Metabolic Response of Visceral White Adipose Tissue of Obese Mice Exposed for 5 Days to Human Room Temperature Compared to Mouse Thermoneutrality

. 2017 ; 8 () : 179. [epub] 20170323

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28386236

Housing of laboratory mice at room temperature (22°C) might be considered a constant cold stress, which induces a thermogenic program in brown adipose tissue (BAT). However, the early adaptive response of white adipose tissue (WAT), the fat storage organ of the body, to a change from thermoneutrality to room temperature is not known. This was investigated here for various WAT depots, focusing on epididymal WAT (eWAT), widely used as reference depot. Male adult diet-induced obese (DIO) C57BL/6JOlaHsd mice housed at thermoneutrality (29°C), were for 5 days either switched to room temperature (22°C) or remained at thermoneutrality. Energy metabolism was continuously measured using indirect calorimetry. At the end of the study, serum metabolomics and WAT transcriptomics were performed. We confirmed activation of the thermogenic program in 22°C housed mice. Body weight and total fat mass were reduced. Whole body energy expenditure (EE) was increased, with a higher fatty acid to carbohydrate oxidation ratio and increased serum acylcarnitine levels, while energy intake was not significantly different between the two groups. Transcriptome analysis of eWAT identified tissue remodeling and inflammation as the most affected processes. Expression of pro-inflammatory M1 macrophage-related genes, and M1 over M2 macrophage ratio were decreased, which might be linked to an increased insulin sensitivity. Markers of thermogenesis were not altered in eWAT. Decreased expression of tryptophan hydroxylase 2 (Tph2) and cholecystokinin (Cck) might represent altered neuroendocrine signaling. eWAT itself does not show increased fatty acid oxidation. The three measured WATs, epididymal, mesenteric, and retroperitoneal, showed mainly similar responses; reduced inflammation (s100a8), decreased carbohydrate oxidation, and no or small differences in fatty acid oxidation. However, Ucp1 was only expressed and increased in rWAT in 22°C housed mice. Cck expression was decreased in the three WATs, significantly in eWAT and rWAT, in contrast to Tph2, which was decreased in eWAT while not expressed in mWAT and rWAT. Our data show that tissue remodeling, inflammation and neuroendocrine signaling are early responses in WAT to a moderate decrease in environmental temperature.

Zobrazit více v PubMed

Bamshad M., Aoki V. T., Adkison M. G., Warren W. S., Bartness T. J. (1998). Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 275, R291–R299. PubMed

Bartelt A., Bruns O. T., Reimer R., Hohenberg H., Ittrich H., Peldschus K., et al. . (2011). Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205. 10.1038/nm.2297 PubMed DOI

Bartelt A., Heeren J. (2014). Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36. 10.1038/nrendo.2013.204 PubMed DOI

Bartness T. J., Shrestha Y. B., Vaughan C. H., Schwartz G. J., Song C. K. (2010). Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol. Cell. Endocrinol. 318, 34–43. 10.1016/j.mce.2009.08.031 PubMed DOI PMC

Bowers R. R., Festuccia W. T., Song C. K., Shi H., Migliorini R. H., Bartness T. J. (2004). Sympathetic innervation of white adipose tissue and its regulation of fat cell number. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R1167–R1175. 10.1152/ajpregu.00558.2003 PubMed DOI

Brito N. A., Brito M. N., Bartness T. J. (2008). Differential sympathetic drive to adipose tissues after food deprivation, cold exposure or glucoprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1445–R1452. 10.1152/ajpregu.00068.2008 PubMed DOI

Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. . (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. 10.1373/clinchem.2008.112797 PubMed DOI

Cannon B., Nedergaard J. (2004). Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359. 10.1152/physrev.00015.2003 PubMed DOI

Cannon B., Nedergaard J. (2011). Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242–253. 10.1242/jeb.050989 PubMed DOI

Carneheim C., Nedergaard J., Cannon B. (1984). Beta-adrenergic stimulation of lipoprotein lipase in rat brown adipose tissue during acclimation to cold. Am. J. Physiol. 246, E327–E333. PubMed

Ceperuelo-Mallafre V., Ejarque M., Serena C., Duran X., Montori-Grau M., Rodriguez M. A., et al. . (2016). Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans. Mol. Metab. 5, 5–18. 10.1016/j.molmet.2015.10.001 PubMed DOI PMC

Crane J. D., Palanivel R., Mottillo E. P., Bujak A. L., Wang H., Ford R. J., et al. . (2015). Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 21, 166–172. 10.1038/nm.3766 PubMed DOI PMC

Duivenvoorde L. P., van Schothorst E. M., Swarts H. J., Keijer J. (2015). Assessment of metabolic flexibility of old and adult mice using three noninvasive, indirect calorimetry-based treatments. J. Gerontol. A Biol. Sci. Med. Sci. 70, 282–293. 10.1093/gerona/glu027 PubMed DOI

Enerback S., Jacobsson A., Simpson E. M., Guerra C., Yamashita H., Harper M. E., et al. . (1997). Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94. 10.1038/387090a0 PubMed DOI

Feldmann H. M., Golozoubova V., Cannon B., Nedergaard J. (2009). UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209. 10.1016/j.cmet.2008.12.014 PubMed DOI

Fisher F. M., Kleiner S., Douris N., Fox E. C., Mepani R. J., Verdeguer F., et al. . (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281. 10.1101/gad.177857.111 PubMed DOI PMC

Fishman R. B., Dark J. (1987). Sensory innervation of white adipose tissue. Am. J. Physiol. 253, R942–R944. PubMed

Golozoubova V., Gullberg H., Matthias A., Cannon B., Vennstrom B., Nedergaard J. (2004). Depressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all hormone-binding thyroid hormone receptors. Mol. Endocrinol. 18, 384–401. 10.1210/me.2003-0267 PubMed DOI

Heaton G. M., Wagenvoord R. J., Kemp A., Jr., Nicholls D. G. (1978). Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur. J. Biochem. 82, 515–521. 10.1111/j.1432-1033.1978.tb12045.x PubMed DOI

Hoek-van den Hil E. F., Keijer J., Bunschoten A., Vervoort J. J., Stankova B., Bekkenkamp M., et al. . (2013). Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice. PLoS ONE 8:e51588. 10.1371/journal.pone.0051588 PubMed DOI PMC

Hoevenaars F. P., van Schothorst E. M., Horakova O., Voigt A., Rossmeisl M., Pico C., et al. . (2012). BIOCLAIMS standard diet (BIOsd): a reference diet for nutritional physiology. Genes Nutr. 7, 399–404. 10.1007/s12263-011-0262-6 PubMed DOI PMC

Hsieh A. C., Carlson L. D. (1957). Role of adrenaline and noradrenaline in chemical regulation of heat production. Am. J. Physiol. 190, 243–246. PubMed

Ibrahim M. M. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11–18. 10.1111/j.1467-789X.2009.00623.x PubMed DOI

Janeckova H., Hron K., Wojtowicz P., Hlidkova E., Baresova A., Friedecky D., et al. . (2012). Targeted metabolomic analysis of plasma samples for the diagnosis of inherited metabolic disorders. J. Chromatogr. A 1226, 11–17. 10.1016/j.chroma.2011.09.074 PubMed DOI

Jaroslawska J., Chabowska-Kita A., Kaczmarek M. M., Kozak L. P. (2015). Npvf: hypothalamic biomarker of ambient temperature independent of nutritional status. PLoS Genet. 11:e1005287. 10.1371/journal.pgen.1005287 PubMed DOI PMC

Karp C. L. (2012). Unstressing intemperate models: how cold stress undermines mouse modeling. J. Exp. Med. 209, 1069–1074. 10.1084/jem.20120988 PubMed DOI PMC

Larsson L. I., Rehfeld J. F. (1978). Distribution of gastrin and CCK cells in the rat gastrointestinal tract. Evidence for the occurrence of three distinct cell types storing COOH-terminal gastrin immunoreactivity. Histochemistry 58, 23–31. 10.1007/BF00489946 PubMed DOI

Li P., Lu M., Nguyen M. T., Bae E. J., Chapman J., Feng D., et al. . (2010). Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 285, 15333–15345. 10.1074/jbc.M110.100263 PubMed DOI PMC

Li Y., Wu X. Y., Owyang C. (2004). Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones. J. Physiol. 559, 651–662. 10.1113/jphysiol.2004.064816 PubMed DOI PMC

Lowell B. B., Spiegelman B. M. (2000). Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660. 10.1038/35007527 PubMed DOI

Markan K. R., Jurczak M. J., Brady M. J. (2010). Stranger in a strange land: roles of glycogen turnover in adipose tissue metabolism. Mol. Cell. Endocrinol. 318, 54–60. 10.1016/j.mce.2009.08.013 PubMed DOI PMC

Meyer C., Pimenta W., Woerle H. J., Van Haeften T., Szoke E., Mitrakou A., et al. . (2006). Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 29, 1909–1914. 10.2337/dc06-0438 PubMed DOI

Moran T. H., Kinzig K. P. (2004). Gastrointestinal satiety signals II. Cholecystokinin. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G183–G188. 10.1152/ajpgi.00434.2003 PubMed DOI

Okorodudu D. O., Jumean M. F., Montori V. M., Romero-Corral A., Somers V. K., Erwin P. J., et al. . (2010). Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int. J. Obes. 34, 791–799. 10.1038/ijo.2010.5 PubMed DOI

Osborn O., Olefsky J. M. (2012). The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374. 10.1038/nm.2627 PubMed DOI

Overton J. M. (2010). Phenotyping small animals as models for the human metabolic syndrome: thermoneutrality matters. Int. J. Obes. 34(Suppl. 2), S53–S58. 10.1038/ijo.2010.240 PubMed DOI

Pizon M., Tomasik P. J., Sztefko K., Szafran Z. (2009). Low ambient temperature lowers cholecystokinin and leptin plasma concentrations in adult men. Open Nutr. J. 3, 5–7. 10.2174/1874288200903010005 DOI

Puigserver P., Wu Z., Park C. W., Graves R., Wright M., Spiegelman B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839. 10.1016/S0092-8674(00)81410-5 PubMed DOI

Ravussin Y., LeDuc C. A., Watanabe K., Leibel R. L. (2012). Effects of ambient temperature on adaptive thermogenesis during maintenance of reduced body weight in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R438–R448. 10.1152/ajpregu.00092.2012 PubMed DOI PMC

Rippe C., Berger K., Boiers C., Ricquier D., Erlanson-Albertsson C. (2000). Effect of high-fat diet, surrounding temperature, and enterostatin on uncoupling protein gene expression. Am. J. Physiol. Endocrinol. Metab. 279, E293–E300. PubMed

Schooneman M. G., Vaz F. M., Houten S. M., Soeters M. R. (2013). Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62, 1–8. 10.2337/db12-0466 PubMed DOI PMC

Shore A. M., Karamitri A., Kemp P., Speakman J. R., Graham N. S., Lomax M. A. (2013). Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver. PLoS ONE 8:e68933. 10.1371/journal.pone.0068933 PubMed DOI PMC

Speakman J. R., Keijer J. (2012). Not so hot: optimal housing temperatures for mice to mimic the thermal environment of humans. Mol. Metab. 2, 5–9. 10.1016/j.molmet.2012.10.002 PubMed DOI PMC

Swoap S. J., Li C., Wess J., Parsons A. D., Williams T. D., Overton J. M. (2008). Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am. J. Physiol. Heart Circ. Physiol. 294, H1581–H1588. 10.1152/ajpheart.01000.2007 PubMed DOI

Thompson D. K., Sloane R., Bain J. R., Stevens R. D., Newgard C. B., Pieper C. F., et al. . (2012). Daily variation of serum acylcarnitines and amino acids. Metabolomics 8, 556–565. 10.1007/s11306-011-0345-9 PubMed DOI PMC

Tian X. Y., Ganeshan K., Hong C., Nguyen K. D., Qiu Y., Kim J., et al. . (2016). Thermoneutral housing accelerates metabolic inflammation to potentiate atherosclerosis but not insulin resistance. Cell Metab. 23, 165–178. 10.1016/j.cmet.2015.10.003 PubMed DOI PMC

Tran T. T., Yamamoto Y., Gesta S., Kahn C. R. (2008). Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420. 10.1016/j.cmet.2008.04.004 PubMed DOI PMC

Uchida K., Shiuchi T., Inada H., Minokoshi Y., Tominaga M. (2010). Metabolic adaptation of mice in a cool environment. Pflugers Arch. 459, 765–774. 10.1007/s00424-010-0795-3 PubMed DOI

Van Schothorst E. M., Franssen-van Hal N., Schaap M. M., Pennings J., Hoebee B., Keijer J. (2005). Adipose gene expression patterns of weight gain suggest counteracting steroid hormone synthesis. Obes. Res. 13, 1031–1041. 10.1038/oby.2005.121 PubMed DOI

van Schothorst E. M., Pagmantidis V., de Boer V. C., Hesketh J., Keijer J. (2007). Assessment of reducing RNA input for Agilent oligo microarrays. Anal. Biochem. 363, 315–317. 10.1016/j.ab.2007.01.016 PubMed DOI

Voigt A., Agnew K., van Schothorst E. M., Keijer J., Klaus S. (2013). Short-term, high fat feeding-induced changes in white adipose tissue gene expression are highly predictive for long-term changes. Mol. Nutr. Food Res. 57, 1423–1434. 10.1002/mnfr.201200671 PubMed DOI

Walden T. B., Hansen I. R., Timmons J. A., Cannon B., Nedergaard J. (2012). Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 302, E19–E31. 10.1152/ajpendo.00249.2011 PubMed DOI

Walther D. J., Peter J. U., Bashammakh S., Hortnagl H., Voits M., Fink H., et al. . (2003). Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76. 10.1126/science.1078197 PubMed DOI

Wang P., Mariman E., Renes J., Keijer J. (2008). The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell. Physiol. 216, 3–13. 10.1002/jcp.21386 PubMed DOI

Xue Y., Petrovic N., Cao R., Larsson O., Lim S., Chen S., et al. . (2009). Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9, 99–109. 10.1016/j.cmet.2008.11.009 PubMed DOI

Ye L., Wu J., Cohen P., Kazak L., Khandekar M. J., Jedrychowski M. P., et al. . (2013). Fat cells directly sense temperature to activate thermogenesis. Proc. Natl. Acad. Sci. U.S.A. 110, 12480–12485. 10.1073/pnas.1310261110 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...