Group 6 Layered Transition-Metal Dichalcogenides in Lab-on-a-Chip Devices: 1T-Phase WS2 for Microfluidics Non-Enzymatic Detection of Hydrogen Peroxide
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Two-dimensional (2D) layered transition-metal dichalcogenides (TMDs) have been placed in the spotlight for their advantageous properties for catalytic and sensing applications. However, little work is done to explore and exploit them in enhancing the performance of analytical lab-on-a-chip (LOC) devices. In this work, we demonstrate a simple, sensitive, and low-cost fabrication of electrochemical LOC microfluidic devices to be used for enzymatic detection. We integrated four t-BuLi exfoliated, group 6 TMD materials (MoS2, MoSe2, WS2, and WSe2) within the LOC devices by the drop-casting method and compared their performance for H2O2 detection. The 1T-phase WS2-based LOC device outperformed the rest of the TMD materials and exhibited a wide range of linear response (20 nM to 20 μM and 100 μM to 2 mM), low detection limit (2.0 nM), and good selectivity for applications in real sample analysis. This work may facilitate the expanded use of electrochemical LOC microfluidics, with its easier integrability, for applications in the field of biodiagnostics and sensing.
Citace poskytuje Crossref.org
3D-Printed SARS-CoV-2 RNA Genosensing Microfluidic System