White Adipose Tissue Response of Obese Mice to Ambient Oxygen Restriction at Thermoneutrality: Response Markers Identified, but no WAT Inflammation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31083422
PubMed Central
PMC6562665
DOI
10.3390/genes10050359
PII: genes10050359
Knihovny.cz E-zdroje
- Klíčová slova
- adipokine, cholecystokinin, hypoxia, inflammation, white adipose tissue, whole genome microarray gene expression,
- MeSH
- adipokiny genetika metabolismus MeSH
- bílá tuková tkáň metabolismus patologie MeSH
- biologické markery metabolismus MeSH
- dieta s vysokým obsahem tuků MeSH
- hypoxie genetika metabolismus MeSH
- kyselina mléčná metabolismus MeSH
- myši inbrední C57BL MeSH
- obezita genetika metabolismus MeSH
- regulace genové exprese MeSH
- teplota MeSH
- zánět genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adipokiny MeSH
- biologické markery MeSH
- kyselina mléčná MeSH
Obesity is associated with white adipose tissue (WAT) hypoxia and inflammation. We aimed to test whether mild environmental oxygen restriction (OxR, 13% O2), imposing tissue hypoxia, triggers WAT inflammation in obese mice. Thirteen weeks diet-induced obese male adult C57BL/6JOlaHsd mice housed at thermoneutrality were exposed for five days to OxR versus normoxia. WAT and blood were isolated and used for analysis of metabolites and adipokines, WAT histology and macrophage staining, and WAT transcriptomics. OxR increased circulating levels of haemoglobin and haematocrit as well as hypoxia responsive transcripts in WAT and decreased blood glucose, indicating systemic and tissue hypoxia. WAT aconitase activity was inhibited. Macrophage infiltration as marker for WAT inflammation tended to be decreased, which was supported by down regulation of inflammatory genes S100a8, Ccl8, Clec9a, Saa3, Mgst2, and Saa1. Other down regulated processes include cytoskeleton remodelling and metabolism, while response to hypoxia appeared most prominently up regulated. The adipokines coiled-coil domain containing 3 (CCDC3) and adiponectin, as well as the putative WAT hormone cholecystokinin (CCK), were reduced by OxR on transcript (Cck, Ccdc3) and/or serum protein level (adiponectin, CCDC3). Conclusively, our data demonstrate that also in obese mice OxR does not trigger WAT inflammation. However, OxR does evoke a metabolic response in WAT, with CCDC3 and adiponectin as potential markers for systemic or WAT hypoxia.
Zobrazit více v PubMed
Unger R.H., Scherer P.E. Gluttony, sloth and the metabolic syndrome: A roadmap to lipotoxicity. Trends Endocrinol. Metab. 2010;21:345–352. doi: 10.1016/j.tem.2010.01.009. PubMed DOI PMC
Kershaw E.E., Flier J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004;89:2548–2556. doi: 10.1210/jc.2004-0395. PubMed DOI
Coelho M., Oliveira T., Fernandes R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. AMS. 2013;9:191–200. doi: 10.5114/aoms.2013.33181. PubMed DOI PMC
Wang P., Mariman E., Renes J., Keijer J. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell. Physiol. 2008;216:3–13. doi: 10.1002/jcp.21386. PubMed DOI
Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose expression of tumor necrosis factor-α: Direct role in obesity-linked insulin resistance. Science. 1993;259:87–91. doi: 10.1126/science.7678183. PubMed DOI
Cinti S., Mitchell G., Barbatelli G., Murano I., Ceresi E., Faloia E., Wang S., Fortier M., Greenberg A.S., Obin M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005;46:2347–2355. doi: 10.1194/jlr.M500294-JLR200. PubMed DOI
Donath M.Y., Shoelson S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011;11:98–107. doi: 10.1038/nri2925. PubMed DOI
Bolus W.R., Hasty A.H. Contributions of innate type 2 inflammation to adipose function. J. Lipid Res. 2018 doi: 10.1194/jlr.R085993. PubMed DOI PMC
Stefan N., Kantartzis K., Machann J., Schick F., Thamer C., Rittig K., Balletshofer B., Machicao F., Fritsche A., Haring H.U. Identification and characterization of metabolically benign obesity in humans. Arch. Intern. Med. 2008;168:1609–1616. doi: 10.1001/archinte.168.15.1609. PubMed DOI
Primeau V., Coderre L., Karelis A.D., Brochu M., Lavoie M.E., Messier V., Sladek R., Rabasa-Lhoret R. Characterizing the profile of obese patients who are metabolically healthy. Int. J. Obes. 2011;35:971–981. doi: 10.1038/ijo.2010.216. PubMed DOI
Engin A. Adipose tissue hypoxia in obesity and its impact on preadipocytes and macrophages: Hypoxia hypothesis. Adv. Exp. Med. Biol. 2017;960:305–326. doi: 10.1007/978-3-319-48382-5_13. PubMed DOI
Melo L.C., Silva M.A., Calles A.C. Obesity and lung function: A systematic review. Einstein. 2014;12:120–125. doi: 10.1590/S1679-45082014RW2691. PubMed DOI PMC
Pasarica M., Sereda O.R., Redman L.M., Albarado D.C., Hymel D.T., Roan L.E., Rood J.C., Burk D.H., Smith S.R. Reduced adipose tissue oxygenation in human obesity: Evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58:718–725. doi: 10.2337/db08-1098. PubMed DOI PMC
Bolinder J., Kerckhoffs D.A., Moberg E., Hagstrom-Toft E., Arner P. Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects. Diabetes. 2000;49:797–802. doi: 10.2337/diabetes.49.5.797. PubMed DOI
Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int. J. Obes. 2009;33:54–66. doi: 10.1038/ijo.2008.229. PubMed DOI PMC
Hosogai N., Fukuhara A., Oshima K., Miyata Y., Tanaka S., Segawa K., Furukawa S., Tochino Y., Komuro R., Matsuda M., et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56:901–911. doi: 10.2337/db06-0911. PubMed DOI
Rausch M.E., Weisberg S., Vardhana P., Tortoriello D.V. Obesity in c57bl/6j mice is characterized by adipose tissue hypoxia and cytotoxic t-cell infiltration. Int. J. Obes. 2008;32:451–463. doi: 10.1038/sj.ijo.0803744. PubMed DOI
Ye J., Gao Z., Yin J., He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 2007;293:E1118–E1128. doi: 10.1152/ajpendo.00435.2007. PubMed DOI
Heilbronn L.K., Campbell L.V. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr. Pharm. Des. 2008;14:1225–1230. doi: 10.2174/138161208784246153. PubMed DOI
Goossens G.H., Bizzarri A., Venteclef N., Essers Y., Cleutjens J.P., Konings E., Jocken J.W., Cajlakovic M., Ribitsch V., Clement K., et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation. 2011;124:67–76. doi: 10.1161/CIRCULATIONAHA.111.027813. PubMed DOI
Lecoultre V., Peterson C.M., Covington J.D., Ebenezer P.J., Frost E.A., Schwarz J.M., Ravussin E. Ten nights of moderate hypoxia improves insulin sensitivity in obese humans. Diabetes Care. 2013;36:e197–e198. doi: 10.2337/dc13-1350. PubMed DOI PMC
Duivenvoorde L.P., van Schothorst E.M., Bunschoten A., Keijer J. Dietary restriction of mice on a high-fat diet induces substrate efficiency and improves metabolic health. J. Mol. Endocrinol. 2011;47:81–97. doi: 10.1530/JME-11-0001. PubMed DOI
Hoevenaars F.P., van Schothorst E.M., Horakova O., Voigt A., Rossmeisl M., Pico C., Caimari A., Kopecky J., Klaus S., Keijer J. Bioclaims standard diet (biosd): A reference diet for nutritional physiology. Genes Nutr. 2012;7:399–404. doi: 10.1007/s12263-011-0262-6. PubMed DOI PMC
Hoevenaars F.P., Bekkenkamp-Grovenstein M., Janssen R.J., Heil S.G., Bunschoten A., Hoek-van den Hil E.F., Snaas-Alders S., Teerds K., van Schothorst E.M., Keijer J. Thermoneutrality results in prominent diet-induced body weight differences in c57bl/6j mice, not paralleled by diet-induced metabolic differences. Mol. Nutr. Food Res. 2014;58:799–807. doi: 10.1002/mnfr.201300285. PubMed DOI
van der Stelt I., Hoevenaars F., Siroka J., de Ronde L., Friedecky D., Keijer J., van Schothorst E. Metabolic response of visceral white adipose tissue of obese mice exposed for 5 days to human room temperature compared to mouse thermoneutrality. Front. Physiol. 2017;8:179. doi: 10.3389/fphys.2017.00179. PubMed DOI PMC
Duivenvoorde L.P., van Schothorst E.M., Swarts H.J., Keijer J. Assessment of metabolic flexibility of old and adult mice using three noninvasive, indirect calorimetry-based treatments. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015;70:282–293. doi: 10.1093/gerona/glu027. PubMed DOI
Dillard T.A., Moores L.K., Bilello K.L., Phillips Y.Y. The preflight evaluation. A comparison of the hypoxia inhalation test with hypobaric exposure. Chest. 1995;107:352–357. doi: 10.1378/chest.107.2.352. PubMed DOI
Tamisier R., Gilmartin G.S., Launois S.H., Pepin J.L., Nespoulet H., Thomas R., Levy P., Weiss J.W. A new model of chronic intermittent hypoxia in humans: Effect on ventilation, sleep, and blood pressure. J. Appl. Physiol. 2009;107:17–24. doi: 10.1152/japplphysiol.91165.2008. PubMed DOI PMC
Hoevenaars F.P., Keijer J., Swarts H.J., Snaas-Alders S., Bekkenkamp-Grovenstein M., van Schothorst E.M. Effects of dietary history on energy metabolism and physiological parameters in c57bl/6j mice. Exp. Physiol. 2013;98:1053–1062. doi: 10.1113/expphysiol.2012.069518. PubMed DOI
Van Schothorst E.M., Pagmantidis V., de Boer V.C., Hesketh J., Keijer J. Assessment of reducing RNA input for agilent oligo microarrays. Anal. Biochem. 2007;363:315–317. doi: 10.1016/j.ab.2007.01.016. PubMed DOI
Van Helden Y.G., Godschalk R.W., Swarts H.J., Hollman P.C., van Schooten F.J., Keijer J. β-carotene affects gene expression in lungs of male and female bcmo1-/- mice in opposite directions. Cell. Mol. Life Sci. CMLS. 2011;68:489–504. doi: 10.1007/s00018-010-0461-0. PubMed DOI PMC
Hoek-van den Hil E.F., Keijer J., Bunschoten A., Vervoort J.J., Stankova B., Bekkenkamp M., Herreman L., Venema D., Hollman P.C., Tvrzicka E., et al. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice. PloS ONE. 2013;8:e51588. doi: 10.1371/annotation/53e96376-38fe-40e7-b73a-60e7232cef0e. PubMed DOI PMC
Benita Y., Kikuchi H., Smith A.D., Zhang M.Q., Chung D.C., Xavier R.J. An integrative genomics approach identifies hypoxia inducible factor-1 (Hif-1)-target genes that form the core response to hypoxia. Nucl. Acids Res. 2009;37:4587–4602. doi: 10.1093/nar/gkp425. PubMed DOI PMC
Hofer T., Wenger R.H., Kramer M.F., Ferreira G.C., Gassmann M. Hypoxic up-regulation of erythroid 5-aminolevulinate synthase. Blood. 2003;101:348–350. doi: 10.1182/blood-2002-03-0773. PubMed DOI
Van den Borst B., Schols A.M., de Theije C., Boots A.W., Kohler S.E., Goossens G.H., Gosker H.R. Characterization of the inflammatory and metabolic profile of adipose tissue in a mouse model of chronic hypoxia. J. Appl. Physiol. 2013;114:1619–1628. doi: 10.1152/japplphysiol.00460.2012. PubMed DOI
Famulla S., Horrighs A., Cramer A., Sell H., Eckel J. Hypoxia reduces the response of human adipocytes towards tnfα resulting in reduced nf-κb signaling and mcp-1 secretion. Int. J. Obes. 2012;36:986–992. doi: 10.1038/ijo.2011.200. PubMed DOI
Poitou C., Viguerie N., Cancello R., De Matteis R., Cinti S., Stich V., Coussieu C., Gauthier E., Courtine M., Zucker J.D., et al. Serum amyloid a: Production by human white adipocyte and regulation by obesity and nutrition. Diabetologia. 2005;48:519–528. doi: 10.1007/s00125-004-1654-6. PubMed DOI
Jernas M., Palming J., Sjoholm K., Jennische E., Svensson P.A., Gabrielsson B.G., Levin M., Sjogren A., Rudemo M., Lystig T.C., et al. Separation of human adipocytes by size: Hypertrophic fat cells display distinct gene expression. FASEB J. 2006;20:1540–1542. doi: 10.1096/fj.05-5678fje. PubMed DOI
Salans L.B., Knittle J.L., Hirsch J. The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. J. Clin. Invest. 1968;47:153–165. doi: 10.1172/JCI105705. PubMed DOI PMC
Han C.Y., Subramanian S., Chan C.K., Omer M., Chiba T., Wight T.N., Chait A. Adipocyte-derived serum amyloid a3 and hyaluronan play a role in monocyte recruitment and adhesion. Diabetes. 2007;56:2260–2273. doi: 10.2337/db07-0218. PubMed DOI
Gencer S., van der Vorst E.P.C., Aslani M., Weber C., Doring Y., Duchene J. Atypical chemokine receptors in cardiovascular disease. Thromb. Haemost. 2019;119:534–541. doi: 10.1055/s-0038-1676988. PubMed DOI
Kwon B. Is cd137 ligand (cd137l) signaling a fine tuner of immune responses? Immune Netw. 2015;15:121–124. doi: 10.4110/in.2015.15.3.121. PubMed DOI PMC
Forsberg M.H., Ciecko A.E., Bednar K.J., Itoh A., Kachapati K., Ridgway W.M., Chen Y.G. Cd137 plays both pathogenic and protective roles in type 1 diabetes development in nod mice. J. Immunol. 2017;198:3857–3868. doi: 10.4049/jimmunol.1601851. PubMed DOI PMC
Zhou S.N., Ran R.Z., Tan L.L., Guo H. Current perspectives of sa-4-1bbl in immune modulation during cancer. Exp. Ther. Med. 2018;15:2699–2702. doi: 10.3892/etm.2018.5729. PubMed DOI PMC
Lushchak O.V., Piroddi M., Galli F., Lushchak V.I. Aconitase post-translational modification as a key in linkage between krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep. 2014;19:8–15. doi: 10.1179/1351000213Y.0000000073. PubMed DOI PMC
Janero D.R., Hreniuk D. Suppression of TCA cycle activity in the cardiac muscle cell by hydroperoxide-induced oxidant stress. Am. J. Physiol. 1996;270:C1735–C1742. doi: 10.1152/ajpcell.1996.270.6.C1735. PubMed DOI
Drapier J.C., Hibbs J.B.J. Aconitases: A class of metalloproteins highly sensitive to nitric oxide synthesis. Methods Enzymol. 1996;269:26–36. doi: 10.1016/S0076-6879(96)69006-5. PubMed DOI
Tretter L., Ambrus A. Measurement of ROS homeostasis in isolated mitochondria. Methods Enzymol. 2014;547:199–223. doi: 10.1016/B978-0-12-801415-8.00012-6. PubMed DOI
Ishimoto Y., Tanaka T., Yoshida Y., Inagi R. Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney. Clin. Exp. Pharmacol. Physiol. 2018;45:1097–1105. doi: 10.1111/1440-1681.13018. PubMed DOI PMC
Poyton R.O., Ball K.A., Castello P.R. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. 2009;20:332–340. doi: 10.1016/j.tem.2009.04.001. PubMed DOI
Smith S.J., Saggerson E.D. Regulation of pyruvate dehydrogenase activity in white adipocyte mitochondria by palmitoyl carnitine and citrate. Int. J. Biochem. 1979;10:785–790. doi: 10.1016/0020-711X(79)90049-1. PubMed DOI
Taylor W.M., Halperin M.L. Regulation of pyruvate dehydrogenase in muscle. Inhibition by citrate. J. Biol. Chem. 1973;248:6080–6083. PubMed
Lam K.S., Xu A. Adiponectin: Protection of the endothelium. Curr. Diabetes Rep. 2005;5:254–259. doi: 10.1007/s11892-005-0019-y. PubMed DOI
Trujillo M.E., Scherer P.E. Adiponectin-journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J. Intern. Med. 2005;257:167–175. doi: 10.1111/j.1365-2796.2004.01426.x. PubMed DOI
Chen B., Lam K.S., Wang Y., Wu D., Lam M.C., Shen J., Wong L., Hoo R.L., Zhang J., Xu A. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem. Biophys. Res. Commun. 2006;341:549–556. doi: 10.1016/j.bbrc.2006.01.004. PubMed DOI
Mazzatti D., Lim F.L., O’Hara A., Wood I.S., Trayhurn P. A microarray analysis of the hypoxia-induced modulation of gene expression in human adipocytes. Arch. Physiol. Biochem. 2012;118:112–120. doi: 10.3109/13813455.2012.654611. PubMed DOI
Yang Y.S., Song H.D., Li R.Y., Zhou L.B., Zhu Z.D., Hu R.M., Han Z.G., Chen J.L. The gene expression profiling of human visceral adipose tissue and its secretory functions. Biochem. Biophys. Res. Commun. 2003;300:839–846. doi: 10.1016/S0006-291X(02)02843-7. PubMed DOI
Koob G.F., Annau Z., Rubin R.J., Montgomery M.R. Effect of hypoxic hypoxia and carbon monoxide on food intake, water intake, and body weight in two strains of rats. Life Sci. 1974;14:1511–1520. doi: 10.1016/0024-3205(74)90162-3. PubMed DOI
Butterfield G.E., Gates J., Fleming S., Brooks G.A., Sutton J.R., Reeves J.T. Increased energy intake minimizes weight loss in men at high altitude. J. Appl. Physiol. 1992;72:1741–1748. doi: 10.1152/jappl.1992.72.5.1741. PubMed DOI
Helwig M., Archer Z.A., Heldmaier G., Tups A., Mercer J.G., Klingenspor M. Photoperiodic regulation of satiety mediating neuropeptides in the brainstem of the seasonal siberian hamster (Phodopus sungorus) J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2009;195:631–642. doi: 10.1007/s00359-009-0438-3. PubMed DOI
Kobayashi S., Fukuhara A., Taguchi T., Matsuda M., Tochino Y., Otsuki M., Shimomura I. Identification of a new secretory factor, ccdc3/favine, in adipocytes and endothelial cells. Biochem. Biophys. Res. Commun. 2010;392:29–35. doi: 10.1016/j.bbrc.2009.12.142. PubMed DOI