The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine

. 2017 May 19 ; 45 (9) : 5231-5242.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28334993

The excision of 8-oxoguanine (oxoG) by the human 8-oxoguanine DNA glycosylase 1 (hOGG1) base-excision repair enzyme was studied by using the QM/MM (M06-2X/6-31G(d,p):OPLS2005) calculation method and nuclear magnetic resonance (NMR) spectroscopy. The calculated glycosylase reaction included excision of the oxoG base, formation of Lys249-ribose enzyme-substrate covalent adduct and formation of a Schiff base. The formation of a Schiff base with ΔG# = 17.7 kcal/mol was the rate-limiting step of the reaction. The excision of the oxoG base with ΔG# = 16.1 kcal/mol proceeded via substitution of the C1΄-N9 N-glycosidic bond with an H-N9 bond where the negative charge on the oxoG base and the positive charge on the ribose were compensated in a concerted manner by NH3+(Lys249) and CO2-(Asp268), respectively. The effect of Asp268 on the oxoG excision was demonstrated with 1H NMR for WT hOGG1 and the hOGG1(D268N) mutant: the excision of oxoG was notably suppressed when Asp268 was mutated to Asn. The loss of the base-excision function was rationalized with QM/MM calculations and Asp268 was confirmed as the electrostatic stabilizer of ribose oxocarbenium through the initial base-excision step of DNA repair. The NMR experiments and QM/MM calculations consistently illustrated the base-excision reaction operated by hOGG1.

Zobrazit více v PubMed

Lindahl T., Wood R.D.. Quality control by DNA repair. Science. 1999; 286:1897–1905. PubMed

David S.S., Wiliams S.D.. Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem. Rev. 1998; 98:1221–1261. PubMed

Stivers J.T., Jiang Y.L.. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 2003; 103:2729–2759. PubMed

Berti P.J., McCann J.A.B.. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem. Rev. 2006; 106:506–555. PubMed

David S.S., O'Shea V.L., Kundu S.. Base-excision repair of oxidative DNA damage. Nature. 2007; 447:941–950. PubMed PMC

Dodson M.L., Michaels M.L., Lloyd R.S.. Unified catalytic mechanism for DNA glycosylases. J. Biol. Chem. 1994; 269:32709–32712. PubMed

Wagenknecht H.-A. The search for single DNA damage among millions of base pairs: DNA glycosylases trapped at work. Angew. Chem. Int. Ed. Engl. 2006; 45:5583–5585. PubMed

Bruner S.D., Norman D.P.G., Verdine G.L.. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature. 2000; 403:859–866. PubMed

Rowland M.M., Schonhoft J.D., McKibbin P.L., David S.S., Stivers J.T.. Microscopic mechanism of DNA damage searching by hOGG1. Nucleic Acids Res. 2014; 42:9295–9303. PubMed PMC

Paz-Elizur T., Sevilya Z., Leitner-Dagan Y., Elinger D., Roisman L.C., Livneh Z.. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett. 2008; 266:60–72. PubMed PMC

Kryston T.B., Georgiev A.B., Pissis P., Georgakilas A.G.. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 2011; 711:193–201. PubMed

Dumont H., Grber R., Bignon E., Morell C., Aranda J., Ravanat J.-L., Tunon I.. Singlet oxygen attack on guanine: reactivity and structural signature within the B-DNA helix. Chemistry. 2016; 22:1–6. PubMed

Hainaut P., Hernandez T., Robinson A., Rodriguez-Tome P., Flores T., Hollstein M., Harris C.C., Montesano R.. IARC database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 1998; 26:205–213. PubMed PMC

Helleday T., Petermann E., Lundin C., Hodgson B., Sharma R.A.. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer. 2008; 8:193–204. PubMed

Lu R.Z., Nash H.M., Verdine G.L.. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 1997; 7:397–407. PubMed

Arai K., Morishita K., Shinmura K., Kohno T., Kim S.R., Nohmi T., Taniwaki M., Ohwada S., Yokota J.. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene. 1997; 14:2857–2861. PubMed

Roldan-Arjona T., Wei Y.F., Carter K.C., Klungland A., Anselmino C., Wang R.P., Augustus M., Lindahl T.. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:8016–8020. PubMed PMC

Bjoras M., Luna L., Johnson B., Hoff E., Haug T., Rognes T., Seeberg E.. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 1997; 16:6314–6322. PubMed PMC

Rosenquist T.A., Zharkov D.O., Grollman A.P.. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:7429–7434. PubMed PMC

Radicella J.P., Dherin C., Desmaze C., Fox M.S., Boiteux S.. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:8010–8015. PubMed PMC

Kuo F.C., Sklar J.. Augmented expression of a human gene for 8-oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers. J. Exp. Med. 1997; 186:1547–1556. PubMed PMC

Aburatani H., Hippo Y., Ishida T., Takashima R., Matsuba C., Kodama T., Takao M., Yasui A., Yamamoto K., Asano M. et al. Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Res. 1997; 57:2151–2156. PubMed

Nash H.M., Bruner S.D., Scharer O.D., Kawate T., Addona T.A., Sponner E., Lane W.S., Verdine G.L.. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 1996; 6:968–980. PubMed

Boiteux S., Radicella J.P.. The human OGG1 gene: Structure, functions, and its implication in the process of carcinogenesis. Arch. Biochem. Biophys. 2000; 377:1–8. PubMed

Banerjee A., Yang W., Karplus M., Verdine G.L.. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature. 2005; 434:612–618. PubMed

Hamm M.L., Gill T.J., Nicolson S.C., Summers M.R.. Substrate specificity of fpg (MutM) and hOGG1, two repair glycosylases. J. Am. Chem. Soc. 2007; 129:7724–7725. PubMed

McKibbin P.L., Kobori A., Taniguchi Y., Kool E.T., David S.S.. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases. J. Am. Chem. Soc. 2012; 134:1653–1661. PubMed PMC

Yin Y.Z., Sasaki S., Taniguchi Y.. Recognition and excision properties of 8-halogenated-7-deaza-2-deoxyguanosine as 8-oxo-2-deoxyguanosine analogues and Fpg and hOGG1 inhibitors. Chembiochem. 2015; 16:1190–1198. PubMed

Crenshaw C.M., Kwangho N., Kimberly O., Kutchikian P.S., Bowman B., Karplus M., Verdine G.L.. Enforced presentation of an extrahelikal guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. J. Biol. Chem. 2012; 287:24916–24928. PubMed PMC

Lee S., Radom C.T., Verdine G.L.. Trapping and structural elucidation of a very advanced intermediate in the lesion-extrusion pathway of hOGG1. J. Am. Chem. Soc. 2008; 130:7784–7785. PubMed PMC

Donley N., Jaruga P., Coskun E., Dizdaroglu M., McCullough A.K., Lloyd R.S.. Small molecule inhibitors of 8-oxoguanine DNA glycosylase-1 (OGG1). ACS Chem. Biol. 2015; 10:2334–2343. PubMed PMC

Norman D.P.G., Chung S.J., Verdine G.L.. Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase. Biochemistry. 2003; 42:1564–1572. PubMed

Radom C.T., Banerjee A., Verdine G.L.. Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations. J. Biol. Chem. 2007; 282:9182–9194. PubMed

Fromme J.C., Bruner S.D., Yang W., Karplus M., Verdine G.L.. Product-assisted catalysis in base-excision DNA repair. Nat. Struct. Mol. Bio. 2003; 10:204–211. PubMed

Norman D.P.G., Bruner S.D., Verdine G.L.. Coupling of substrate recognition and catalysis by a human base-excision DNA repair protein. J. Am. Chem. Soc. 2001; 123:359–360. PubMed

Kow Y.W., Wallace S.S.. Mechanism of action of escherichia-coli endonuclease-III. Biochemistry. 1987; 26:8200–8206. PubMed

Nash H.M., Lu R.Z., Lane W.S., Verdine G.L.. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOGG1: direct identification, ablation and chemical reconstitution. Chem. Biol. 1997; 4:693–702. PubMed

Warshel A., Sharma P.K., Kato M., Xiang Y., Liu H.B., Olsson M.H.M.. Electrostatic basis for enzyme catalysis. Chem. Rev. 2006; 106:3210–3235. PubMed

Shim E.J., Przybylski J.L., Wetmore S.D.. Effects of nucleophile, oxidative damage, and nucleobase orientation on the glycosidic bond cleavage in deoxyguanosine. J. Phys. Chem. B. 2010; 114:2319–2326. PubMed

Kellie J.L., Wilson K.A., Wetmore S.D.. An ONIOM and MD investigation of possible monofunctional activity of human 8-oxoguanine-DNA glycosylase (hOGG1). J. Phys. Chem. B. 2015; 119:8013–8023. PubMed

Osakabe T., Fujii Y., Hata M., Tsuda M., Neya S., Hoshino T.. Quantum chemical study on base excision mechanism of 8-oxoguanine DNA glycosylase. Chem. Bio Inform. J. 2004; 4:73–92.

Sadeghian K., Ochsenfeld C.. Unraveling the base excision repair mechanism of human DNA glycosylase. J. Am. Chem. Soc. 2015; 137:9824–9831. PubMed

Fromme J.C., Verdine G.L.. Structure of a trapped endonuclease III-DNA covalent intermediate. EMBO J. 2003; 22:3461–3471. PubMed PMC

Schyman P., Danielsson J., Pinak M., Laaksonen A.. Theoretical study of the human DNA repair protein hOGG1 activity. J. Phys. Chem. A. 2005; 109:1713–1719. PubMed

Calvaresi M., Bottoni A., Garavelli M.. Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems. J. Phys. Chem. B. 2007; 111:6557–6570. PubMed

Šebera J., Trantírek L., Tanaka Y., Sychrovský V.. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-oxoG with the hOGG1 DNA repair protein. J. Phys. Chem. B. 2012; 116:12535–12544. PubMed

Pace C.N., Grimsley G.R., Scholtz J.M.. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J. Biol. Chem. 2009; 284:13285–13289. PubMed PMC

Tanaka Y., Yamaguchi H., Oda S., Kondo Y., Nomura M., Kojima C., Ono A.. NMR spectroscopic study of a DNA duplex with mercury-mediated T-T base pairs. Nucleosides Nucleotides Nucleic Acids. 2006; 25:613–624. PubMed

Tanaka Y., Oda S., Yamaguchi H., Kondo Y., Kojima C., Ono A.. N-15-N-15 J-coupling across Hg-II: direct observation of Hg-II-mediated T-T base pairs in a DNA duplex. J. Am. Chem. Soc. 2007; 129:244–245. PubMed

Uchiyama T., Miura T., Takeuchi H., Dairaku T., Komuro T., Kawamura T., Kondo Y., Benda L., Sychrovský V., Bouř P. et al. Raman spectroscopic detection of the T-Hg-II-T base pair and the ionic characteristics of mercury. Nucleic Acids Res. 2012; 40:5766–5774. PubMed PMC

Dairaku T., Furuita K., Sato H., Kondo Y., Kojima C., Ono A., Tanaka Y.. Exploring a DNA sequence for the three-dimensional structure determination of a silver(I)-mediated C-C base pair in a DNA duplex by H-1 NMR spectroscopy. Nucleosides Nucleotides Nucleic Acids. 2015; 34:877–900. PubMed

Zhao Y., Truhlar D.G.. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008; 120:215–241.

Harihara P.C., Pople J.A.. Influence of polarization functions on molecular-orbital hydrogenation energies. Theor. Chim. Acta. 1973; 28:213–222.

Banks J.L., Beard H.S., Cao Y.X., Cho A.E., Damm W., Farid R., Felts A.K., Halgren T.A., Mainz D.T., Maple J.R. et al. Integrated modeling program, applied chemical theory (IMPACT). J. Comput. Chem. 2005; 26:1752–1780. PubMed PMC

Jaguar, v. 8.2, Schrödinger. 2013; NY: LLC

Bochevarov A.D., Harder E., Hughes T.F., Greenwood J.R., Braden D.A., Philipp D.M., Rinaldo D., Halls M.D., Zhang J., Friesner R.A.. Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 2013; 113:2110–2142.

Impact, v. 6.1, Schrödinger. 2013; NY: LLC

QSite, v. 6.1, Schrödinger. 2013; NY: LLC

Friesner R.A., Guallar V.. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu. Rev. Phys. Chem. 2005; 56:389–427. PubMed

Contreras R.R., Fuentealba P., Galvan M., Perez P.. A direct evaluation of regional fukui functions in molecules. Chem. Phys. Lett. 1999; 304:405–413.

Morell C., Grand A., Toro-Labbe A.. New dual descriptor for chemical reactivity. J. Phys. Chem. A. 2005; 109:205–212. PubMed

Chamorro E., Perez P.. Condensed-to-atoms electronic Fukui functions within the framework of spin-polarized density-functional theory. J. Chem. Phys. 2005; 123:114107. PubMed

Šebera J., Trantírek L., Tanaka Y., Nencka R., Fukal J., Sychrovský V.. The activation of N-glycosidic bond cleavage performed by base-excision repair enzyme hOGG1; theoretical study of the role of Lys 249 residue in activation of G, OxoG and FapyG. RSC Adv. 2014; 4:44043–44051.

Kuznetsov N.A., Kuznetsova A.A., Vorobjev Y.N., Krasnoperov L.N., Fedorova O.S.. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase. PLoS One. 2014; 9:e98495. PubMed PMC

Boiteux S., Coste F., Castaing B.. Repair of 8- oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic. Biol. Med. 2016; doi:10.1016/j.freeradbiomed.11.042 PubMed

Sychrovský V., Vokáčová Z.S., Trantírek L.. Guanine bases in DNA G-quadruplex adopt nonplanar geometries owing to solvation and base pairing. J. Phys. Chem. A. 2012; 116:4144–4151. PubMed

Sychrovský V., Foldynová-Trantírková S., Špačková N., Robeyns K., Van Meervelt L., Blankenfeldt W., Vokáčová Z., Šponer J., Trantírek L.. Revisiting the planarity of nucleic acid bases: pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion. Nucleic Acids Res. 2009; 37:7321–7331. PubMed PMC

Vidal A.E., Hickson I.D., Boiteux S., Radicella J.P.. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Nucleic Acids Res. 2001; 29:1285–1292. PubMed PMC

Hill J.W., Hazra T.K., Izumi T., Mitra S.. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair. Nucleic Acids Res. 2001; 29:430–438. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...