Using phenotype microarrays in the assessment of the antibiotic susceptibility profile of bacteria isolated from wastewater in on-site treatment facilities
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články
PubMed
28451946
PubMed Central
PMC5630657
DOI
10.1007/s12223-017-0516-9
PII: 10.1007/s12223-017-0516-9
Knihovny.cz E-zdroje
- Klíčová slova
- Antibiotic Sensitivity, Culturable Fraction, Phenotype Microarrays, Rifamycin, Total Heterotrophic Bacterium,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria klasifikace účinky léků genetika izolace a purifikace MeSH
- bakteriální léková rezistence MeSH
- čištění vody přístrojové vybavení MeSH
- mikročipová analýza metody MeSH
- odpadní voda chemie mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- antibakteriální látky MeSH
- odpadní voda MeSH
The scope of the study was to apply Phenotype Biolog MicroArray (PM) technology to test the antibiotic sensitivity of the bacterial strains isolated from on-site wastewater treatment facilities. In the first step of the study, the percentage values of resistant bacteria from total heterotrophic bacteria growing on solid media supplemented with various antibiotics were determined. In the untreated wastewater, the average shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria were 53, 56, and 42%, respectively. Meanwhile, the shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria in the treated wastewater were 39, 33, and 29%, respectively. To evaluate the antibiotic susceptibility of the bacteria present in the wastewater, using the phenotype microarrays (PMs), the most common isolates from the treated wastewater were chosen: Serratia marcescens ss marcescens, Pseudomonas fluorescens, Stenotrophomonas maltophilia, Stenotrophomonas rhizophila, Microbacterium flavescens, Alcaligenes faecalis ss faecalis, Flavobacterium hydatis, Variovorax paradoxus, Acinetobacter johnsonii, and Aeromonas bestiarum. The strains were classified as multi-antibiotic-resistant bacteria. Most of them were resistant to more than 30 antibiotics from various chemical classes. Phenotype microarrays could be successfully used as an additional tool for evaluation of the multi-antibiotic resistance of environmental bacteria and in preliminary determination of the range of inhibition concentration.
Department of Environmental Microbiology Institute for Ecology of Industrial Areas Katowice Poland
Development and Assessment Institute in Waste Water Technology RWTH Aachen University Aachen Germany
Zobrazit více v PubMed
Adegoke AA, Okoh AI (2014) Species diversity and antibiotic resistance properties of Staphylococcus of farm animal origin in Nkonkobe municipality. South Africa Folia Microbiol 59:133–140. doi:10.1007/s12223-013-0275-1 PubMed PMC
Baquero F, Martinez JL, Canton R. Antibiotics and antibiotic resistance in water environments. Curr Op Biotechnol. 2008;19:260–265. doi: 10.1016/j.copbio.2008.05.006. PubMed DOI
Bergeron MG. Genetic tools for the simultaneous identification of bacterial species and their antibiotic resistance genes: impact on clinical practice. Int J Antimicrob Agents. 2000;16:1–3. doi: 10.1016/S0924-8579(00)00178-3. PubMed DOI
Biondi EG, Tatti E, Comparini D, Giuntini E, Mocali S, Giovannetti L, Bazzicalupo M, Mengoni A, Viti C. Metabolic capacity of Sinorhizobium (Ensifer) meliloti strains as determined by phenotype microarray analysis. App Environ Microbiol. 2009;75:5396–5404. doi: 10.1128/AEM.00196-09. PubMed DOI PMC
Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev. 2009;33:191–205. doi: 10.1111/j.1574-6976.2008.00149.x. PubMed DOI PMC
Bochner BR, Gadzinski P, Panomitros E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res. 2001;11:1246–1255. doi: 10.1101/gr.186501. PubMed DOI PMC
Bochner BR, Giovannetti L, Viti C. Important discoveries from analyzing bacterial phenotypes. Mol Microbiol. 2008;70:274–280. doi: 10.1111/j.1365-2958.2008.06383.x. PubMed DOI PMC
Boczek LA, Rice EW, Johnston B, Johnson JR. Occurrence of antibiotic-resistant uropathogenic Escherichia coli clonal group A in wastewater effluents. Appl Environ Microbiol. 2007;41:80–84. PubMed PMC
Call DR, Bakko MK, Krug MJ, Roberts MC. Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob Agents Chemother. 2003;47:3290–3295. doi: 10.1128/AAC.47.10.3290-3295.2003. PubMed DOI PMC
Chojniak J, Wasilkowski D, Płaza G, Mrozik A, Brigmon R. Application of Biolog microarrays techniques for characterization of functional diversity of microbial community in phenolic-contaminated water. Int J Environ Res. 2015;9:785–794.
Decorosi F, Santopolo L, Mora D, Viti C, Giovannetti L. The improvement of a phenotype microarray protocol for the chemical sensitivity analysis of Streptococcus thermophilus. J Microbial Methods. 2011;86:258–261. doi: 10.1016/j.mimet.2011.05.018. PubMed DOI
Dias D, Torres RT, Kronvall G, Fonseca C, Mendo S, Caetano T. Assessment of antibiotic resistance of Escherichia coli isolates and screening of Salmonella spp. in wild ungulates from Portugal. Res Microbiol. 2015;166:584–593. doi: 10.1016/j.resmic.2015.03.006. PubMed DOI
Fluit ADC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clinical Microbiol Rev. 2001;14:836–871. doi: 10.1128/CMR.14.4.836-871.2001. PubMed DOI PMC
Frickmann H, Omurwa Masanta WO, Zautner AZ. Emerging rapid resistance. Testing methods for clinical microbiology laboratories and their potential impact on patient management. Biomed Res Int. 2014;1:1–19. doi: 10.1155/2014/375681. PubMed DOI PMC
Holzman D. Microarray analyses may speed antibiotic resistance testing. ASM News. 2003;69:538–539.
Huang JJ, Hu HYLSQ, Tang F, Lu Y, Wei B. Monitoring and evaluation of antibiotic-resistant bacteria at a municipal wastewater treatment plant in China. Environ Int. 2012;42:31–38. doi: 10.1016/j.envint.2011.03.001. PubMed DOI
Jałowiecki Ł, Chojniak JM, Dorgeloh E, Hegedusova B, Ejhed H, Magnér J, Płaza GA. Microbial community profiles in wastewaters from onsite wastewater treatment systems technology. PlosOne. 2016 PubMed PMC
Line JE, Hiett KL, Guard-Bouldin J, Seal BS. Differential carbon source utilization by Campylobacter jejuni 11168 in response to growth temperature variation. J Microbiol Methods. 2010;80:198–202. doi: 10.1016/j.mimet.2009.12.011. PubMed DOI
Lucas AL, Manna AC. Phenotypic characterization of sarR mutant in Staphylococcus aureus. Microbial Pathog. 2013;57:52–61. doi: 10.1016/j.micpath.2012.11.008. PubMed DOI
Monecke S, Leube I, Ehricht R. Simple and robust array-based methods for the parallel detection of resistance genes of Staphylococcus aureus. Genome Lett. 2003;2:116–128. doi: 10.1166/gl.2003.029. DOI
Novo A, Manaia CM. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants. Appl Microbiol Biotechnol. 2010;87:1157–1165. doi: 10.1007/s00253-010-2583-6. PubMed DOI
Perreten V, Vorlet-Fawer L, Slickers P, Ehricht R, Kuhnert P, Frey J. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J Clin Microbiol. 2005;43:2291–2302. doi: 10.1128/JCM.43.5.2291-2302.2005. PubMed DOI PMC
Pignato S, Coniglio MA, Faro G, Weill FX, Giammanco G. Plasmid-mediated multiple antibiotic resistances of Escherichia coli in crude and treated wastewater used in agriculture. J Water Health. 2009;2:251–258. doi: 10.2166/wh.2009.019. PubMed DOI
Płaza G, Turek A, Szczygłowska R. Characterization of E. coli strains obtained from wastewater effluent. Int J Environ Res. 2013;2:67–74.
Scaria J, Chen JW, Useh N, He H, McDonough SP, Mao C, Sobral B, Chang YF. Comparative nutritional and chemical phenome of Clostridium difficile isolates determined using phenotype microarrays. Internat J Inf Diseases. 2014;27:20–25. doi: 10.1016/j.ijid.2014.06.018. PubMed DOI PMC
Schmieder R, Edwards R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol. 2012;7:73–89. doi: 10.2217/fmb.11.135. PubMed DOI
Silva J, Castilo G, Callejas L, Lopez H, Olmos J. Frequency of transferable multiple antibiotic resistance amongst coliform bacteria isolated from a treated sewage effluent in Antofagasta. Electron J Biotechnol. 2006;9:533–540. doi: 10.2225/vol9-issue5-fulltext-7. DOI
Silva MF, Vaz-Moreira L, Gonzalez-Pajuelo M, Nunnes OC, Manaia CM. Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol. 2007;60:166–176. doi: 10.1111/j.1574-6941.2006.00268.x. PubMed DOI
Wang C, Gu XC, Zhang S, Wang P, Guo C, Gu J, Hou J. Characterization of antibiotic-resistance genes in antibiotic resistance Escherichia coli isolates from a lake. Arch Environ Contam Toxicol. 2013;65:635–641. doi: 10.1007/s00244-013-9932-2. PubMed DOI
World Health Organization (2014) Antimicrobial resistance global report on surveillance
Zhang Y, Marrs CF, Simon C, Xi C. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sc Tot Environ. 2009;407:3702–3706. doi: 10.1016/j.scitotenv.2009.02.013. PubMed DOI