Antibiotic resistance in the invasive bacteria Escherichia coli
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
35841230
DOI
10.21101/cejph.a7384
Knihovny.cz E-zdroje
- Klíčová slova
- AmpC, E. coli, ESBL, prevalence, resistance, β-lactamase,
- MeSH
- antibakteriální látky farmakologie MeSH
- antibiotická rezistence MeSH
- Bacteria MeSH
- beta-laktamasy genetika farmakologie MeSH
- Escherichia coli * genetika MeSH
- infekce vyvolané Escherichia coli * epidemiologie mikrobiologie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta-laktamasy MeSH
OBJECTIVES: The beta-lactamases with extended spectrum of activity (ESBL) are medically one of the most important group of enzymes. Another group of beta-lactamases representing of Enterobacteriaceae is group of the AmpC-type cephalosporinases. The presented study provides identification and determination of the spectrum of resistance against different and clinically used antimicrobial drugs in the clinical isolates of Escherichia coli. METHODS: These isolates had origin in different departments of the L. Pasteur University Hospital in Košice. The goal was the detection of beta-lactamase production with extended-spectrum effect and testing of AmpC-type cephalosporinases by several phenotypic tests in clinical isolates. MALDI-TOF MS analysis was performed on a Microflex MALDI Biotyper. Samples were positively tested for ESBL with the use of the disc diffusion method. PCR were performed with a series of primers designed for the detection of Ambler class A, B and C beta-lactamase genes. RESULTS: For all 485 isolates, we determined the production of ESBL, which we detected in 166 E. coli isolates, which represents a 34.2% prevalence of ESBL production. It is clear from the results that the prevalence of ESBL-producing E. coli out of the total number of E. coli investigated reached 34.2%. In the monitored period, we confirmed at least one resistance gene from 485 E. coli in 188 positive isolates. CONCLUSIONS: We describe a complex ESBL epidemiology. The study revealed a high rate of ESBL-producing E. coli isolates; blaTEM and blaSHV enzymes dominated in ESBL-positive E. coli isolates in the L. Pasteur University Hospital in Košice.
Zobrazit více v PubMed
Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3(5):421-33. PubMed
Livermore DM. Fourteen years in resistance. Int J Antimicrob Agents. 2012;39(4):283-94. PubMed
Khan HA, Baig FK, Mehboob R. Nosocomial infections: epidemiology, prevention, control and surveillance. Asian Pac J Trop Biomed. 2017;7(5):478-82.
Falagas ME, Karageorgopoulos DE. Extended-spectrum β-lactamase-producing organisms. J Hosp Infect. 2009;73(4):345-54. PubMed
Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum β-lactamases: types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90-101.
Kargar M, Kargar M, Jahromi MZ, Najafi A, Ghorbani-Dalini S. Molecular detection of ESBLs production and antibiotic resistance patterns in Gram negative bacilli isolated from urinary tract infections. Indian J Pathol Microbiol. 2014 Apr-Jun;57(2):244-8.
Colello R, Etcheverría AI, Di Conza JA, Gutkind GO, Padola NL. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC). Braz J Microbiol. 2015 Mar 1;46(1):1-5.
Apisarnthanarak A, Kiratisin P, Saifon P, Kitphati R, Dejsirilert S, Mundy LM. Clinical and molecular epidemiology of community-onset, extended-spectrum β-lactamase-producing Escherichia coli infections in Thailand: a case-case-control study. Am J Infect Control. 2007;35(9):606-12.
Bonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004 Jan;48(1):1-14.
Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, et al.; National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008 Nov;29(11):996-1011.
Papagiannitsis CC, Dolejska M, Izdebski R, Giakkoupi P, Skálová A, Chudějová K, et al. Characterisation of IncA/C2 plasmids carrying an In416-like integron with the blaVIM-19 gene from Klebsiella pneumoniae ST383 of Greek origin. Int J Antimicrob Agents. 2016 Feb;47(2):158-62. PubMed
Frimodt-Moller N. Mecillinam - reversion of resistance and how to test it. EBioMedicine. 2017 Sep;23:4-5. PubMed
Beneš J. Antibiotics: systematics, properties, use. Prague: Grada; 2018. (In Czech.)
Freiwald A, Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc. 2009;4(5):732-42. PubMed
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: twentieth informational supplement. CLSI document M100-S20. Wayne (PA): CLSI; 2010.
EUCAST. Disk diffusion method, antibiotic susceptibility testing, version 7.0 [Internet]. EUCAST [cited 2019 Jul 19]. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/EUCAST_breakpoints_v1.3.xls.
Thakuria B, Lahon K. The beta lactam antibiotics as an empirical therapy in a developing country: an update on their current status and recommendations to counter the resistance against them. J Clin Diagn Res. 2013 Jun;7(6):1207-14. PubMed
Rodríguez-Bano J, Miró E, Villar M, Coelho A, Gozalo M, Borrell N, et al. Colonisation and infection due to Enterobacteriaceae producing plasmid-mediated AmpC β-lactamases. J Infect. 2012;64(2):176-83. PubMed
Gude MJ, Seral C, Sáenz Y, Cebollada R, González-Domínguez M, Torres C, et al. Molecular epidemiology, resistance profiles and clinical features in clinical plasmid-mediated AmpC-producing Enterobacteriaceae. Int J Med Microbiol. 2013;303(8):553-7.
Miró E, Agüero J, Larrosa MN, Fernández A, Conejo MC, Bou G, et al. Prevalence and molecular epidemiology of acquired AmpC β-lactamases and carbapenemases in Enterobacteriaceae isolates from 35 hospitals in Spain. Eur J Clin Microbiol Infect Dis. 2013;32(2):253-9.
Reuland EA, Hays JP, de Jongh DM, Abdelrehim E, Willemsen I, Kluytmans JA, et al. Detection and occurrence of plasmid-mediated AmpC in highly resistant gram-negative rods. PLoS One. 2014 Mar 18;9(3):e91396. doi: 10.1371/journal.pone.0091396. PubMed DOI
Thirapanmethee K. Extended spectrum β-lactamases: critical tools of bacterial resistance. Mahidol Univ J Pharm Sci. 2012;39(1):1-8.
Abdallah HM, Wintermans BB, Reuland EA, Koek A, al Naiemi N, Ammar AM, et al. Extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae isolated from Egyptian patients with suspected blood stream infection. PLoS One. 2015;10(5):e0128120. doi: 10.1371/journal.pone.0128120. PubMed DOI
Mukherjee M, Basu S, Mukherjee SK, Majumder M. Multidrug-resistance and extended spectrum beta-lactamase production in uropathogenic E. coli which were isolated from hospitalized patients in Kolkata, India. J Clin Diagn Res. 2013;7(3):449-53.
Lovayová V, Vargová L, Nagyová M, Dudriková E, Dorko E, Siegfried L. Extended -spectrum β-lactamases producing Escherichia coli strains monitored over 4 years in the university hospital in Kosice, Slovakia. Curr Res Microbiol. 2016;7(1):32-8.
Pontikis K, Karaiskos I, Bastani S, Dimopoulos G, Kalogirou M, Katsiari M, et al. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria. Int J Antimicrob Agents. 2014;43(1):52-9. PubMed
Kassakian SZ, Mermel LA. Changing epidemiology of infections due to extended spectrum beta-lactamase producing bacteria. Antimicrob Resist Infect Control. 2014 Mar 25;3(1):9. doi: 10.1186/2047-2994-3-9. PubMed DOI
Søraas A, Sundsfjord A, Sandven I, Brunborg C, Jenum PA. Risk factors for community-acquired urinary tract infections caused by ESBL-producing Enterobacteriaceae - a case-control study in a low prevalence country. PLoS One. 2013 Jul 23;8(7):e69581. doi: 10.1371/journal.pone.0069581. PubMed DOI
Ogbolu DO, Daini OA, Ogunledun A, Alli AO, Webber MA. High levels of multidrug resistance in clinical isolates of Gram-negative pathogens from Nigeria. Int J Antimicrob Agents. 2011;37(1):62-6. PubMed
Koksal I, Yilmaz G, Unal S, Zarakolu P, Korten V, Mulazimoglu L, et al. Epidemiology and susceptibility of pathogens from SMART 2011-12 Turkey: evaluation of hospital-acquired versus community-acquired urinary tract infections and ICU- versus non-ICU-associated intra-abdominal infections. J Antimicrob Chemother. 2017 May 1;72(5):1364-72. PubMed
Rodríguez-Baño J, Alcalá JC, Cisneros JM, Grill F, Oliver A, Horcajada JP, et al. Community infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Arch Intern Med. 2008 Sep 22;168(17):1897-902.
Park YS, Bae IK, Kim J, Jeong SH, Hwang SS, Seo YH, et al. Risk factors and molecular epidemiology of community-onset extended-spectrum β-lactamase-producing Escherichia coli bacteremia. Yonsei Med J. 2014 Mar;55(2):467-75. PubMed
Cohen Stuart J, Dierikx C, Al Naiemi N, Karczmarek A, Van Hoek AHAM, Vos P, et al. Rapid detection of TEM, SHV and CTX-M extended-spectrum β-lactamases in Enterobacteriaceae using ligation-mediated amplification with microarray analysis. J Antimicrob Chemother. 2010;65(7):1377-81. PubMed
Sheng WH, Badal RE, Hsueh PR, SMART Program. Distribution of extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results of the Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob Agents Chemother. 2013;57(7):2981-8.