. Chem. Phys. 2005; 123:114107. PubMed

Šebera J., Trantírek L., Tanaka Y., Nencka R., Fukal J., Sychrovský V.. The activation of N-glycosidic bond cleavage performed by base-excision repair enzyme hOGG1; theoretical study of the role of Lys 249 residue in activation of G, OxoG and FapyG. RSC Adv. 2014; 4:44043–44051.

Kuznetsov N.A., Kuznetsova A.A., Vorobjev Y.N., Krasnoperov L.N., Fedorova O.S.. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase. PLoS One. 2014; 9:e98495. PubMed PMC

Boiteux S., Coste F., Castaing B.. Repair of 8- oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic. Biol. Med. 2016; doi:10.1016/j.freeradbiomed.11.042 PubMed

Sychrovský V., Vokáčová Z.S., Trantírek L.. Guanine bases in DNA G-quadruplex adopt nonplanar geometries owing to solvation and base pairing. J. Phys. Chem. A. 2012; 116:4144–4151. PubMed

Sychrovský V., Foldynová-Trantírková S., Špačková N., Robeyns K., Van Meervelt L., Blankenfeldt W., Vokáčová Z., Šponer J., Trantírek L.. Revisiting the planarity of nucleic acid bases: pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion. Nucleic Acids Res. 2009; 37:7321–7331. PubMed PMC

Vidal A.E., Hickson I.D., Boiteux S., Radicella J.P.. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Nucleic Acids Res. 2001; 29:1285–1292. PubMed PMC

Hill J.W., Hazra T.K., Izumi T., Mitra S.. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair. Nucleic Acids Res. 2001; 29:430–438. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...