Characterization of a metagenome-derived protease from contaminated agricultural soil microorganisms and its random mutagenesis
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
21262003
National Natural Science Foundation of China
2015GXNSFAA139050
National Natural Science Foundation of Guangxi Zhuang Autonomous Region
MBSMAT-2015-02
the key lab of marine bioactive substance and modern analytical technique, SOA
PubMed
28382524
DOI
10.1007/s12223-017-0522-y
PII: 10.1007/s12223-017-0522-y
Knihovny.cz E-resources
- Keywords
- Biochemical characterization, Error-prone PCR, Metagenome-derived protease, Soil microorganisms,
- MeSH
- Bacteria chemistry enzymology genetics isolation & purification MeSH
- Bacterial Proteins chemistry genetics metabolism MeSH
- Gene Library MeSH
- Kinetics MeSH
- Cloning, Molecular MeSH
- Metagenome MeSH
- Molecular Sequence Data MeSH
- Mutagenesis MeSH
- Peptide Hydrolases chemistry genetics metabolism MeSH
- Soil Microbiology * MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Enzyme Stability MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Peptide Hydrolases MeSH
Proteases are typical key enzymes that hydrolyze proteins into amino acids and peptides. Numerous proteases have been studied, but the discovery of metagenome-derived proteases is still significant for both commercial applications and basic research. An unexplored protease gene sep1A was identified by function-based screening from a plasmid metagenomic library derived from uncultured contaminated agricultural soil microorganisms. The putative protease gene was subcloned into pET-32a (+) vector and overexpressed in E. coli BL21(DE3) pLysS, then the recombinant protein was purified to homogeneity. The detailed biochemical characterization of the Sep1A protein was performed, including its molecular characterization, specific activity, pH-activity profile, metal ion-activity profile, and enzyme kinetic assays. Furthermore, the protein engineering approach of random mutagenesis via error-prone PCR was applied on the original Sep1A protein. Biochemical characterization demonstrated that the purified recombinant Ep48 protein could hydrolyze casein. Compared with the original Sep1A protein, the best variant of Ep48 in the random mutagenesis library, with the Gln307Leu and Asp391Gly changes, exhibited 2.62-fold activity at the optimal reaction conditions of 50 °C and pH 9.0. These results are the first step toward a better understanding of the properties of Sep1A protein. Protein engineering with error-prone PCR paves the way toward the metagenome-derived genes for biotechnological applications.
See more in PubMed
Methods Mol Biol. 1996;58:491-510 PubMed
Int J Biol Macromol. 2013 Feb;53:138-43 PubMed
Antonie Van Leeuwenhoek. 2015 Jun;107(6):1615-23 PubMed
Mar Biotechnol (NY). 2007 May-Jun;9(3):343-51 PubMed
Environ Microbiol. 2016 Dec;18(12 ):4471-4484 PubMed
Appl Biochem Biotechnol. 2013 Jun;170(3):573-86 PubMed
J Appl Microbiol. 2007 Oct;103(4):1301-10 PubMed
Methods Mol Biol. 2008;424:423-31 PubMed
Prep Biochem Biotechnol. 2015;45(3):233-58 PubMed
Folia Microbiol (Praha). 2014 Sep;59(5):409-17 PubMed
Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed
Curr Opin Biotechnol. 2004 Aug;15(4):330-4 PubMed
PLoS One. 2012;7(6):e38805 PubMed
Enzyme Microb Technol. 2015 Jun;73-74:20-8 PubMed
Mol Cell. 2002 Sep;10(3):443-55 PubMed
Curr Protoc Bioinformatics. 2014 Dec 12;48:1.25.1-33 PubMed
Appl Microbiol Biotechnol. 2002 Jun;59(1):15-32 PubMed
FEMS Microbiol Ecol. 2015 May;91(5):null PubMed
Chembiochem. 2016 Feb 2;17(3):197-203 PubMed
Biotechnol Lett. 2007 Mar;29(3):465-72 PubMed
J Biotechnol. 2006 Feb 10;121(3):291-8 PubMed
Appl Microbiol Biotechnol. 2011 Aug;91(3):635-44 PubMed
FEBS Lett. 2013 Apr 17;587(8):1155-63 PubMed
J Chem Inf Model. 2010 May 24;50(5):947-60 PubMed
Antonie Van Leeuwenhoek. 2013 Jun;103(6):1209-19 PubMed
FEBS J. 2007 Sep;274(18):4742-51 PubMed
Methods Mol Biol. 2013;996:251-67 PubMed
Protein Sci. 2007 Nov;16(11):2454-71 PubMed
Front Microbiol. 2014 Sep 18;5:489 PubMed
Nucleic Acids Res. 2003 Jul 1;31(13):3381-5 PubMed
FEMS Microbiol Lett. 2012 Apr;329(2):204-11 PubMed
Biotechnol Adv. 1999 Dec 15;17(7):561-94 PubMed
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6855-60 PubMed
J Ind Microbiol Biotechnol. 2008 Feb;35(2):121-31 PubMed
Acta Biochim Pol. 2011;58(2):269-73 PubMed
Mol Biotechnol. 2006 Jan;32(1):73-81 PubMed