Metabolic Response of Visceral White Adipose Tissue of Obese Mice Exposed for 5 Days to Human Room Temperature Compared to Mouse Thermoneutrality
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28386236
PubMed Central
PMC5362617
DOI
10.3389/fphys.2017.00179
Knihovny.cz E-zdroje
- Klíčová slova
- indirect calorimetry, serum metabolomics, thermogenesis, thermoneutrality, transcriptomics, visceral white adipose tissue,
- Publikační typ
- časopisecké články MeSH
Housing of laboratory mice at room temperature (22°C) might be considered a constant cold stress, which induces a thermogenic program in brown adipose tissue (BAT). However, the early adaptive response of white adipose tissue (WAT), the fat storage organ of the body, to a change from thermoneutrality to room temperature is not known. This was investigated here for various WAT depots, focusing on epididymal WAT (eWAT), widely used as reference depot. Male adult diet-induced obese (DIO) C57BL/6JOlaHsd mice housed at thermoneutrality (29°C), were for 5 days either switched to room temperature (22°C) or remained at thermoneutrality. Energy metabolism was continuously measured using indirect calorimetry. At the end of the study, serum metabolomics and WAT transcriptomics were performed. We confirmed activation of the thermogenic program in 22°C housed mice. Body weight and total fat mass were reduced. Whole body energy expenditure (EE) was increased, with a higher fatty acid to carbohydrate oxidation ratio and increased serum acylcarnitine levels, while energy intake was not significantly different between the two groups. Transcriptome analysis of eWAT identified tissue remodeling and inflammation as the most affected processes. Expression of pro-inflammatory M1 macrophage-related genes, and M1 over M2 macrophage ratio were decreased, which might be linked to an increased insulin sensitivity. Markers of thermogenesis were not altered in eWAT. Decreased expression of tryptophan hydroxylase 2 (Tph2) and cholecystokinin (Cck) might represent altered neuroendocrine signaling. eWAT itself does not show increased fatty acid oxidation. The three measured WATs, epididymal, mesenteric, and retroperitoneal, showed mainly similar responses; reduced inflammation (s100a8), decreased carbohydrate oxidation, and no or small differences in fatty acid oxidation. However, Ucp1 was only expressed and increased in rWAT in 22°C housed mice. Cck expression was decreased in the three WATs, significantly in eWAT and rWAT, in contrast to Tph2, which was decreased in eWAT while not expressed in mWAT and rWAT. Our data show that tissue remodeling, inflammation and neuroendocrine signaling are early responses in WAT to a moderate decrease in environmental temperature.
Zobrazit více v PubMed
Bamshad M., Aoki V. T., Adkison M. G., Warren W. S., Bartness T. J. (1998). Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 275, R291–R299. PubMed
Bartelt A., Bruns O. T., Reimer R., Hohenberg H., Ittrich H., Peldschus K., et al. . (2011). Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205. 10.1038/nm.2297 PubMed DOI
Bartelt A., Heeren J. (2014). Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36. 10.1038/nrendo.2013.204 PubMed DOI
Bartness T. J., Shrestha Y. B., Vaughan C. H., Schwartz G. J., Song C. K. (2010). Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol. Cell. Endocrinol. 318, 34–43. 10.1016/j.mce.2009.08.031 PubMed DOI PMC
Bowers R. R., Festuccia W. T., Song C. K., Shi H., Migliorini R. H., Bartness T. J. (2004). Sympathetic innervation of white adipose tissue and its regulation of fat cell number. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R1167–R1175. 10.1152/ajpregu.00558.2003 PubMed DOI
Brito N. A., Brito M. N., Bartness T. J. (2008). Differential sympathetic drive to adipose tissues after food deprivation, cold exposure or glucoprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1445–R1452. 10.1152/ajpregu.00068.2008 PubMed DOI
Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. . (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. 10.1373/clinchem.2008.112797 PubMed DOI
Cannon B., Nedergaard J. (2004). Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359. 10.1152/physrev.00015.2003 PubMed DOI
Cannon B., Nedergaard J. (2011). Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242–253. 10.1242/jeb.050989 PubMed DOI
Carneheim C., Nedergaard J., Cannon B. (1984). Beta-adrenergic stimulation of lipoprotein lipase in rat brown adipose tissue during acclimation to cold. Am. J. Physiol. 246, E327–E333. PubMed
Ceperuelo-Mallafre V., Ejarque M., Serena C., Duran X., Montori-Grau M., Rodriguez M. A., et al. . (2016). Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans. Mol. Metab. 5, 5–18. 10.1016/j.molmet.2015.10.001 PubMed DOI PMC
Crane J. D., Palanivel R., Mottillo E. P., Bujak A. L., Wang H., Ford R. J., et al. . (2015). Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 21, 166–172. 10.1038/nm.3766 PubMed DOI PMC
Duivenvoorde L. P., van Schothorst E. M., Swarts H. J., Keijer J. (2015). Assessment of metabolic flexibility of old and adult mice using three noninvasive, indirect calorimetry-based treatments. J. Gerontol. A Biol. Sci. Med. Sci. 70, 282–293. 10.1093/gerona/glu027 PubMed DOI
Enerback S., Jacobsson A., Simpson E. M., Guerra C., Yamashita H., Harper M. E., et al. . (1997). Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94. 10.1038/387090a0 PubMed DOI
Feldmann H. M., Golozoubova V., Cannon B., Nedergaard J. (2009). UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209. 10.1016/j.cmet.2008.12.014 PubMed DOI
Fisher F. M., Kleiner S., Douris N., Fox E. C., Mepani R. J., Verdeguer F., et al. . (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281. 10.1101/gad.177857.111 PubMed DOI PMC
Fishman R. B., Dark J. (1987). Sensory innervation of white adipose tissue. Am. J. Physiol. 253, R942–R944. PubMed
Golozoubova V., Gullberg H., Matthias A., Cannon B., Vennstrom B., Nedergaard J. (2004). Depressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all hormone-binding thyroid hormone receptors. Mol. Endocrinol. 18, 384–401. 10.1210/me.2003-0267 PubMed DOI
Heaton G. M., Wagenvoord R. J., Kemp A., Jr., Nicholls D. G. (1978). Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur. J. Biochem. 82, 515–521. 10.1111/j.1432-1033.1978.tb12045.x PubMed DOI
Hoek-van den Hil E. F., Keijer J., Bunschoten A., Vervoort J. J., Stankova B., Bekkenkamp M., et al. . (2013). Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice. PLoS ONE 8:e51588. 10.1371/journal.pone.0051588 PubMed DOI PMC
Hoevenaars F. P., van Schothorst E. M., Horakova O., Voigt A., Rossmeisl M., Pico C., et al. . (2012). BIOCLAIMS standard diet (BIOsd): a reference diet for nutritional physiology. Genes Nutr. 7, 399–404. 10.1007/s12263-011-0262-6 PubMed DOI PMC
Hsieh A. C., Carlson L. D. (1957). Role of adrenaline and noradrenaline in chemical regulation of heat production. Am. J. Physiol. 190, 243–246. PubMed
Ibrahim M. M. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11–18. 10.1111/j.1467-789X.2009.00623.x PubMed DOI
Janeckova H., Hron K., Wojtowicz P., Hlidkova E., Baresova A., Friedecky D., et al. . (2012). Targeted metabolomic analysis of plasma samples for the diagnosis of inherited metabolic disorders. J. Chromatogr. A 1226, 11–17. 10.1016/j.chroma.2011.09.074 PubMed DOI
Jaroslawska J., Chabowska-Kita A., Kaczmarek M. M., Kozak L. P. (2015). Npvf: hypothalamic biomarker of ambient temperature independent of nutritional status. PLoS Genet. 11:e1005287. 10.1371/journal.pgen.1005287 PubMed DOI PMC
Karp C. L. (2012). Unstressing intemperate models: how cold stress undermines mouse modeling. J. Exp. Med. 209, 1069–1074. 10.1084/jem.20120988 PubMed DOI PMC
Larsson L. I., Rehfeld J. F. (1978). Distribution of gastrin and CCK cells in the rat gastrointestinal tract. Evidence for the occurrence of three distinct cell types storing COOH-terminal gastrin immunoreactivity. Histochemistry 58, 23–31. 10.1007/BF00489946 PubMed DOI
Li P., Lu M., Nguyen M. T., Bae E. J., Chapman J., Feng D., et al. . (2010). Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 285, 15333–15345. 10.1074/jbc.M110.100263 PubMed DOI PMC
Li Y., Wu X. Y., Owyang C. (2004). Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones. J. Physiol. 559, 651–662. 10.1113/jphysiol.2004.064816 PubMed DOI PMC
Lowell B. B., Spiegelman B. M. (2000). Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660. 10.1038/35007527 PubMed DOI
Markan K. R., Jurczak M. J., Brady M. J. (2010). Stranger in a strange land: roles of glycogen turnover in adipose tissue metabolism. Mol. Cell. Endocrinol. 318, 54–60. 10.1016/j.mce.2009.08.013 PubMed DOI PMC
Meyer C., Pimenta W., Woerle H. J., Van Haeften T., Szoke E., Mitrakou A., et al. . (2006). Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 29, 1909–1914. 10.2337/dc06-0438 PubMed DOI
Moran T. H., Kinzig K. P. (2004). Gastrointestinal satiety signals II. Cholecystokinin. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G183–G188. 10.1152/ajpgi.00434.2003 PubMed DOI
Okorodudu D. O., Jumean M. F., Montori V. M., Romero-Corral A., Somers V. K., Erwin P. J., et al. . (2010). Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int. J. Obes. 34, 791–799. 10.1038/ijo.2010.5 PubMed DOI
Osborn O., Olefsky J. M. (2012). The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374. 10.1038/nm.2627 PubMed DOI
Overton J. M. (2010). Phenotyping small animals as models for the human metabolic syndrome: thermoneutrality matters. Int. J. Obes. 34(Suppl. 2), S53–S58. 10.1038/ijo.2010.240 PubMed DOI
Pizon M., Tomasik P. J., Sztefko K., Szafran Z. (2009). Low ambient temperature lowers cholecystokinin and leptin plasma concentrations in adult men. Open Nutr. J. 3, 5–7. 10.2174/1874288200903010005 DOI
Puigserver P., Wu Z., Park C. W., Graves R., Wright M., Spiegelman B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839. 10.1016/S0092-8674(00)81410-5 PubMed DOI
Ravussin Y., LeDuc C. A., Watanabe K., Leibel R. L. (2012). Effects of ambient temperature on adaptive thermogenesis during maintenance of reduced body weight in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R438–R448. 10.1152/ajpregu.00092.2012 PubMed DOI PMC
Rippe C., Berger K., Boiers C., Ricquier D., Erlanson-Albertsson C. (2000). Effect of high-fat diet, surrounding temperature, and enterostatin on uncoupling protein gene expression. Am. J. Physiol. Endocrinol. Metab. 279, E293–E300. PubMed
Schooneman M. G., Vaz F. M., Houten S. M., Soeters M. R. (2013). Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62, 1–8. 10.2337/db12-0466 PubMed DOI PMC
Shore A. M., Karamitri A., Kemp P., Speakman J. R., Graham N. S., Lomax M. A. (2013). Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver. PLoS ONE 8:e68933. 10.1371/journal.pone.0068933 PubMed DOI PMC
Speakman J. R., Keijer J. (2012). Not so hot: optimal housing temperatures for mice to mimic the thermal environment of humans. Mol. Metab. 2, 5–9. 10.1016/j.molmet.2012.10.002 PubMed DOI PMC
Swoap S. J., Li C., Wess J., Parsons A. D., Williams T. D., Overton J. M. (2008). Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am. J. Physiol. Heart Circ. Physiol. 294, H1581–H1588. 10.1152/ajpheart.01000.2007 PubMed DOI
Thompson D. K., Sloane R., Bain J. R., Stevens R. D., Newgard C. B., Pieper C. F., et al. . (2012). Daily variation of serum acylcarnitines and amino acids. Metabolomics 8, 556–565. 10.1007/s11306-011-0345-9 PubMed DOI PMC
Tian X. Y., Ganeshan K., Hong C., Nguyen K. D., Qiu Y., Kim J., et al. . (2016). Thermoneutral housing accelerates metabolic inflammation to potentiate atherosclerosis but not insulin resistance. Cell Metab. 23, 165–178. 10.1016/j.cmet.2015.10.003 PubMed DOI PMC
Tran T. T., Yamamoto Y., Gesta S., Kahn C. R. (2008). Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420. 10.1016/j.cmet.2008.04.004 PubMed DOI PMC
Uchida K., Shiuchi T., Inada H., Minokoshi Y., Tominaga M. (2010). Metabolic adaptation of mice in a cool environment. Pflugers Arch. 459, 765–774. 10.1007/s00424-010-0795-3 PubMed DOI
Van Schothorst E. M., Franssen-van Hal N., Schaap M. M., Pennings J., Hoebee B., Keijer J. (2005). Adipose gene expression patterns of weight gain suggest counteracting steroid hormone synthesis. Obes. Res. 13, 1031–1041. 10.1038/oby.2005.121 PubMed DOI
van Schothorst E. M., Pagmantidis V., de Boer V. C., Hesketh J., Keijer J. (2007). Assessment of reducing RNA input for Agilent oligo microarrays. Anal. Biochem. 363, 315–317. 10.1016/j.ab.2007.01.016 PubMed DOI
Voigt A., Agnew K., van Schothorst E. M., Keijer J., Klaus S. (2013). Short-term, high fat feeding-induced changes in white adipose tissue gene expression are highly predictive for long-term changes. Mol. Nutr. Food Res. 57, 1423–1434. 10.1002/mnfr.201200671 PubMed DOI
Walden T. B., Hansen I. R., Timmons J. A., Cannon B., Nedergaard J. (2012). Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 302, E19–E31. 10.1152/ajpendo.00249.2011 PubMed DOI
Walther D. J., Peter J. U., Bashammakh S., Hortnagl H., Voits M., Fink H., et al. . (2003). Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76. 10.1126/science.1078197 PubMed DOI
Wang P., Mariman E., Renes J., Keijer J. (2008). The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell. Physiol. 216, 3–13. 10.1002/jcp.21386 PubMed DOI
Xue Y., Petrovic N., Cao R., Larsson O., Lim S., Chen S., et al. . (2009). Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9, 99–109. 10.1016/j.cmet.2008.11.009 PubMed DOI
Ye L., Wu J., Cohen P., Kazak L., Khandekar M. J., Jedrychowski M. P., et al. . (2013). Fat cells directly sense temperature to activate thermogenesis. Proc. Natl. Acad. Sci. U.S.A. 110, 12480–12485. 10.1073/pnas.1310261110 PubMed DOI PMC