• This record comes from PubMed

Characterization of a metagenome-derived protease from contaminated agricultural soil microorganisms and its random mutagenesis

. 2017 Nov ; 62 (6) : 499-508. [epub] 20170405

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
21262003 National Natural Science Foundation of China
2015GXNSFAA139050 National Natural Science Foundation of Guangxi Zhuang Autonomous Region
MBSMAT-2015-02 the key lab of marine bioactive substance and modern analytical technique, SOA

Links

PubMed 28382524
DOI 10.1007/s12223-017-0522-y
PII: 10.1007/s12223-017-0522-y
Knihovny.cz E-resources

Proteases are typical key enzymes that hydrolyze proteins into amino acids and peptides. Numerous proteases have been studied, but the discovery of metagenome-derived proteases is still significant for both commercial applications and basic research. An unexplored protease gene sep1A was identified by function-based screening from a plasmid metagenomic library derived from uncultured contaminated agricultural soil microorganisms. The putative protease gene was subcloned into pET-32a (+) vector and overexpressed in E. coli BL21(DE3) pLysS, then the recombinant protein was purified to homogeneity. The detailed biochemical characterization of the Sep1A protein was performed, including its molecular characterization, specific activity, pH-activity profile, metal ion-activity profile, and enzyme kinetic assays. Furthermore, the protein engineering approach of random mutagenesis via error-prone PCR was applied on the original Sep1A protein. Biochemical characterization demonstrated that the purified recombinant Ep48 protein could hydrolyze casein. Compared with the original Sep1A protein, the best variant of Ep48 in the random mutagenesis library, with the Gln307Leu and Asp391Gly changes, exhibited 2.62-fold activity at the optimal reaction conditions of 50 °C and pH 9.0. These results are the first step toward a better understanding of the properties of Sep1A protein. Protein engineering with error-prone PCR paves the way toward the metagenome-derived genes for biotechnological applications.

See more in PubMed

Methods Mol Biol. 1996;58:491-510 PubMed

Int J Biol Macromol. 2013 Feb;53:138-43 PubMed

Antonie Van Leeuwenhoek. 2015 Jun;107(6):1615-23 PubMed

Mar Biotechnol (NY). 2007 May-Jun;9(3):343-51 PubMed

Environ Microbiol. 2016 Dec;18(12 ):4471-4484 PubMed

Appl Biochem Biotechnol. 2013 Jun;170(3):573-86 PubMed

J Appl Microbiol. 2007 Oct;103(4):1301-10 PubMed

Methods Mol Biol. 2008;424:423-31 PubMed

Prep Biochem Biotechnol. 2015;45(3):233-58 PubMed

Folia Microbiol (Praha). 2014 Sep;59(5):409-17 PubMed

Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed

Curr Opin Biotechnol. 2004 Aug;15(4):330-4 PubMed

PLoS One. 2012;7(6):e38805 PubMed

Enzyme Microb Technol. 2015 Jun;73-74:20-8 PubMed

Mol Cell. 2002 Sep;10(3):443-55 PubMed

Curr Protoc Bioinformatics. 2014 Dec 12;48:1.25.1-33 PubMed

Appl Microbiol Biotechnol. 2002 Jun;59(1):15-32 PubMed

FEMS Microbiol Ecol. 2015 May;91(5):null PubMed

Chembiochem. 2016 Feb 2;17(3):197-203 PubMed

Biotechnol Lett. 2007 Mar;29(3):465-72 PubMed

J Biotechnol. 2006 Feb 10;121(3):291-8 PubMed

Appl Microbiol Biotechnol. 2011 Aug;91(3):635-44 PubMed

FEBS Lett. 2013 Apr 17;587(8):1155-63 PubMed

J Chem Inf Model. 2010 May 24;50(5):947-60 PubMed

Antonie Van Leeuwenhoek. 2013 Jun;103(6):1209-19 PubMed

FEBS J. 2007 Sep;274(18):4742-51 PubMed

Methods Mol Biol. 2013;996:251-67 PubMed

Protein Sci. 2007 Nov;16(11):2454-71 PubMed

Front Microbiol. 2014 Sep 18;5:489 PubMed

Nucleic Acids Res. 2003 Jul 1;31(13):3381-5 PubMed

FEMS Microbiol Lett. 2012 Apr;329(2):204-11 PubMed

Biotechnol Adv. 1999 Dec 15;17(7):561-94 PubMed

Proc Natl Acad Sci U S A. 2005 May 10;102(19):6855-60 PubMed

J Ind Microbiol Biotechnol. 2008 Feb;35(2):121-31 PubMed

Acta Biochim Pol. 2011;58(2):269-73 PubMed

Mol Biotechnol. 2006 Jan;32(1):73-81 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...