Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19786496
PubMed Central
PMC2790901
DOI
10.1093/nar/gkp783
PII: gkp783
Knihovny.cz E-zdroje
- MeSH
- deoxyadenosiny chemie MeSH
- deoxycytidin chemie MeSH
- dusík chemie MeSH
- krystalografie rentgenová MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- oligonukleotidy chemie MeSH
- počítačová simulace MeSH
- purinové nukleosidy chemie MeSH
- purinové nukleotidy chemie MeSH
- puriny chemie MeSH
- pyrimidinové nukleosidy chemie MeSH
- pyrimidinové nukleotidy chemie MeSH
- pyrimidiny chemie MeSH
- sacharidy chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2'-deoxyadenosine MeSH Prohlížeč
- deoxyadenosiny MeSH
- deoxycytidin MeSH
- dusík MeSH
- oligonukleotidy MeSH
- purinové nukleosidy MeSH
- purinové nukleotidy MeSH
- puriny MeSH
- pyrimidinové nukleosidy MeSH
- pyrimidinové nukleotidy MeSH
- pyrimidiny MeSH
- sacharidy MeSH
We describe a novel, fundamental property of nucleobase structure, namely, pyramidilization at the N1/9 sites of purine and pyrimidine bases. Through a combined analyses of ultra-high-resolution X-ray structures of both oligonucleotides extracted from the Nucleic Acid Database and isolated nucleotides and nucleosides from the Cambridge Structural Database, together with a series of quantum chemical calculations, molecular dynamics (MD) simulations, and published solution nuclear magnetic resonance (NMR) data, we show that pyramidilization at the glycosidic nitrogen is an intrinsic property. This property is common to isolated nucleosides and nucleotides as well as oligonucleotides-it is also common to both RNA and DNA. Our analysis suggests that pyramidilization at N1/9 sites depends in a systematic way on the local structure of the nucleoside. Of note, the pyramidilization undergoes stereo-inversion upon reorientation of the glycosidic bond. The extent of the pyramidilization is further modulated by the conformation of the sugar ring. The observed pyramidilization is more pronounced for purine bases, while for pyrimidines it is negligible. We discuss how the assumption of nucleic acid base planarity can lead to systematic errors in determining the conformation of nucleotides from experimental data and from unconstrained MD simulations.
Zobrazit více v PubMed
Bloomfiled VA, Crothers DM, Tinoco I, Hearst JE, Wimmer DE, Killman PA, Turner DH. Nucleic Acids: Structure, Properties, and Functions. CA, USA: University Science Books; 2000. pp. 13–41.
Calladine CR, Drew H, Luisi B, Travers A. Understanding DNA: The Molecule and How it Works. UK: Elsevier Academic Press; 2004. pp. 203–235.
Saenger W. Principles of Nucleic Acid Structure. NY, USA: Springer; 1988.
Hobza P, Sponer J. Structure, energetics, and dynamics of the nucleic acid base pairs: nonempirical ab initio calculations. Chem. Rev. 1999;99:3247–3276. PubMed
Sponer J, Leszczynski J, Hobza P. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers. 2001;61:3–31. PubMed
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karpus M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983;4:187–217.
Allen FH, Bellard S, Brice MD, Cartwright BA, Doubleday A, Higgs H, Hummelink T, Hummelink-Peters BG, Kennard O, Motherwell WDS. The Cambridge crystallographic data centre: computer-based search, retrieval, analysis and display of information. Acta Cryst. 1979;B35:2331–2339.
Gelbin A, Schneider B, Clowney L, Hsieh SH, Olson WK, Berman HM. Geometric parameters in nucleic acids: nitrogeous bases. J. Am. Chem. Soc. 1996;118:509–5518.
Parkinson G, Vojtechovsky J, Clowney L, Brunger AT, Berman HM. New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr. 1996;52:57–64. PubMed
Sponer J, Hobza P. Nonplanar geometries of DNA bases. Second order Moller–Plesset study. J. Phys. Chem. A. 1994;98:3161–3164.
Dong F, Miller RE. Vibrational transition moment angles in isolated biomolecules: a structural tool. Science. 2002;298:1227–1230. PubMed
Sponer J, Mokdad A, Sponer JE, Spackova N, Leszczynski J, Leontis NB. Unique tertiary and neighbor interactions determine conservation patterns of Cis Watson–Crick A/G base-pairs. J. Mol. Biol. 2003;330:967–978. PubMed
Roberts GC. NMR of Macromolecules: A Practical Approach. UK: Oxford University Press; 1993.
Clore GM, Gronenborn AM. The solution structure of a B-DNA undecamer comprising a portion of the specific target site for the cAMP receptor protein in the gal operon. Refinement on the basis of interproton distance data. EMBO J. 1985;4:829–835. PubMed PMC
Clore GM, Gronenborn AM. Probing the three-dimensional structures of DNA and RNA oligonucleotides in solution by nuclear overhauser enhancement measurements. FEBS Lett. 1985;179:187–198. PubMed
Clore GM, Gronenborn AM, Brunger AT, Karplus M. Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of Escherichia coli. Combined use of 1H nuclear magnetic resonance and restrained molecular dynamics. J. Mol. Biol. 1985;186:435–455. PubMed
Clore GM, Gronenborn AM, McLaughlin LW. The structure of the double-stranded RNA pentamer 5'(CACAG). 5'(CUGUG) determined by nuclear Overhauser enhancement measurements: interproton distance determination and structure refinement on the basis of X-ray coordinates. Eur. J. Biochem. 1985;151:153–165. PubMed
Clore GM, Gronenborn AM, Moss DS, Tickle IJ. Refinement of the solution structure of the B DNA hexamer 5′d(C-G-T-A-C-G)2 on the basis of inter-proton distance data. J. Mol. Biol. 1985;185:219–226. PubMed
Pavelcik F, Schneider B. Building of RNA and DNA double helices into electron density. Acta Crystallogr. 2008;64:620–626. PubMed
Allain FH, Varani G. How accurately and precisely can RNA structure be determined by NMR? J. Mol. Biol. 1997;267:338–351. PubMed
Westhof E, Dumas P. Refinement of protein and nucleic acid structures. Meth. Mol. Biol. 1996;56:227–244. PubMed
Cheatham TE, Kollman PA. Molecular dynamics simulation of nucleic acids. Annu. Rev. Phys. Chem. 2000;51:435–471. PubMed
Cheatham TE, Young MA. Molecular dynamics simulation of nucleic acids: successes, limitations and promise. Biopolymers. 2001;56:232–256. PubMed
Davies DB, Rajani P, MacCoss M, Danyluk SS. Determination of the Karplus relationships for the C-2, H-1 and C-6, H-1 vicinal coupling paths of uridine derivatives. Mag. Reson. Chem. 1985;23:72–77.
Ippel JH, Wijmenga SS, de Jong R, Heus HA, Hilbers CW, de Vroom E, van der Marel GA, van Boom JA. Heteronuclear scalar couplings in the bases and sugar rings of nucleic acids: their determination and application in assignment and conformational analysis. Magn. Reson. Chem. 1996;34:S156–S176.
Zidek L, Padrta P, Chmelik J, Sklenar V. Internal consistency of NMR data obtained in partially aligned biomacromolecules. J. Magn. Reson. 2003;162:385–395. PubMed
Duchardt E, Richter C, Ohlenschlager O, Gorlach M, Wohnert J, Schwalbe H. Determination of the glycosidic bond angle chi in RNA from cross-correlated relaxation of CH dipolar coupling and N chemical shift anisotropy. J. Am. Chem. Soc. 2004;126:1962–1970. PubMed
Ravindranathan S, Kim CH, Bodenhausen G. Cross correlations between 13C-1H dipolar interactions and 15N chemical shift anisotropy in nucleic acids. J. Biomol. NMR. 2003;27:365–375. PubMed
Sychrovsky V, Muller N, Schneider B, Smrecki V, Spirko V, Sponer J, Trantirek L. Sugar pucker modulates the cross-correlated relaxation rates across the glycosidic bond in DNA. J. Am. Chem. Soc. 2005;127:14663–14667. PubMed
Trantirek L, Caha E, Kaderavek P, Fiala R. NMR (13)C-relaxation study of base and sugar dynamics in GCAA RNA hairpin tetraloop. J. Biomol.Struct. Dyn. 2007;25:243–252. PubMed
Isayev O, Furmanchuk A, Shishkin OV, Gorb L, Leszczynski J. Are isolated nucleic acid bases really planar? A Car-Parrinello molecular dynamics study. J. Phys. Chem. B. 2007;111:3476–3480. PubMed
Shishkin OV. Conformational flexibility of di-and tetrahydropyrimidine rings in nucleic acid bases. An ab initio HF/6-31G** study. J. Mol. Struct. 1998;447:1–5.
Shishkin OV, Gorb L, Hobza P, Leszczynski J. Structural nonrigidity of nucleic acid bases. Post-Hartree-Fock ab initio study. Int. J. Quantum Chem. 2000;80:1116–1124.
Shishkin OV, Gorb L, Leszczynski J. Conformational flexibility of pyrimidine ring in adenine and related compounds. Chem. Phys. Lett. 2000;330:603–611.
Shishkin OV, Gorb L, Luzanov AV, Elstner M, Suhai S, Leszczynski J. Structure and conformational flexibility of uracil: A comprehensive study of performance of the MP2, B3LYP and SCC-DFTB methods. J. Mol. Struc-Theochem. 2003;625:295–303.
Shishkin OV, Pichugin KY, Gorb L, Leszczynski J. Structural non-rigidity of six-membered aromatic rings. J. Mol. Struct. 2002;616:159–166.
Shishkin OV, Sponer J, Hobza P. Intramolecular flexibility of DNA bases in adenine-thymine and guanine-cytosine Watson–Crick base pairs. J. Mol. Struct. 1999;477:15–21.
Vogt N, Khaikin LS, Grikina OE, Rykov AN, Vogt J. Study of the thymine molecule: Equilibrium structure from joint analysis of gas-phase electron diffraction and microwave data and assignment of vibrational spectra using results of ab initio calculations. J. Phys. Chem. A. 2008;112:7662–7670. PubMed
Trantirek L, Urbasek M, Stefl R, Feigon J, Sklenar V. A method for direct determination of helical parameters in nucleic acids using residual dipolar couplings. J. Am. Chem. Soc. 2000;122:10454–10455.
Trantirek L, Stefl R, Masse JE, Feigon J, Sklenar V. Determination of the glycosidic torsion angles in uniformly 13C-labeled nucleic acids from vicinal coupling constants 3J(C2)/4-H1′ and 3J(C6)/8-H1′. J. Biomol. NMR. 2002;23:1–12. PubMed
Munzarova ML, Sklenar V. Three-bond sugar-base couplings in purine versus pyrimidine nucleosides: a DFT study of Karplus relationships for (3)J(C2/4-H1′) and (3)J(C6/8-H1′) in DNA. J. Am. Chem. Soc. 2002;124:10666–10667. PubMed
Munzarova ML, Sklenar V. DFT analysis of NMR scalar interactions across the glycosidic bond in DNA. J. Am. Chem. Soc. 2003;125:3649–3658. PubMed
Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 1992;63:751–759. PubMed PMC
Allen FH. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. B. 2002;58:380–388. PubMed
Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. B. 2002;58:389–397. PubMed
Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 2003;160:65–73. PubMed
Haider S, Parkinson GN, Neidle S. Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J. Mol. Biol. 2002;320:189–200. PubMed
Dang LX. Mechanism and thermodynamics of ion selectivity in aqueous-solutions of 18-crown-6-ether – A molecular-dynamics study. J. Am. Chem. Soc. 1995;117:6954–6960.
Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 2007;92:3817–3829. PubMed PMC
Darden T, York D, Pedersen L. Particle mesh ewald – an n.log(n) method for ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092.
Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical-integration of Cartesian equations of motion of a system with constraints – molecular dynamics of n-alkanes. J. Compu. Phys. 1977;23:327–341.
Berendsen HJC, Postma JPM, Vangunsteren WF, DiNola A, Haak JR. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690.
Becke AD. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993;98:1372–1377.
Lee CT, Yang WT, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B. 1988;37:785–789. PubMed
Altona C, Sundaralingam S. Conformational-analysis of sugar ring in nucleosides and nucleotides – new description using concept of pseudorotation. J. Am. Chem. Soc. 1972;94:8205–8212. PubMed
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, et al. Pittsburgh, PA: Gaussian Inc.; 2004. Gaussian 03 revision C.02.
Brumovska E, Sychrovsky V, Vokacova Z, Sponer J, Schneider B, Trantirek L. Effect of local sugar and base geometry on 13C and 15N magnetic shielding anisotropy in DNA nucleosides. J. Biomol. NMR. 2008;42:209–223. PubMed
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995;117:5179–5197.
Aprahamian I, Bodwell GJ, Fleming JJ, Manning GP, Mannion MR, Sheradsky T, Vermeij RJ, Rabinovitz M. “The great escape” from antiaromaticity: reduction of strained pyrenes. J. Am. Chem. Soc. 2003;125:1720–1721. PubMed
Bodwell GJ, Bridson JN, Cyranski MK, Kennedy JW, Krygowski TM, Mannion MR, Miller DO. Nonplanar aromatic compounds. 8. Synthesis, crystal structures, and aromaticity investigations of the 1,n-dioxa[n](2,7)pyrenophanes. How does bending affect the cyclic pi-electron delocalization of the pyrene system? J. Org. Chem. 2003;68:2089–2098. PubMed
Dobrowolski MA, Cyranski MK, Merner BL, Bodwell GJ, Wu JI, Schleyer PR. Interplay of pi-electron delocalization and strain in [n](2,7)pyrenophanes. J. Org. Chem. 2008;73:8001–8009. PubMed
Zhang B, Manning GP, Dobrowolski MA, Cyranski MK, Bodwell GJ. Nonplanar aromatic compounds. 9. Synthesis, structure, and aromaticity of 1:2,13:14-dibenzo[2]paracyclo[2](2,7)- pyrenophane-1,13-diene. Org. Lett. 2008;10:273–276. PubMed
Tjandra N, Marquardt J, Clore GM. Direct refinement against proton-proton dipolar couplings in NMR structure determination of macromolecules. J. Magn. Reson. 2000;142:393–396. PubMed
Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A. Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 1997;4:732–738. PubMed
Mauffret O, Tevanian G, Fermandjian S. Residual dipolar coupling constants and structure determination of large DNA duplexes. J. Biomol. NMR. 2002;24:317–328. PubMed
Clore GM, Gronenborn AM, Tjandra N. Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J. Magn. Reson. 1998;131:159–162. PubMed
Wu Z, Delaglio F, Tjandra N, Zhurkin VB, Bax A. Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy. J. Biomol. NMR. 2003;26:297–315. PubMed
Wu Z, Tjandra N, Bax A. Measurement of 1H3'-31P dipolar couplings in a DNA oligonucleotide by constant-time NOESY difference spectroscopy. J. Biomol. NMR. 2001;19:367–370. PubMed
Butterfoss GL, Richardson JS, Hermans J. Protein imperfections: separating intrinsic from extrinsic variation of torsion angles. Acta Crystallogr. 2005;61:88–98. PubMed
Jaskolski M, Gilski M, Dauter Z, Wlodawer A. Stereochemical restraints revisited: how accurate are refinement targets and how much should protein structures be allowed to deviate from them? Acta Crystallogr. 2007;63:611–620. PubMed
MacArthur MW, Thornton JM. Deviations from planarity of the peptide bond in peptides and proteins. J. Mol. Biol. 1996;264:1180–1195. PubMed
Stec B. Comment on stereochemical restraints revisited: how accurate are refinement targets and how much should protein structures be allowed to deviate from them? by Jaskolski, Gilski, Dauter & Wlodawer (2007) Acta Crystallogr. 2007;63:1113–1114. PubMed
Tickle IJ. Experimental determination of optimal root-mean-square deviations of macromolecular bond lengths and angles from their restrained ideal values. Acta Crystallogr. 2007;63:1274–1281. author reply 1282–1273. PubMed
Karplus PA, Shapovalov MV, Dunbrack RL, Berkholz DS. A forward-looking suggestion for resolving the stereochemical restraints debate: ideal geometry functions. Acta Crystallogr. 2008;64:335–336. PubMed
Schneider B, Neidle S, Berman HM. Conformations of the sugar-phosphate backbone in helical DNA crystal structures. Biopolymers. 1997;42:113–124. PubMed
Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K. Recommendations for the presentation of NMR structures of proteins and nucleic acids. J. Mol. Biol. 1998;280:933–952. PubMed