Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural
Grantová podpora
HHSN275201300006C
NICHD NIH HHS - United States
N01 HD023342
NICHD NIH HHS - United States
PubMed
28342715
PubMed Central
PMC5625293
DOI
10.1016/j.ajog.2017.03.016
PII: S0002-9378(17)30427-1
Knihovny.cz E-zdroje
- Klíčová slova
- amniocentesis, amniotic fluid analysis, biomarker, computational methods, diagnostic indices, fetal lung maturity, neonatal respiratory morbidity, predictive values, quantitative texture analysis, respiratory distress syndrome, sonography, transient tachypnea, ultrasound,
- MeSH
- dospělí MeSH
- lidé MeSH
- morbidita MeSH
- novorozenec MeSH
- plíce diagnostické zobrazování embryologie patologie MeSH
- prediktivní hodnota testů MeSH
- prospektivní studie MeSH
- syndrom respirační tísně novorozenců epidemiologie MeSH
- tachypnoe epidemiologie MeSH
- těhotenství MeSH
- ultrasonografie prenatální * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
BACKGROUND: Prediction of neonatal respiratory morbidity may be useful to plan delivery in complicated pregnancies. The limited predictive performance of the current diagnostic tests together with the risks of an invasive procedure restricts the use of fetal lung maturity assessment. OBJECTIVE: The objective of the study was to evaluate the performance of quantitative ultrasound texture analysis of the fetal lung (quantusFLM) to predict neonatal respiratory morbidity in preterm and early-term (<39.0 weeks) deliveries. STUDY DESIGN: This was a prospective multicenter study conducted in 20 centers worldwide. Fetal lung ultrasound images were obtained at 25.0-38.6 weeks of gestation within 48 hours of delivery, stored in Digital Imaging and Communication in Medicine format, and analyzed with quantusFLM. Physicians were blinded to the analysis. At delivery, perinatal outcomes and the occurrence of neonatal respiratory morbidity, defined as either respiratory distress syndrome or transient tachypnea of the newborn, were registered. The performance of the ultrasound texture analysis test to predict neonatal respiratory morbidity was evaluated. RESULTS: A total of 883 images were collected, but 17.3% were discarded because of poor image quality or exclusion criteria, leaving 730 observations for the final analysis. The prevalence of neonatal respiratory morbidity was 13.8% (101 of 730). The quantusFLM predicted neonatal respiratory morbidity with a sensitivity, specificity, positive and negative predictive values of 74.3% (75 of 101), 88.6% (557 of 629), 51.0% (75 of 147), and 95.5% (557 of 583), respectively. Accuracy was 86.5% (632 of 730) and positive and negative likelihood ratios were 6.5 and 0.3, respectively. CONCLUSION: The quantusFLM predicted neonatal respiratory morbidity with an accuracy similar to that previously reported for other tests with the advantage of being a noninvasive technique.
Althaia Xarxa Assistencial Universitària de Manresa Hospital de Sant Joan de Déu Manresa Spain
BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine Barcelona Spain
Clínica del Prado Medellín Antioquía Colombia
Department of Maternal Fetal Medicine KK Women's and Children's Hospital Singapore
Department of Obstetrics and Gynaecology Consorci Sanitari de Terrassa Terrassa Spain
Department of Obstetrics and Gynecology University of Tennessee Health Science Center Memphis TN
Division of Maternal and Fetal Medicine University Hospital La Paz Madrid Spain
Fernández Hospital Hyberabad India
Fetal Medicine Unit Clinic University Hospital Virgen de la Arrixaca Murcia Spain
Hospital Nostra Senyora de Meritxell Escaldes Engordany Andorra
Royal Prince Alfred Hospital Sydney University of Sydney Sydney New South Wales Australia
Zobrazit více v PubMed
Teune MJ, Bakhuizen S, Gyamfi Bannerman C, et al. A systematic review of severe morbidity in infants born late preterm. American journal of obstetrics and gynecology. 2011;205:374, e1–e9. PubMed
Consortium on Safe Labor. Hibbard JU, Wilkins I, et al. Respiratory morbidity in late preterm births. JAMA. 2010;304:419–425. PubMed PMC
Yoder BA, Gordon MC, Barth WH., Jr Late-preterm birth: does the changing obstetric paradigm alter the epidemiology of respiratory complications? Obstet Gynecol. 2008;111:814–822. PubMed
Spong CY, Mercer BM, D’Alton M, Kilpatrick S, Blackwell S, Saade G. Timing of indicated late-preterm and early-term birth. Obstet Gynecol. 2011;118(2 Pt 1):323. PubMed PMC
Clark SL, Miller DD, Belfort MA, Dildy GA, Frye DK, Meyers JA. Neonatal and maternal outcomes associated with elective term delivery. American journal of obstetrics and gynecology. 2009;200:156, e1–e4. PubMed
Sengupta S, Carrion V, Shelton J, et al. Adverse Neonatal Outcomes Associated With Early-Term Birth. JAMA Pediatr. 2013;167:1053–1059. PubMed
Porto AM, Coutinho IC, Correia JB, Amorim MM. Effectiveness of antenatal corticosteroids in reducing respiratory disorders in late preterm infants: randomised clinical trial. BMJ. 2011;342:d1696. PubMed PMC
Gyamfi-Bannerman C, Thom EA, Blackwell SC, et al. Antenatal betamethasone for women at risk for late preterm delivery. N Engl J Med. 2016;374:1311–1320. PubMed PMC
Besnard AE, Wirjosoekarto SAM, Broeze KA, Opmeer BC, Mol BWJ. Lecithin/sphingomyelin ratio and lamellar body count for fetal lung maturity: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2013;169:177–183. PubMed
American College of Obstetricians and Gynecologists. Fetal lung maturity. ACOG Practice bulletin no. 97. Obstet Gynecol. 2008;112:717–726. PubMed
Grannum PA, Berkowitz RL, Hobbins JC. The ultrasonic changes in the maturing placenta and their relation to fetal pulmonic maturity. Am J Obstet Gynecol. 1979;133:915–922. PubMed
Harman CR, Manning FA, Stearns E, Morrison I. The correlation of ultrasonic placental grading and fetal pulmonary maturation in five hundred sixty-three pregnancies. Am J Obstet Gynecol. 1982;143:941–943. PubMed
Serizawa M, Maeda K. Noninvasive fetal lung maturity prediction based on ultrasonic gray level histogram width. Ultrasound Med Biol. 2010;36:1998–2003. PubMed
Maeda K, Utsu M, Yamamoto N, Serizawa M. Echogenicity of fetal lung and liver quantified by the grey-level histogram width. Ultrasound Med Biol. 1999;25:201–208. PubMed
Cosmi EV, Anceschi MM, Cosmi E, Piazze JJ, La Torre R. Ultrasonographic patterns of fetal breathing movements in normal pregnancy. Int J Gynecol Obstet. 2003;80:285–290. PubMed
La Torre R, Cosmi E, Anceschi MH, Piazze JJ, Piga MD, Cosmi EV. Preliminary report on a new and noninvasive method for the assessment of fetal lung maturity. J Perinat Med. 2003;31:431–434. PubMed
Bhanu Prakash KN, Ramakrishnan AG, Suresh S, Chow TWP. Fetal lung maturity analysis using ultrasound image features. IEEE Trans Inf Technol Biomed. 2002;6:38–45. PubMed
Insana MF, Garra BS, Rosenthal SJ, Hall TJ. Quantitative ultrasonography. Med Prog Technol. 1988;15:141–153. PubMed
Sanz-Cortes M, Figueras F, Bonet-Carne E, et al. Fetal brain MRI texture analysis identifies different microstructural patterns in adequate and small for gestational age fetuses at term. Fetal Diagn Ther. 2013;33:122–129. PubMed
Cobo T, Bonet-Carne E, Martinez-Terron M, et al. Feasibility and reproducibility of fetal lung texture analysis by Automatic Quantitative Ultrasound Analysis and correlation with gestational age. Fetal Diagn Ther. 2012;31:230–236. PubMed
Palacio M, Cobo T, Martinez-Terron M, et al. Performance of an automatic quantitative ultrasound analysis of the fetal lung to predict fetal lung maturity. Am J Obstet Gynecol. 2012;207:504.e1–e.5. PubMed
Bonet-Carne E, Palacio M, Cobo T, et al. Quantitative ultrasound texture analysis of fetal lungs to predict neonatal respiratory morbidity. Ultrasound Obstet Gynecol. 2015;45:427–433. PubMed
Taeusch HW, Ballard R, Gleason C. Avery's Diseases of the Newborn. 8th. Philadelphia PA: Elsevier Saunders; 2005.
Grenache DG, Gronowski AM. Fetal lung maturity. Clin Biochem. 2006;39:1–10. PubMed
Wijnberger LDE, de Kleine M, Voorbij HAM, et al. Prediction of fetal lung immaturity using gestational age, patient characteristics and fetal lung maturity tests: a probabilistic approach. Arch Gynecol Obstet. 2010;281:15–21. PubMed PMC
Tekesin I, Anderer G, Hellmeyer L, Stein W, Kühnert M, Schmidt S. Assessment of fetal lung development by quantitative ultrasonic tissue characterization: a methodical study. Prenat Diagn. 2004;24:671–676. PubMed
Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50:515–525. PubMed
Crowley PA. Antenatal corticosteroid therapy: a meta-analysis of the randomized trials, 1972 to 1994. Am J Obstet Gynecol. 1995;173:322–335. PubMed
National Institutes of Health Consensus Statement. Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH Consensus Development Panel on the Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes. JAMA. 1995;273:413–418. PubMed
Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006:CD004454. PubMed
Yinon Y, Haas J, Mazaki-Tovi S, et al. Should patients with documented fetal lung immaturity after 34 weeks of gestation be treated with steroids? Am J Obstet Gynecol. 2012;207:222.e1–e4. PubMed
Shanks A, Gross G, Shim T, Allsworth J, Sadovsky Y, Bildirici I. Administration of steroids after 34 weeks of gestation enhances fetal lung maturity profiles. Am J Obstet Gynecol. 2010;203:47.e1–e5. PubMed PMC
Kamath-Rayne BD, DeFranco EA, Marcotte MP. Antenatal steroids for treatment of fetal lung immaturity after 34 weeks of gestation: an evaluation of neonatal outcomes. Obstet Gynecol. 2012;119:909–916. PubMed PMC
Balci O, Ozdemir S, Mahmoud AS, Acar A, Colakoglu MC. The effect of antenatal steroids on fetal lung maturation between the 34th and 36th week of pregnancy. Gynecol Obstet Invest. 2010;70:95–99. PubMed
Society of Maternal-Fetal Medicine Publications Committee. SMFM statement: implementation of the use of antenatal corticosteroids in the late preterm birth period in women at risk for preterm delivery. Am J Obstet Gynecol. 2016;215:B13–B15. PubMed
Sotiriadis A, Tsiami A, Papatheodorou S, Baschat AA, Sarafidis K, Makrydimas G. Neurodevelopmental Outcome After a Single Course of Antenatal Steroids in Children Born Preterm: A Systematic Review and Meta-analysis. Obstet Gynecol. 2015;125:1385–1396. PubMed
Dalziel SR, Lim VK, Lambert A, et al. Antenatal exposure to betamethasone: psychological functioning and health related quality of life 31 years after inclusion in randomised controlled trial. BMJ. 2005;331:665. PubMed PMC
Asztalos EV, Murphy KE, Willan AR, et al. Multiple courses of antenatal corticosteroids for preterm birth study: outcomes in children at 5 years of age (MACS-5) JAMA Pediatr. 2013;167:1102–1110. PubMed
Crowther CA, McKinlay CJ, Middleton P, Harding JE. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Syst Rev. 2015;7:CD003935. PubMed PMC
Aiken CE, Fowden AL, Smith GC. Antenatal glucocorticoids prior to cesarean delivery at term. JAMA Pediatr. 2014;168:507–508. PubMed
Crowther CA, Harding JE. Antenatal glucocorticoids for late preterm birth? N Engl J Med. 2016;374:1376–1377. PubMed
Waffarn F, Davis EP. Effects of antenatal corticosteroids on the hypothalamic-pituitary- adrenocortical axis of the fetus and newborn: experimental findings and clinical considerations. Am J Obstet Gynecol. 2012;207:446–454. PubMed PMC
Eriksson L, Haglund B, Ewald U, Odlind V, Kieler H. Health consequences of prophylactic exposure to antenatal corticosteroids among children born late preterm or term. Acta Obstet Gynecol Scand. 2012;91:1415–1421. PubMed
Alexander N, Rosenlocher F, Stalder T, et al. Impact of antenatal synthetic glucocorticoid exposure on endocrine stress reactivity in term-born children. J Clin Endocrinol Metab. 2012;97:3538–3544. PubMed
Boesveld M, Oudijk MA, Koenen SV, et al. Evaluation of strategies regarding management of imminent preterm delivery before 32 weeks of gestation: a regional cohort study among 1375 women in the Netherlands. Am J Obstet Gynecol. 2015;212:348.e1–e7. PubMed
Mahony R, McKeating A, Murphy T, McAuliffe F, O'Herlihy C, Foley M. Appropriate antenatal corticosteroid use in women at risk for preterm birth before 34 weeks of gestation. BJOG. 2010;117:963–967. PubMed
Razaz N, Skoll A, Fahey J, Allen VM, Joseph KS. Trends in optimal, suboptimal, and questionably appropriate receipt of antenatal corticosteroid prophylaxis. Obstet Gynecol. 2015;125:288–296. PubMed
Melamed N, Shah J, Soraisham A, et al. Association Between Antenatal Corticosteroid Administration-to-Birth Interval and Outcomes of Preterm Neonates. Obstet Gynecol. 2015;125:1377–1384. PubMed
Adams TM, Kinzler WL, Chavez MR, Vintzileos AM. The timing of administration of antenatal corticosteroids in women with indicated preterm birth. Am J Obstet Gynecol. 2015;212:645.e1–e4. PubMed
Wilms FF, Vis JY, Pattinaja DA, et al. Relationship between the time interval from antenatal corticosteroid administration until preterm birth and the occurrence of respiratory morbidity. Am J Obstet Gynecol. 2011;205:49.e1–e7. PubMed
Davidson C, Monga M, Ellison D, Vidaeff A. Continuation of pregnancy after antenatal corticosteroid administration: opportunity for rescue? J Reprod Med. 2010;55:14–18. PubMed
Makhija NK, Tronnes AA, Dunlap BS, Schulkin J, Lannon SM. Antenatal corticosteroid timing: accuracy after the introduction of a rescue course protocol. Am J Obstet Gynecol. 2016;214:120.e1–e6. PubMed
Wapner RJ, Sorokin Y, Thom EA, et al. Single versus weekly courses of antenatal corticosteroids: evaluation of safety and efficacy. Am J Obstet Gynecol. 2006;195:633–642. PubMed
Murphy KE, Hannah ME, Willan AR, et al. Multiple courses of antenatal corticosteroids for preterm birth (MACS): a randomised controlled trial. Lancet. 2008;372:2143–2151. PubMed
Crowther CA, Haslam RR, Hiller JE, Doyle LW, Robinson JS. Neonatal respiratory distress syndrome after repeat exposure to antenatal corticosteroids: a randomised controlled trial. Lancet. 2006;367:1913–1919. PubMed
Stutchfield P, Whitaker R, Russell I. Antenatal betamethasone and incidence of neonatal respiratory distress after elective caesarean section: pragmatic randomised trial. BMJ. 2005;331:662. PubMed PMC
Chandrasekaran S, Srinivas SK. Antenatal corticosteroid administration: understanding its use as an obstetric quality metric. Am J Obstet Gynecol. 2014;210:143.e1–e7. PubMed
Althabe F, Belizan JM, McClure EM, et al. A population-based, multifaceted strategy to implement antenatal corticosteroid treatment versus standard care for the reduction of neonatal mortality due to preterm birth in low-income and middle-income countries: the ACT cluster- randomised trial. Lancet. 2015;385:629–639. PubMed PMC
Vidaeff AC, Belfort MA, Steer PJ. Antenatal corticosteroids: a time for more careful scrutiny of the indications? BJOG. 2016;123:1067–1069. PubMed
Kamath-Rayne BD, Rozance PJ, Goldenberg RL, Jobe AH. Antenatal corticosteroids beyond 34 weeks gestation: what do we do now? Am J Obstet Gynecol. 2016;215:423–430. PubMed
American College of Obstetricians and Gynecologists. Medically indicated late-preterm and early-term deliveries. ACOG Committee opinion no. 560. Obstet Gynecol. 2013;121:908–910. PubMed
Reddy UM, Ko CW, Raju TNK, Willinger M. Delivery indications at late-preterm gestations and infant mortality rates in the United States. Pediatrics. 2009;124:234–240. PubMed PMC
Gyamfi-Bannerman C, Fuchs KM, Young OM, Hoffman MK. Nonspontaneous late preterm birth: etiology and outcomes. Am J Obstet Gynecol. 2011;205:456.e1–e6. PubMed
Towers CV, Freeman RK, Nageotte MP, Garite TJ, Lewis DF, Quilligan EJ. The case for amniocentesis for fetal lung maturity in late-preterm and early-term gestations. Am J Obstet Gynecol. 2014;210:95–96. PubMed
Damron DP. Fetal lung maturity testing. Am J Obstet Gynecol. 2014;211:184–185. PubMed
Zalud I, Janas S. Risks of third-trimester amniocentesis. J Reprod Med. 2008;53:45–48. PubMed
Gordon MC, Narula K, O'Shaughnessy R, Barth WH., Jr Complications of third-trimester amniocentesis using continuous ultrasound guidance. Obstet Gynecol. 2002;99:255–259. PubMed
Karcher R, Sykes E, Batton D, et al. Gestational age-specific predicted risk of neonatal respiratory distress syndrome using lamellar body count and surfactant-to-albumin ratio in amniotic fluid. Am J Obstet Gynecol. 2005;193:1680–1684. PubMed
Hagen E, Link JC, Arias F. A comparison of the accuracy of the TDx-FLM assay, lecithin-sphingomyelin ratio, and phosphatidylglycerol in the prediction of neonatal respiratory distress syndrome. Obstet Gynecol. 1993;82:1004–1008. PubMed
Russell JC, Cooper CM, Ketchum CH, et al. Multicenter evaluation of TDx test for assessing fetal lung maturity. Clin Chem. 1989;35:1005–1010. PubMed
Neerhof MG, Haney EI, Silver RK, Ashwood ER, Lee IS, Piazze JJ. Lamellar body counts compared with traditional phospholipid analysis as an assay for evaluating fetal lung maturity. Obstet Gynecol. 2001;97:305–309. PubMed
Haymond S, Luzzi VI, Parvin CA, Gronowski AM. A direct comparison between lamellar body counts and fluorescent polarization methods for predicting respiratory distress syndrome. Am J Clin Pathol. 2006;126:894–899. PubMed