Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
28365791
DOI
10.1007/s00249-017-1205-y
PII: 10.1007/s00249-017-1205-y
Knihovny.cz E-resources
- Keywords
- AFM, Actin cytoskeleton, Anchorage-independent growth, Elastic modulus, Elasticity, nsPEF,
- MeSH
- Actins metabolism MeSH
- Cell Line MeSH
- Time Factors MeSH
- Electricity * MeSH
- Carcinogenesis * MeSH
- Neoplasm Metastasis MeSH
- Cell Movement MeSH
- Cell Proliferation MeSH
- Elasticity * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Actins MeSH
Nanosecond pulsed electric fields (nsPEFs) applied to cells can induce different biological effects depending on pulse duration and field strength. One known process is the induction of apoptosis whereby nsPEFs are currently investigated as a novel cancer therapy. Another and probably related change is the breakdown of the cytoskeleton. We investigated the elasticity of rat liver epithelial cells WB-F344 in a monolayer using atomic force microscopy (AFM) with respect to the potential of cells to undergo malignant transformation or to develop a potential to metastasize. We found that the elastic modulus of the cells decreased significantly within the first 8 min after treatment with 20 pulses of 100 ns and with a field strength of 20 kV/cm but was still higher than the elasticity of their tumorigenic counterpart WB-ras. AFM measurements and immunofluorescent staining showed that the cellular actin cytoskeleton became reorganized within 5 min. However, both a colony formation assay and a cell migration assay revealed no significant changes after nsPEF treatment, implying that cells seem not to adopt malignant characteristics associated with metastasis formation despite the induced transient changes to elasticity and cytoskeleton that can be observed for up to 1 h.
See more in PubMed
Bioelectromagnetics. 2014 May;35(4):262-72 PubMed
Bioelectrochemistry. 2011 Oct;82(2):131-4 PubMed
Cancers (Basel). 2010 Sep 27;2(3):1731-70 PubMed
Exp Cell Res. 1984 Sep;154(1):38-52 PubMed
Nat Nanotechnol. 2007 Dec;2(12):780-3 PubMed
Mutat Res. 1991 Mar-Nov;256(2-6):139-48 PubMed
DNA Cell Biol. 2003 Dec;22(12):785-96 PubMed
Biochim Biophys Acta. 1985;780(3):197-212 PubMed
PLoS One. 2010 Mar 17;5(3):e9732 PubMed
Bioelectromagnetics. 2012 Feb;33(2):106-23 PubMed
Biophys J. 2008 Feb 15;94(4):1521-32 PubMed
Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6861-5 PubMed
Biochem Biophys Res Commun. 2000 Mar 24;269(3):781-6 PubMed
Biophys J. 2013 Oct 15;105(8):1733-4 PubMed
Cytoskeleton (Hoboken). 2014 Oct;71(10 ):587-94 PubMed
J Cell Physiol. 2009 Jul;220(1):72-81 PubMed
Cell Cycle. 2007 Jul 1;6(13):1565-9 PubMed
Pigment Cell Melanoma Res. 2010 Aug;23(4):554-63 PubMed
Ultramicroscopy. 2000 Feb;82(1-4):253-8 PubMed
Biochem Biophys Res Commun. 2012 Aug 3;424(3):446-50 PubMed
Cancer Res. 2011 Aug 1;71(15):5075-80 PubMed
Int J Cancer. 2006 Oct 15;119(8):1767-75 PubMed
Environ Health Perspect. 1991 Jun;93:191-7 PubMed
Clin Exp Metastasis. 2009;26(4):273-87 PubMed
Bioelectrochemistry. 2014 Dec;100:88-95 PubMed
Nat Protoc. 2007;2(2):329-33 PubMed
PLoS One. 2012;7(10):e46609 PubMed
Int J Cancer. 2010 Oct 1;127(7):1727-36 PubMed
Biochim Biophys Acta. 2013 Sep;1828(9):2223-9 PubMed
Cancer Lett. 1998 Jun 19;128(2):145-54 PubMed
Open Biol. 2014 May;4(5):140046 PubMed
Mol Carcinog. 1990;3(2):54-67 PubMed
J Biomech. 2002 Feb;35(2):177-87 PubMed
Cancer Lett. 2014 Feb 28;343(2):268-74 PubMed
Eur Biophys J. 1999;28(4):312-6 PubMed
Technol Cancer Res Treat. 2012 Feb;11(1):83-93 PubMed
J Biomed Opt. 2016 May 31;21(5):57004 PubMed
Nanotechnology. 2008 Sep 24;19(38):384003 PubMed
Bioelectrochemistry. 2016 Dec;112:33-46 PubMed