Oscillatory reactivity to effortful cognitive processing in the subthalamic nucleus and internal pallidum: a depth electrode EEG study
Language English Country Austria Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28389718
DOI
10.1007/s00702-017-1719-6
PII: 10.1007/s00702-017-1719-6
Knihovny.cz E-resources
- Keywords
- Complex cognitive functions, Deep brain stimulation, ERD/S, Internal globus pallidum, Lateralization, Subthalamic nucleus,
- MeSH
- Adult MeSH
- Dystonia physiopathology therapy MeSH
- Electroencephalography MeSH
- Globus Pallidus physiology MeSH
- Deep Brain Stimulation * MeSH
- Cognition physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Subthalamic Nucleus physiology MeSH
- Parkinson Disease physiopathology therapy MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
This study investigates how complex motor-cognitive activities are processed in the subthalamic nucleus (STN) and internal globus pallidum (GPi), as adverse neuropsychiatric effects may accompany deep brain stimulation (DBS), mainly in Parkinson's disease (PD) and STN-DBS. Dystonia patients with GPi-DBS electrodes (n = 5) and PD subjects (n = 5) with STN-DBS electrodes performed two tasks: (1) copying letters; and (2) writing any letter other than that appearing on the monitor. The cognitive load of the second task was greater than that of the first. Intracranial local field potentials (LFPs) were analysed. A beta power decrease was the main correlate of the enhanced cognitive load during the second task in both structures, with a lateralization to the left side, mainly in the GPi. A gamma power increase linked with the increased cognitive activity was observed only in the STN. Differences were also observed in the theta and alpha bandpasses. Beta ERD reactivity seems to be essential during the processing of complex motor-cognitive tasks, increases with enhanced cognitive effort, and was observed in both the STN and GPi. Oscillatory reactivity to effortful cognitive processing in other frequency bands was less consistent, with differences between the studied nuclei. Lateralization of activity related to cognitive factors was observed mainly in the GPi.
Department of Neurology University of Arizona Tucson USA
Department of Neurosurgery St Anne's Hospital Masaryk University Brno Czech Republic
See more in PubMed
Mov Disord. 2008 Feb 15;23(3):343-9 PubMed
Exp Neurol. 2004 Oct;189(2):369-79 PubMed
Eur J Neurosci. 2006 Apr;23(7):1956-60 PubMed
Eur J Neurosci. 2008 Mar;27(5):1277-84 PubMed
Brain Topogr. 2015 Mar;28(2):269-78 PubMed
Arch Neurol. 2005 Apr;62(4):554-60 PubMed
Mov Disord. 2006 Jun;21 Suppl 14:S305-27 PubMed
N Engl J Med. 2006 Nov 9;355(19):1978-90 PubMed
N Engl J Med. 2010 Jun 3;362(22):2077-91 PubMed
Int J Psychophysiol. 1998 May;28(3):301-15 PubMed
Brain. 2000 Oct;123 ( Pt 10):2091-108 PubMed
Clin Neurophysiol. 2015 Apr;126(4):653-8 PubMed
Brain. 2003 Sep;126(Pt 9):1975-85 PubMed
Stereotact Funct Neurosurg. 2016;94(5):307-319 PubMed
J Neural Transm (Vienna). 2016 Jul;123(7):751-767 PubMed
J Neurol Neurosurg Psychiatry. 2005 Mar;76(3):426-8 PubMed
Eur J Neurosci. 2005 Nov;22(9):2315-24 PubMed
Expert Rev Neurother. 2011 Jan;11(1):139-49 PubMed
Lancet Neurol. 2008 Jul;7(7):605-14 PubMed
Neuroimage. 2006 Feb 1;29(3):789-96 PubMed
Exp Neurol. 2010 Nov;226(1):120-7 PubMed
Mov Disord. 2010 Sep 15;25(12):1839-46 PubMed
Vision Res. 2001;41(10-11):1257-60 PubMed
J Vis Exp. 2016 Sep 14;(115):null PubMed
Clin Neurophysiol. 2003 Jul;114(7):1226-36 PubMed
Clin Neurophysiol. 2007 Dec;118(12):2625-36 PubMed
Transl Neurosci. 2015 Oct 5;6(1):198-207 PubMed
Brain. 1998 Dec;121 ( Pt 12):2301-15 PubMed
Annu Rev Neurosci. 2014;37:117-35 PubMed
J Neurosci. 2013 Oct 2;33(40):15815-26 PubMed
Brain. 2014 Nov;137(Pt 11):3012-3024 PubMed
Brain. 2003 Dec;126(Pt 12):2597-608 PubMed
Cortex. 2014 Nov;60:69-81 PubMed
Parkinsonism Relat Disord. 2006 Jun;12(5):265-72 PubMed
J Neurol Neurosurg Psychiatry. 2014 Sep;85(9):982-6 PubMed
J Neurosci. 2012 Jul 18;32(29):9909-16 PubMed
Int J Psychophysiol. 1996 Nov;24(1-2):101-12 PubMed
Lancet Neurol. 2006 Oct;5(10):864-72 PubMed
J Neurosci. 2013 Mar 13;33(11):4804-14 PubMed
Hum Brain Mapp. 2005 Nov;26(3):170-7 PubMed
Mov Disord. 2014 Apr 15;29(5):663-72 PubMed
J Neural Transm Suppl. 2006;(70):27-30 PubMed
J Neurophysiol. 2013 Jan;109(2):557-69 PubMed
Neurosurgery. 2013 Nov;73(5):894-906; discussion 905-6 PubMed
Mov Disord. 2003 Mar;18(3):303-12 PubMed
Handb Clin Neurol. 2013;116:167-87 PubMed
Soc Neurosci. 2011;6(3):243-56 PubMed
J Neural Transm (Vienna). 2016 Jul;123(7):655-665 PubMed
Clin Neurophysiol. 2003 Aug;114(8):1403-18 PubMed
Brain. 2011 Jan;134(Pt 1):36-49 PubMed
Clin Neurophysiol. 2006 Feb;117(2):474-5 PubMed
J Neural Transm (Vienna). 2016 Jul;123(7):769-774 PubMed
Mov Disord. 2013 Oct;28(12):1644-52 PubMed
Mov Disord. 2010 Apr 15;25(5):578-86 PubMed
Eur J Neurosci. 2005 Mar;21(5):1223-35 PubMed
IEEE Trans Neural Syst Rehabil Eng. 2007 Dec;15(4):483-92 PubMed
Hum Brain Mapp. 2014 Jul;35(7):3499-516 PubMed
Ann Neurol. 2009 May;65(5):586-95 PubMed
Brain. 2007 Feb;130(Pt 2):457-68 PubMed
Neuroreport. 1997 May 6;8(7):1793-6 PubMed
Neurosignals. 2013;21(1-2):89-98 PubMed